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It is well known that the spontaneous breaking of discrete symmetries may lead to a conflict
with big-bang cosmology. This is due to the formation of domain walls which give an unacceptable
contribution to the energy density of the Universe. On the other hand it is expected that gravity

breaks global symmetries explicitly.
solution to the domain-wall problem.

In this work we propose that this could provide a natural

PACS number(s): 98.80.Cq, 04.60.+n, 11.30.Er, 11.30.Qc

I. INTRODUCTION

The idea that the discrete symmetries, especially the
fundamental ones such as time reversal and parity in-
variance, could be broken spontaneously is old and ap-
pealing. Twenty years ago, in a pioneering work, Lee [1]
suggested that CP (or T reversal) may be broken spon-
taneously at the cost of adding another Higgs doublet to
the standard model. It was shown later that parity can
also be broken spontaneously [2]. Yet another interesting
example is a discrete symmetry needed in the two Higgs
doublet model to ensure natural flavor conservation [3].
However, in a beautiful paper Zel’dovich, Kobzarev, and
Okun [4] investigated the cosmological consequences of
spontaneous breaking of a discrete symmetry with the
conclusion that this would be in conflict with cosmology.
Kibble [5] and other authors [6] concluded the same, al-
though with a slightly different analysis. Since then the
particle physics models with spontaneously broken dis-
crete symmetry have been considered unacceptable (see
below for some possible exceptions). In this paper we
propose that the possibility of gravity leading to violation
of global (discrete) symmetries may provide an attractive
way out of this problem. We find it only natural that the
space-time dynamical effects of gravity would play this
role for the space-time discrete symmetries. Although
the arguments for violation of global discrete symmetry,
as we will describe in the following, are speculative, the
point we wish to emphasize is that even expectedly tiny
effects of gravity may suffice. In what follows we first
describe the above mentioned problem and then discuss
how gravity may possibly provide a solution.

II. THE PROBLEM

The spontaneous breaking of a discrete symmetry leads
to the existence of domain walls, i.e., kinklike classical
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solutions separating different degenerate vacua. This can
be illustrated by a simple example of a real scalar field ¢
with a symmetry D, ¢ — —¢, and a Lagrangian

£ = 20,00"6— 2(¢ —v?)", 1)
2 4

where A is taken to be positive in order to ensure that the

energy is bounded from below. The symmetry D is spon-

taneously broken, since the minimum of the potential is

given by ¢yac = Lv. It is easy to show that this theory

has a static domain-wall-like classical solution, say, for a

wall lying in the z-y plane,

ba(z) = v tanh(VAvz), (2)

which clearly connects vacua —v and +v as z traverses
from —oo to oo. The field is different from its vacuum
values in a region of width éw =~ (v/Av)~1, determined by
the scale of symmetry breaking v. The scale of symmetry
breaking also determines the energy density per unit area
o~ vd.

Now, at high temperatures the potential V(¢) receives
an additional contribution

A 22

oV = 12T o*. (3)

Since 6V is necessarily positive, for sufficiently high
temperature T > T.~v the symmetry is restored [7]. In
the standard big-bang cosmological scenario, the field ¢
is expected to undergo a phase transition as the Uni-
verse cools down from T' > T, to T < T.. For separa-
tions larger than the correlation length or horizon size
around the time of phase transition, the field ¢ will in-
dependently take either of its vacuum values, giving rise
to corresponding domains and domain walls. To under-
stand the generic features of this system of domain walls
one may consider the following idealized problem. Imag-
ine splitting space into cubes of the size of the correlation
length. And, say, the probability for the field to take a
particular vacuum value in a given cube is p (= %, where
N is the number of degenerate vacua). The nature of the
domain structure obtained, a domain being a set of con-
nected cubes carrying the same vacuum value of the field,
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is a basic question in percolation theory [8]. The main
result we will need here is that if p is greater than a cer-
tain critical value p., then apart from finite size domains
there will be one and only one domain of “infinite” size
formed. For p less than p. there will not be any infinite
size domain. Generically, i.e., considering even other lat-
tices than just cubic, p, happens to be less than 0.5. In
the example of the real scalar field we have been consid-
ering, p equals 0.5. Thus there would be an “infinite”
domain corresponding to each vacuum and therefore an
infinite wall of a very complicated topology. Of course,
there will also be a network of finite size walls. The ques-
tion one is interested in is the energy density contribution
of this domain wall system as it evolves. The following
crude analysis addresses this question [6].

The dynamics of the wall is mainly decided by the force
per unit area fr due to tension and frictional force fp
with the surrounding medium. Since the tension in the
wall is proportional to the energy per unit area o, we
get fr ~ % for a radius of curvature scale R. Moreover,
fr~ sT* where s is the speed of the wall and T the tem-
perature of the system [9]. When the speed of the wall
has stabilized we have

sT = (4)

9

Thus, the typical time tg ~ % taken by a wall portion of
radius scale R to straighten out would be
R2T4 R?

