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Self-consistently improved finite temperature effective potential for gauge theories
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The finite temperature effective potential of the Abelian Higgs model is studied using the self-
consistent composite operator method, whicl& can be used to sum up the contributions of daisy and su-

perdaisy diagrams. The effect of the momentum dependence of the effective masses is estimated by using
a Rayleigh-Ritz variational approximation.

PACS number(s): 98.80.Cq, 05.70.Fh, 12.1S.Ji

I. INTRODUCTION

It has been recently conjectured that the observed
baryon asymmetry might have been generated at the elec-
troweak scale if the phase transition is strongly first order
[1]. Unfortunately, when the temperature T is close to
the critical temperature T, the finite temperature
effective potential VT(P), which is an important
mathematical tool in the study of the phase transitions
and can be used to determine their order, cannot be eval-
uated reliably using the ordinary perturbative approach
[2—4]; in fact, at these temperatures certain multiloop di-
agrams become non-negligible even when the coupling
constants are very small. In particular, by using power
counting it has been argued [4,5] that when T —T, there
are important contributions from the infinite classes of
daisy and superdaisy diagrams (represented in Fig. I),
which render the ordinary one-loop approximation of

VT(P) unreliable for all P( T The. refore the contribu-
tions for these diagrams must be added to the one-loop
result. The corresponding improved approximation of
VT(P) is expected [5,6] to be reliable (even when T- T, )

for all P) gT and up to order g, where g is the biggest
coupling constant of the theory.

Because of the recent interest in the electroweak baryo-
genesis, several techniques of evaluation of the contribu-
tion of daisy (and superdaisy) diagrams to the finite tem-
perature elective potential for various theories have been
presented in the literature [5—21]. In Ref. [19],in a study
of the A,@ scalar theory, Pi and I used a method of
resummation of the daisy and superdaisy diagrams which
is based on the generalization at finite temperature of the
Cornwall-Jackiw-Tomboulis [22] effective potential for
composite operators VT($, 6). For bosonic quantum
fields 4(x), VT($, 6) is given by

VT(P, 6)= V,i($)+ —,
' Tr lnDOG '+

—,
' Tr[D '6 —1]

+ Vr(2)(p 6)

where [19,21] 6 is a possible expectation value of
'14(x)4(y) (here 7' indicates time ordering), Do is the
free propagator, D is the tree-level propagator, V,l(P) is
the classical potential, and VTizi(P, G) is given by all the
two-particle irreducible vacuum-to-vacuum graphs with
two or more loops in the theory with vertices given by
the interaction part of the shifted (4~4+4) Lagrang-
ian and propagators set equal to G.

The ordinary effective potential VT(P) is related to
VT($, 6) by the relation

VT(p) = VT(ttt, 60),
5VT($, 6)

56
,

6=60

=0. (1.2b)

FIG. 1. Examples of (a,b) daisy and (c,d) superdaisy dia-
grams.
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V ( P ) = V,"'((b, G ), (1.3a}

VT"($,6):—V„{P)+—,
' Tr lnDDG '+

—,
' Tr[D '6 —1]

+ [ r(2)(4»]o( ~), (1.3b)

Using this formalism, it is easy to see [19,20] that the
resummation of the daisy and superdaisy contributions
corresponds to the following approximation of the finite
temperature effective potential:
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gVres(y 6)
56

=0
G=G 0

(1.3c}

i.e., the expression for Vr($) given by (1.1) and (1.2) but
with VT~2)($, 6} approximated by the leading two-loop
contributions in 6.

The primary purpose of this paper is to address some
technical issues which often arise in the application of
this composite operator method, but are absent in the
leading order calculation for the k4 theory presented in
Ref. [19].

The most important technical complication is the
momentum dependence of the effective masses (defined in
the following section in analogy with Ref. [19]), which
appears when diagrams of the type in Fig. 2(b) are includ-
ed in the approximation of Vr~2)($, 6). In the leading or-
der calculation for the A,4 scalar theory, such contribu-
tions can be neglected. However, unless one assumes that
the gauge coupling is much smaller than the scalar self-

coupling, in the study of gauge theories diagrams of the
type in Fig. 2(b) contribute in the leading order. In the
recent literature the importance of the problem of the
momentum dependence of the effective masses has been
often pointed out [11,17,20], but no consistent solution
has been yet developed. As a consequence, in most stud-
ies the finite temperature effective potential has been cal-
culated using the ad hoc substitution of the effective
masses by their value at zero moment. I show that the
structure of Eq. (1.3), in which the effective potential is
obtained as the solution of a variational problem, natural-

ly leads to a variational approximation which allows one
to estimate analytically the effect of the momentum
dependence of the effective masses. For definiteness and

simplicity, I illustrate this technique by studying the

high-temperature effective potential of the Abelian Higgs
model, which has been the subject of numerous recent in-

vestigations [13—18], especially as a toy model of the
standard electroweak model. My variational approxima-
tion of the daisy and superdaisy resummed effective po-
tential of the Abelian Higgs model agrees to order e
with the result of the "improvement of the one loop" per-
formed in Ref. [9]. Moreover, I use the terms of order e ~

and higher in my result to estimate how important the
full higher order correction can be expected to be and to
show that an accurate evaluation of the effective potential
at the critical temperature also requires appropriate han-

dling of the momentum dependence of the effective
masses.

The paper is organized as follows. In Sec. II, I derive

for the Abelian Higgs model the approximation of the
finite temperature effective potential for composite opera-
tors defined in Eq. (1.3b) and the gap equations (1.3c). Be-
cause of the momentum dependence of the effective
masses, the daisy and superdaisy resummed effective po-
tential VT" cannot be evaluated analytically. In Sec. III, I
make a Rayleigh-Ritz variational approximation and
evaluate analytically the corresponding effective potential
in the high-temperature limit. Section IV is devoted to
the discussion of the results and the conclusions.

II. DAISY AND SUPERDAISY
RKSUMMED EFFECTIVE POTENTIAL

In this section, using Eq. (1.3), I study the exact daisy
and superdaisy resummed finite temperature effective po-
tential for the Abelian Higgs model. Here and in the fol-
lowing sections, the analysis is performed in the Landau
gauge. Field theory at finite temperature T is described
using imaginary (Euclidean) time r, which is restricted to
the interval 0~ r & 1/T. The Feynman rules are the same
as those of ordinary field theory, except that the momen-
tum space integral over the time component k4 is re-

placed by a sum over discrete frequencies k4 =innT:.
k

(2n ) „(2n )

where n is even (odd) for bosons (fermions).
The Lagrangian which describes the theory is

(2.1)

1.= — FF""+——8 4 t}"4'+—m 4 ——4&
1 „1 2 2 ~ 4

4 p 2 p a 2 41

—ee 8 4 4 A"+—e 4 A — (8 3")ab p a b 2 2g p

(2.2)

where

4 =—4,4', 4:—(4 ), a=1,2, b =1,2,
F„,=B„A,—t),A„, p, —1,2, 3,4, v=1,2, 3,4 . (2.3)

A„, 4„and g are the gauge, Higgs, and ghost fields, re-

spectively. Note that the ghost q completely decouples
from the rest of the theory. Because of the singularity of
the inverse of the gauge boson propagator in the Landau
gauge, it is appropriate to keep track of the gauge param-
eter g and take the limit $~0 only at the end.

After shifting the Higgs field ep (i.e., 4,~rp, +p, and

42~rpz+(()z) from (2.2), one obtains the tree-level mass
matrices

(m )„„=eP g„„,
(2.4)

(mC )ob
—m +—$ 5ab+ rtP, Pb, —2 = 2 A 2

(a)

FIG. 2. When diagrams of shape (b} are included in the ap-
proximation of Vr&z&(Q, G), 5Vr (Q, G)/5G contains contribu-
tions from self-energy diagrams of shape (a}, which lead to
momentum-dependent effective masses.

V,i($)= ——m P +—P (2.5)

for the gauge and the Higgs fields, respectively, and the
classical potential
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The propagator in momentum space is given by

[D '(P;k)]„„=(e'P'—k') ",' —g„, I
)

k k
2y2 P

k

[D '(p; k) ],b = ( m ~~ ),b 5,b k—~,

[D '(p;k)],„= iek—„e,blab,

(2.6)

where k:—k„k".
In the application of the composite operator method, it

is first necessary to identify, based on the magnitude of
the coupling constants, the diagrams which give the lead-
ing contribution to VT~2~($, 60). As argued in Ref. [17),
in order to justify the high temperature approximation
and to have a well-defined loop expansion, one needs
e4 ((A, «e; however, the scenario is diFerent depending
on whether e «A, (&e or e &(A, &e . If e «A, (&e2,
VT~z] is approximated by the sum of the four diagrams in
Fig. 3, whereas if e «k & e, the diagram in Fig. 3(a) is

FIG. 3. Diagrams of order (a) A, or (b,c,d) e' which contrib-
ute to VT(2).

neglected. I study the richer scenario e «A, «e (the
results for the other case can be obtained as the appropri-
ate limit of the results for e «A, «e ); in these hy-
potheses, VT" can be written as

VT"= V„(((}+—,
' Tr lnDOGO '+

—,
' Tr[D 'Go —1]+V~&'(60)+ V~2~'(60)+ V,"(Go)+ V~& '(Go), (2.7a)

V2'(G)—:——() $, [G„(p)Gbb(q)+2G, b(p)Gb, (q)],
2

V~& '(6)—:— g"'$~ $I,
' 6„„(q)6„(p),

2

V2'(6)—: $, J,E,sE,d(2p +'q) (2p +q)'G „(q)G«(p)G„(p +q),

(d)V', '(G)=— ),),e«~d, (2q+p}~(2q+p)"G,„(p+q)6„(p)G„„(q),

where [see (1.3)] Go is the solution of

g Vres

=0.

(2.7b)

(2.7c)

(2.7d)

(2.7e)

(2.8)

Using (2.7), (2.8) can be rewritten as the following system of gap equations:

5V2
G,b'(k) =D,b'(k) —2

ba

=D,„'(k)+—~, [ 62, (bp) +,5„6(p)] +e 5,b).g"'6„„(p)

+e2~, e«eb, (2k +p)"(2k +p)'GP, (p)G,d(p +k)
P

+8 $ E dEb (p +k)"(2k p)'G„„(k —p)G„(p—)
P

6V26„„'( k) =D„,' (k) —2

(2.9a)

2

=D„,'(k)+e ),g„G„(p)+ ),e,l ed, (2p+k)„(2p+k}„G,d(p)Gb, (p+k), (2.9b)
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(2.9c)

(2.10a)

V2
G,„'(k)=D,„'( )

—2
pa

=D,„(k)+e $, e,be,d(2p +k)„(2k +p) Gdb(p +k)G,„(p),

where Vz =—Vz'+ Vz '+ Vz'+ Vz"'. The diagrammatic representation of the various 5 Vz/5G„ is given in Fig. 4.
In order to study the system of equations (2.9), I introduce effective masses by taking an ansatz for the propagator:

T

2

6„„'= [lKiz(k) k—]t„„(k)+[Af iz(k) kz—]l„„(k)+ —

ezra

k

G,b' = [AI~(k) ],b —5,bk

G,„'= ~ek„e',

blab,

where t„, and 1„,are defined by (N.B. {lz,vj =1,2, 3,4; {ij j =1,2, 3; k:—k;k')

(2.10b)

(2.10c)

k'k~t„„(k):5„,5—, .5'~ —.
k„k

, 1„„(k)= ",—'-g„,—t„„.
k

(2.11)

Equations (2.10) express the propagator in terms of effective masses JN„(k) and are consistent in the Landau gauge with
Eqs. (2.9). The two transverse modes of the gauge boson acquire the same effective mass JN, (k),, whereas the longitudi-
nal mode has an independent effective mass Jkt&(k), as required by the way Lorentz invariance is broken at finite temper-
ature [23].Also note the symmetry of Eq. (2.9) under exchange of P~ and Pz (a consequence of the analogue property of
the propagator D) indicates that [A@(k)],z = [Al,@(k)]z, .

Using (2.10) and the following properties of t„, and 1„„,

t„ (k)t '(k)= t„"(k), —t„"(k)=—2, 1„ (k)l '(k)= 1„'(k), —1„"(k)=—1,
Eqs. (2.9) can be rewritten in tertns of the effective masses as

(2.12)

~' {[AIC(p))» —p'j {[Ate(p) lzz
—p'j —

{[Ale(p)) lzj'

sK', (p) —p Ai(, i(p) p'—
t„„(p) 1„,(p )

+e $, e,deb, (2k+p)"(2k+p)" z",+ z"
zAI, (p) —p' P, , (p) p—

e, e~„[JK~z(p+k)] „—5,d(p+k)'

{[At~i(p+k)) ii
—p'j {[Atc(p+k)]zz —p'j —

{[A(~e(p+k)]iz j'

A(,,(k)=e Pz —e
JK ( ) —2

p {[~~+(p))ii —p'j {[~e(p))22 p'j —
{[~e(p))lz j

(1+p, )e
+ ),e,bed, (2p +k)„(2p +k),W,""(k)

e, e[dtA(p~)] „—5,dp

{[Ate(p))» —p'j {[A(e(p))22 —p'j —{[Ale(p)) lzj

ebb eci [~4(p +k)]hi 5bc(p +k)

{[At~(p+k)]„—p j {[AI~(p+k)]zz —p j
—{[sK~(p+k)],zj

(2.13a)

(2.13b)

Equations (2.13) show that, because of the contribu-
tions corresponding to the nonlocal self-energy diagrams
in Figs. 4(c) and 4(g) [the last terms on the right-hand
side (RHS) of Eqs. (2.13a) and (2.13b)], the effective
masses must have a highly nontrivial dependence on the

where s =t, l, p, =0, pi =1, W,""=t"", and WI'"—:1„.In—
(2.13) the Landau gauge limit $~0 has been taken; no
divergence occurs because of a cancellation between the
I/g terms which appear in G„[as given in (2.10a)] and

—1D „.
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(a)

(e)

FIG. 4. Diagrammatic representation of the integrals which
contribute to (a,b,c,d) 5V2/5G, b, (e) 5 V2/5G, „, and (f,g)
5 V2 /56„„.

momentum k, and this makes the search for solutions
very difficult. (Note that in the leading order calculation
for the A,4 theory, no nonlocal self-energy diagram con-
tributes to the gap equation for the effective mass [19].
As a result, the gap equation can be solved analytically in
the high-temperature approximation. )

However, Vp' could be evaluated from Eqs. (2.7) and

(2.9) (after renormalization) using numerical methods.
The fact that the exact daisy and superdaisy resummed
effective potential is given by Eqs. (2.7) and (2.9) is a first

important result of the composite operator method.

III. RAYLKIGH-RITZ APPROXIMATION

In this section I study VT" analytically using the obser-
vation that an approximate solution of the variational
problem (1.3) can be obtained by evaluating Vp'(p, G)
with specific parameter-dependent expressions for the
propagator G(k) and then varying these parameters.
This type of procedure is known [22] as the "Rayleigh-
Ritz variational approximation. " I shall take as the
parameter-dependent G(k) the expression (2.10) with all

the momentum-dependent "exact" effective masses
Jff,„(k) replaced by constant "Rayleigh-Ritz effective
masses" M, . This consistently leads, as we will see, to
momentum-independent gap equations for the M .

The present approximation is quite different from the
approximation which has been frequently used in the re-
cent literature, where one makes the ad hoc assumption
Jff,„(k)=JR (0) in the gap equations for the efFective
masses. The differences are twofold. First, in my approx-
imation the self-consistency between the effective poten-
tial and the gap equations is preserved, whereas in the
"Jff (k) =Jff,„(0) approximation*' this self-consistency is
lost. Second, as I shall argue in Sec. IV based on the
analysis of the results obtained in the following, some
average effect of the dependence of the diagrams in Figs.
4(c) and 4(g) on the external momentum is reflected in my

+ —m + —P 5,25„2,

and in this hypothesis one can consistently assume that
also the Rayleigh-Ritz mass matrix for the Higgs boson is
diagonal. This completes the definition of the variational
problem which is studied in this section; the correspond-
ing approximation of the daisy and superdaisy resummed
finite temperature effective potential can be formally writ-
ten as

VP' = VP '( P, 6 ( I M o ] ) ), (3.1a)

5VP'(P, G( IM ) ))

5M"
=0,

IMP=I-M, I

(3.1b)

where

IM I
= IM', M, M', M ] =

I M~, M, M(, Mt I,
VP'(P, G) is defined in Eq. (2.7), and G ( t M } ) is given by

G„' =(M, k'~~ (k k)+(M
~

—k)l„(k)—
(3.2a)

G.b
' =5„5i„(M~ k)+ 5„5b,(M' —k—'),

G,„'= iek„e,bpb . —
(3.2b)

(3.2c)

The effective potential VP'(P, G( [M] )) in Eq. (3.1) in-

approximation of VT', even though the Rayleigh-Ritz
effective masses are constant. In the Jff,„(k)= JN, „(0)ap-
proximation, this momentum dependence is completely
neglected, leading to an uncontrolled (and probably large,
as argued in Refs. [S,15,17]) error in the evaluation of the
daisy and superdaisy diagrams. [The spirit of performing
the approximation at the level of the expectation value of
the Hamiltonian rather than at the level of the equations
that follow from varying the exact Hamiltonian is very
similar to the difference between the Kohn-Sham approx-
imation and the Slater approximation in Hartree-Fock
many-body theory: The former is an approximation to
the Hamiltonian expectation value, which is then varied;
the latter is an approximation to the variational equa-
tions. It is known that the Kohn-Sham method is better
[24]. This result should encourage the use of the
Rayleigh-Ritz approximation; however, because of the
differences between the problem at hand and Hartree-
Fock many-body theory, it does not necessarily imply
that the Jf(„(k)=Jfif„(0) approximation be inadequate. ]

The number of independent Rayleigh-Ritz effective
masses to be varied can be reduced by using the fact that
the symmetry of the Lagrangian suggests that VT" de-

pends on (f =Pi+/& rather than separately on P, and

p2. This invariance of Vp' under rotations in p space al-

lows us to perform the calculations starting from a diago-
nal tree-level mass matrix for the Higgs boson

2 ~ 2(m~), b= —m + —p 5„5b,
2
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eludes divergent integrals; therefore, a regularization and
renormalization procedure is necessary. The self-
consistency of Eqs. (1.1) and {1.2) implies [22] that the
effective potential Vr($, 6) and the gap equations are re-
normalizable. Such a renormalization has been discussed
in detail in the analogue study of the daisy and super-
daisy resummed effective potential of the A,4 scalar
theory presented in Ref. [19]. In that case it has been
shown that the only effect of renormalization on the
high-temperature part of the effective potential is the sub-
stitution of the bare parameters with renormalized ones.
This is due to the fact that the dominant high-

temperature contributions to the effective potentia1 come
from the infrared and are not sensitive to the ultraviolet
behavior [25). In the following I shall assume that the
same applies in the case of the Abelian Higgs model, and
therefore, rather than performing renormalization explic-
itly, I will simply omit the (zero-temperature) ultraviolet
contributions and substitute in my high-temperature
effective potential the bare parameters with renormalized
ones.

The gap equation (3.1b) can be put in simple form by
performing the high-temperature approximation of
VP'{$,6( [M] )). Using the well-known results [3]

2 2 —
& y T y T cpy

—,
' Trln[k —

y ]—:—'~ ln[ —(nnT)z —kz —y ]=— + — +
90 24 12m 32~

~'

0(y):— I,
'

z z z
=— —T ln[k —y ]

1 1 8 1 z z T
q,
' (n~T)z+kz+yz y ~y 12

Ty Cg 2

4~ 8 2 (3.3)

1 T 1
co =——ln +—+ln(4n )

—yE„„,0'

[where o is a renormalization scale and as planned the (zero-temperature) ultraviolet divergent contributions have been
onutted], the high-temperature approximations of (Tr lnG )/2 and (Tr[D 6 —1])/2 in the Landau gauge are easily
obtained:

—'TrlnG '=
—,
' Trln[(k —M )(k —M )(k —M ) (k —M )]

n-'T4 T cn+ (M +M +2M +M ) (M—+M +2M +M )+ (M +M +2M +M ),
1 8 24 4 x f $2~ |I x ~

32 2 0 x

(3.4a)

—,
' Tr[D '6 —1]= —,

' Tr[(D ' —6 ')6]

=
—,'{mz Mz)0(M )+—&(mz —Mz)0(M )+(ezyz Mz)0(M )+ &(ezyz Mz)0(M )

T2
=(m —M )

TM c~ T2+ M +(m —M )
8~ 16 2 P 1' x 24

TM~ c~+ M

TM, cg T2 TMt co+2( zyz Mz) + Mz +(ezyz Mz) + Mz
24 8~ 16~2 24 8~ 16 2 (3.4b)

where m& —= —m +A,P /2 and mr ———m +A,P /6. Note that in (3.4a) I neglected an unimportant infinite constant
(i.e., independent of the efFective masses) which appears as a consequence of the 1/g pole in the determinant of the 6„„
of Eq. (3.2a). In obtaining (3.4b) the limit $~0 presented no complication because of the cancellation between the I/g
terms which appear in D„„'—6„„'[see (2.6) and (3.2)]. In the following evaluations of Vz', V~z ', V~z', and V~z"', the lim-
it $~0 is also taken and no divergences appear.

V~&'(6( [M] )) and V~& '(6( [M J ) ) have the same structure as the two-loop contribution, which is discussed in detail
in Ref. [19];their high-temperature approximations are given by

Vz'(6(IM]))= [30 (M~)+30 (Mr)+20(Mp)0(M~)]=A

= 'T'
432

A, T (M~+M~) A, T M~Mr+ +
144m. 192m

A, T (M~+M~) cn +
288 128

(3.5a)
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V~~"'(G([M )))= [2Q(M, )+Q(Mi)][Q(Mp)+Q(Mr)]
2

2 T2

48

e T (4M, +2Mi+3M&+3M&) e T (2M, +Mt)(M~+M&)' +
96m 32.

e 2 T2c (4M2+ 2M 2+ 3M2 +3M2 )

192~
(3.5b)

The corresponding approximation of V(z'(G([M] )), based on results obtained in Refs. [17,26], is discussed in the
Appendix; the result is

e T (2M, —Mt) e T (M, 2M—
&

2M—&) sV, +M&+Mz
288 48m 32 3T

e T (M~Mr M, M—
~ M, M—r) e T (eel+cot)(M~+Mr)'+

32772 64m

e'T'[(3co, +8c„)M,'+(3cei 4cn)MI ]

384m
(3.6)

co, and coi are defined in the Appendix.
Finally, the contribution to VP' from the diagram in Fig. 3(d) can be easily calculated by noting that Eq. (3.2) implies

that in the Landau gauge G,„=O:

V,'"'(G([M ~))=0.

[Note that (3.7) is consistent with Eqs. (2.6), (2.9c), and (3.2).]
Using (3.4) —(3.7), it is now possible to express the gap equations (3.1b) in the form

(3.7)

M =n + + T — a ——ln
e 1

y(+) y(+) 18 4

M, +M~+M~
3T

e TM~(~)
2

e

24m 4m

2M +2M —M c M
(3.8a)

2 2 2
cot 1 Mt Mp M~

16 4, 3T

cet 2T c~ MI
TMI — (M +M )+

8m 4m ~ ~ ~ T
e cn

M =ey+ T e—
3 3'

where

a —= [(cti+ce, +coi)/(4m)]+A[(4cn+9)/(72me )] .

(3.8c)

2M +2M —M, =M +M —M
M~+M~

3T
M,

M]+M~
(3.9)

which allows one to rewrite the gap equations (3.8) as

Note that in these calculations one can assume that eT & P & T because, as already discussed in the Introduction, the
daisy and superdaisy resummed effective potential is expected to give a meaningful approximation of the full effective
potential only for P )eT, and the daisy and superdaisy diagrams should be negligible when P ) T. This observation com-
bined with Eqs. (3.8) justifies a posteriori the high-temperature approximations which I performed; in fact, the effective
masses in (3.8) are of order eT or eP, so that M& z, i /T & 1 when eT & P & T.

Equations (3.8) also indicate that M, &M& & i because only (3.8b) does not contain a contribution of order e T;
moreover, (3.8a) indicates that M~& ——M~~ (they differ only at order A.P~). Therefore one can make the approximations

M~+M~+M,
1n = ln

3T

2 2 e 1 1M =m +4(x) tt'(x) 18 4
+ T — a — ——1n

4m- vr

M~+M
3T

e TMy(
2

2 c Me
TM + fl P(g)

24. ~(~) 4. (3.10a)
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M =e(()+
16~

M~+M~
ln

Sm. 4m. 3T
c~ M,

e TM, + (3.10b)

CQ CSl 2T cn M
M2 e2y2+ e T2 e2

"
TM (M +M )+

8~ 4~ 0 x (3.10c)

Using (2.5), (3.4)—(3.7), (3.9), and (3.10), one finds that the desired Rayleigh-Ritz and high-temperature approxima
tion of the daisy and superdaisy resummed finite temperature effective potential for the Abelian Higgs model is given by
(omitting unimportant P-independent contributions)

VT"(P, [Mo])= 2~ 0 +
4, 0 +

24
(iny+inz+3e 0 )

12
(Myo+Mzo+2Mto+Mio)

e T (2M' o +2M' o
—M, o ) M~ o+Mz o

ln
32.

'
3T

e T
Mi o(M~ o+Mz o)

327T2

2

+
32

T'
M~ M~

e T ~n ~e~ e T+ Mi o+a (M~ o+Mr o )

+ e'TiM, 'g+ (My o+Mz o+2M, o+Mi o ),
128m ' 32m'

(3.11)

where M& 0, M& 0, M, 0, and M& 0 are the solutions of the
gap equations (3.10) and a = —,', —(coi+cpi)/64
+(A, /e )(cn/288 ——„', ).

Note that in (3.11) all terms linear in the effective
masses have canceled out [27]. In the literature there has
been an extensive debate on the possibility that the
resummation of the daisy and superdaisy diagrams might
induce contributions to the finite temperature effective
potential which are linear in the efFective masses. Using
the general form of the Rayleigh-Ritz approximation
with momentum-independent effective masses, one can
show [28] that a cancellation of the linear terms always
occurs.

The Rayleigh-Ritz variational approximation and the
high-temperature expansion have led to a great
simplification of the very complicated expression of VT"'

obtained in Eqs. (2.7) and (2.9). Still, as given by (3.10)
and (3.11), VT" cannot be calculated analytically, but now
the required numerical evaluations are very simple. A
first estimate of the effective potential in (3.11) can be ob-
tained analytically by using the approximations

M& o-—Mzo, 1n(M& o/T )=in(A, /18+e /4),
~ (e 2T2/4+ gT2/18 )

i ~2

in (3.10c) and M&o~(e T /3)' in (3.10a). These ap-
proximations are reliable when P « T [see (3.10)].

IV. DISCUSSION AND CONCLUSIONS

greater than eT„VT"(p) should reliably determine the
existence and the position of p, ], but Vp'(p) cannot be
used to discriminate between a second order and a very
weakly first order phase transition. Recent models of
baryogenesis at the electroweak phase transition require
that this transition be strongly first order, and therefore
the evaluation of VP'(P) for the standard electroweak
model should lead to a reliable test of these models.

&so note that, because I neglected the contributions to
VT~2~ from diagrams of order e and higher (see Fig. 5),
the result (3.11) gives a reliable approximation of the full
effective potential up to order e . The terms in (3.11) of
order e and higher can be used to estimate how impor-
tant the complete higher order correction should be ex-
pected to be and to verify whether or not the differences
between the Rayleigh-Ritz approximation performed in
the preceding section and the AI„(k)=At„(0) approxima-
tion used in the literature can result in relevantly
different physical predictions.

The comparison of the Rayleigh-Ritz approximation
with the AI„(k)=At„(0) approximation is indeed the
next topic that I want to comment on. In addition to the
conceptual issues which I already discussed, probably the
clearest shortcoming of the JK„(k)=At„(0) approxima-
tion is that it completely ignores the contribution of the
self-energy diagram in Fig. 4(c); in fact, this diagram van-
ishes in the zero external momentum limit. In the
Rayleigh-Ritz approximation, the contributions to the

As discussed in the Introduction, the daisy and super-
daisy improved efFective potential VT"'(P) should give a
reliable approximation of the full effective potential
VT($) in the high-temperature limit, but when T-T,
one expects VT"(P)=VT(P) only for P)eT, . This im-
plies that the evaluation of VT"(P) is sufficient in the in-
vestigation of strongly first order phase transitions [if at
the critical temperature the asymmetric minimum P, is

FIG. 5. Examples of diagrams which are neglected in the
present lowest order in the couplings approximatinn of VT(2).
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gap equations which correspond to the diagram in Fig.
4(c) are the ones coming from 5Vz'/6M&)r)', Eqs. (3.6)
and (3.8a) show that these contributions are certainly
non-negligible, and, in particular, for small e the term of
order

e TM& in(M&~ )/T)-e 1n(e)TM&~ )

is the dominant term linear in M&ir) in (3.8a). Even for
the self-energy diagram in Fig. 4(g), which does not van-
ish in the zero externa1 momentum hmit, there are
significant quantitative differences between the Rayleigh-
Ritz approximation and the At„(k) =JR„(0) approxima-
tion. Clearly, the Rayleigh-Ritz approximation accounts
for some average effect of the dependence on the external
momentum of the diagrams in Figs. 4(c) and 4(g), which
is the origin of the momentum dependence of the exact
eff'ective masses JR„(k).

These differences in the structure of the gap equations
between the Rayleigh-Ritz approximation and the
JR„(k)=-JR„(0) approximation result in important quan-
titative differences at the level of the effective potential.
In Fig. 6 it is shown that the two approximations lead to
relevantly different predictions for the shape of the
effective potential at the critical temperature; in particu-
lar, the position of the asymmetric minimum P, differs by
20 —30%. Some physical phenomena at the phase transi-
tions depend critically on the value of P, (for example,
the rate of baryon number violation at the electroweak
phase transition is exponentially sensitive to P, ), and
therefore Fig. 6 shows that an accurate analysis of these
phenomena requires a proper handling of the momentum
dependence of the efFective masses.

Concerning the nature of the phase transition of the
Abelian Higgs model, it is useful to note (again using
eT ((P «'P that Eqs. (3.10) and (3.11) imply that (i) in
addition to the expected contributions involving even
powers of P, there is a negative contribution of order
e TP to the effective potential, which comes from the
TM, term, and (ii) there is no contribution of order
e T P. These observations indicate [5,6] that there is a

critical temperature T, at which VP'(P) has two degen-
erate minima. From Eq. (3.11) it is also easy to realize
that $, )eT, when e /A, ))1, which indicates that at
least in these hypotheses the Abelian Higgs model has a
first order phase transition. This is the same qualitative
conclusion that one reaches using the one-loop improved
eff'ective potential evaluated in Ref. [9]; indeed, it is easy
to verify that Eq. (3.11) agrees with the improved one-
loop result to order e . However, it is important to ob-
serve that at the critical temperature the complete VT",
including the contributions of order e and higher, is

relevantly different from the one-loop improved effective
potential (see Fig. 7); in particular, the position of the
asymmetric minimum receives a significant correction.
This should suggest some caution concerning the accura-
cy of recent predictions which have been obtained using
the improved one-loop approximation, such as the lower
limit on the Higgs boson mass for successful baryogenesis
at the one-Higgs-boson-doublet electroweak phase transi-
tion.

I conclude by emphasizing that the techniques dis-
cussed in this analysis of the Abelian Higgs model clearly
apply to any gauge theory. Apart from the obvious com-
plication of having to dea1 with a richer particle content,
even in the study of more complex gauge theories the ma-
jor elements of difficulty will still be (i) the momentum
dependence of the effective masses which is introduced by
nonlocal self-energy diagrams of the type generally
represented in Fig. 2(a) and (ii) the evaluation of diagrams
of the type generally represented in Fig. 2(b). Using the
composite operator method, one can do better than the
daisy and superdaisy resummation by going beyond the
present 1owest order in the coupling approximation of
Vr(2). Also, my Rayleigh-Ritz approximation can be
improved [so that the effect of the momentum depen-
dence of the exact effective masses JK„(k) is estimated
even more accurately] by using more elaborate versions
of the parameter-dependent expression for 6; for exam-

ple, one can make the substitutions M„~M„+F„k in

Eq. (3.2) and vary not only the M„'s, but also the addi-
tional parameters F, .

5

FIG. 6. Plot at T=T„e=0.2, and k=0.01
of

dvigu)

=10'Re[ Vr(P) Vr(0))/T,' vs—
P/eT, for the Rayleigh-Ritz approximation
(solid curve) and for the A.„(k}=A,„(0) ap-
proximation (dotted curve).
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8

6

4

P

~ ~ FIG. 7. Plot at T= T„e=0.2, and A, =0.01
of hu(P) =10'Re[ Vr(P) —Vr(0))/T, vs

P/eT, for the Rayleigh-Ritz approximation of
the effective potential, described in Eq. (3.11)
(solid curve) and for the effective potential
which is obtained by neglecting all the contri-
butions of order e and higher in Eq. (3.11)
(dotted curve).
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APPENDIX:
HIGH-TEMPERATURE APPROXIMATION OF V2"

This appendix is devoted to the high-temperature ap-
proximation of Vz" (6( [M I ))—:Vi2'(M&, Mx, M„M& ),
which is used in the calculations of Sec. III. As can be in-
ferred from Secs. II and III, V~&'(M&, Mz, M„MI) is
given by

2 ~~'~q [M& —p )[Mz —(p+q) ] M, qM& —q—
(A 1)

The high-temperature approximation of V~&'(M&, Mr, M„M&) has been evalauted in Ref. [17] in the limit M, =M&.
The result of [17] is based on the observation that

V2'(My Mz Mr Mr)= 'Q(Mr)[Q(My)+Q(Mz)l Q(My)Q(Mr)+(My 2M' 2M')8(My Mz Mr)x

M —M (M~ —M )+ [Q(Mr) —Q(0)][Q(M~) —Q(Mr)]+ z [8(M~,Mr, M )
M

—8(M~, Mr, O)] ', (A2)

where Q(y) has been defined in (3.3) and

~~ ~ [x'—q']b' —p'][z' —(p+q)']
(A3)

Equation (A2), combined with the high-temperature approximation of 8(x,y, z) which was obtained in Refs. [17,26] and
the corresponding approximation of Q(y) which is reported in (3.3), leads to the high-temperature approximation of
V2'(M~, Mr, Mr, Mr ). For the analysis of Sec. III, it is sufficient to consider the limit (M& —M )~ &&(M +M )2 in
this hypothesis one finds
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2 4' ~' y' r 288 48~ 32~2 4 ~ r ~ r

T2 M +M+M
+ (M —2M —2M ) ln

cn co Co
T2M2 + T2(M2 +M2 )

9677- ]28~ r 6477-
(A4)

where the P-independent quantity co is the analogue of
the cn of Eq. (3.3) and is expressed in Ref. [26] as a com-
bination of integrals which can be evalauted numerically.
[Note that in (A4), following the strategy outlined in Sec.
III, I omitted some ultraviolet divergent contributions. ]

The calculation of V~2'(M&, M&, M„M& ) is more
difficult than the one of V2" (M&, Mr, M, M ) because
only when M, =M, the integrand in (A 1) takes the simple
form which leads to the relation (A2). Rather than
proceeding to its explicit evaluation, I shall obtain the
high-temperature approximation of V2'(M&, Mr, M„MI )

by using as a guide the result (A4) and by exploiting the
fact that V~2'(M&, M&, M, O) and Vz'(M&, M&, O, M& )

have very diff'erent analytic properties. [N.B. Eq. (Al)
imPlies that V~&' (M&, Mr, M„M~) = V2'(M~, Mr, M„O)
+ V2'i(M~, Mr, O, MI ).]

The first important observation is that terms of the
type T Mr M&[z, can only be present, jn

Vz'(M&, M&, M&, 0) In . fact, this type of nonanalytic
term [29] originates from the peculiar infrared properties
of the diagram in Fig. 3(c) and it gets a contribution only
from the p~ =0, q~ =0 term of the sums in (Al). By look-
ing at the structure of l„, one sees that
V2'(M&, M&, O, M ) could not include such contribu-
tions.

Similarly, it is easy to realize that terms of the type of
the one in Eq. (A4) which is proportional to
In(M&+M&+M ) (which is also nonanalytic) can only
contribute to V2'(M&, M,M, O). This is best seen by
tracing back the calculation of Refs. [17,26] and noting
that also this term comes from the part of the gauge bo-
son propagator which is proportional to t, .

Finally, one can note that the terms e T M /48m and

ect2T M—/96m in (A4) originate from the following
contribution to V~2'(M&, Mr, Mr, M~):

e t; 1 t; p
—(pq) /q T'M

In the expression of V~2'(M&, Mr, M„MI ), the contribution (A5) should be substituted by

e' ( 1 ) 4p "p 't„„(q)
~q M, q~t, ' [M—

& p][Mr ——(p+q) ] q 0;Myt, ,
==a

1 ~
4p "p "t&„(q)

~q' Mt q~z' [M&—p][Mr —(—p+q) ] q=o;M&, „,
——0

C~T M

96~
(A5)

T (2M, —Mt) ct2T (2M, MI)—
J44 48~ 96~2

These observations, combined with (A4), lead to the conclusion that

e T (co, +co, )(My+Mr)
64~

e T (M~Mq M, M~ M, Mr )— —' +
32m2

e T [(3co,+Scu)M, +(3coI —4cu)MI ]

384m

T(2M M~)» (M 2M~——2M )
— M +M~+M

288

(A6)

(A7)

where the P-independent quantities ce, and coI verify co, +co& =co and, like co, are given by combinations of integrals
which can be evaluated numerically [26].
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