~ Got?’

tgp ~ (5)
Making the plausible assumption that if tg < ¢, the wall
curvature on the scale R would be smoothed out by time
t, we get that the scale on which the wall is smooth grows
as

R(t) ~ (Go)t? (6)
The energy density contribution pw to the Universe by
walls goes as

oR? o o\3
pW~R3N(6t§) ' (7)

Therefore pw becomes comparable to the energy density
p o~ G—ltg of the Universe in the radiation-dominated era
around tg ~ C% Thus domain walls would significantly
alter the evolution of the Universe after tq.

Now, the discrete symmetries relevant for particle
physics typically tend to be broken at mass scales above
the weak scale My ~ 100 Gev, giving to < 108 sec. This
would be certainly true of P and T (CP), the examples
we are most interested in. Hence from above considera-
tions one would conclude that discrete symmetries cannot
be broken spontaneously.

There are two possible ways out of this impasse. One
possibility is that, even for low scales of symmetry break-
ing, the phase transition that would have restored the
symmetry does not take place, at least not until high
enough temperatures to allow inflation to dilute the en-
ergy density in the domain walls. This in general requires

a more complicated Higgs structure than the minimal one
and realistic examples have been discussed in the litera-
ture [10].

Another way out [6], the one of interest to us in this
paper, is the possibility that a spontaneously broken
discrete symmetry is also explicitly broken by a small
amount, which lifts the degeneracy of the two vacua +v
and —v. For instance, in our example we could imagine
adding to the Lagrangian a small ¢* term which, obvi-
ously, breaks ¢ — —¢ symmetry. It should not come as
a surprise that this effect may provide a mechanism for
the decay of domain walls; after all now there is a unique
vacuum. Crudely, the way it works is as follows [6]. Lift-
ing of the degeneracy of the two vacua by an amount ¢
gives a pressure difference of the same amount between
the two sides of the wall, with a tendency to push the
wall into false vacuum region. Thus the dynamics of the
wall is now going to be decided by a combination of the
pressure ¢, forces fr due to tension, and fr due to fric-
tion mentioned before. Clearly at some point the forces
due to friction and tension become small, compared to
the pressure difference €, because they are proportional
to T4 ~ 5157 and § ~ (gf=) 2, respectively. At that stage
the pressure difference will dominate and cause shrinking
of the false vacuum. Actually it is difficult to find out
precisely when the false vacuum region, and hence the
domain walls, disappears. However, it may be crudely
estimated to be the time when the pressure € exceeds the
force due to tension, or when it exceeds the force due to
friction for a relativistically moving wall so as to domi-
nate the dynamics. For either requirement to be satisfied
before tg ~ &, the time when the wall contribution pw
would have become comparable to the energy density of
the Universe, one obtains

’US

FZGO’zNﬁg;. (8)

Of course, it is not very appealing to introduce ad hoc
the symmetry-breaking terms just in order to eliminate
the domain-wall problem. Ideally, we would prefer these
effects to be a natural consequence of underlying theory.
An interesting example recently discussed in the litera-
ture [11] is that of a discrete symmetry explicitly broken
due to instanton induced effects.

III. ROLE OF GRAVITY

In this paper we invoke the possibility that the needed
mechanism for explicit breaking may be naturally pro-
vided by gravity. One expects that gravity, because of
black-hole physics, may not respect global symmetries,
both continuous and discrete ones. This expectation is
motivated by two important points: First, the “no-hair”
theorems of black-hole physics that state that station-
ary black holes are completely characterized by quantum
numbers associated with long-range gauge fields, and sec-
ond, that the Hawking radiation in evaporation of black
hole is thermal [12]. Now, consider a process in which a
certain amount of normal matter, which is in a state that
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is “odd” under the discrete symmetry in consideration,
collapses under gravity to form a black hole. Because
of no hair being associated with the global discrete sym-
metry, any information regarding it is lost to observers
outside the black hole. Hawking radiation from the black
hole being thermal in nature does not carry any informa-
tion about the internal state of the black hole either.
Of course, it is not certain what the properties of evap-
oration would be at late stages when the semiclassical
approximation breaks down. Unless for some reason the
processes at late stages cause the final system to have
same global discrete charges as those of the initial normal
matter that collapsed, the symmetry will stand violated.

We wish to note that from very different viewpoints
there have been discussions in the literature regarding
the possibility of CP or T violation in the context of
gravity. Ashtekar, Balachandran, and Jo have discussed
[13] the CP “problem” in the framework of the canonical
quantization of gravity. In the Ashtekar variables refor-
mulation of general relativity, the canonical variables of
the theory resemble those of Yang-Mills theory. This al-
lows for the discussion of 6 sectors in a canonical quanti-
zation framework for Yang-Mills theory to be taken over
to the gravity case. Moreover, an analogue of the §F F¢
term in the action can also be given.

Another set of observations that interest us particu-
larly was made by Penrose about T asymmetry [14]. He
contends, based on arguments related to the Bekenstein-
Hawking formula, that there must be some as yet un-
known theory of quantum gravity that is time asymmet-
ric. We recall here only an easy to state, interesting point
from his discussion. Corresponding to a solution of Ein-
stein’s equation describing the collapse of normal mat-
ter to form a black hole that stays forever (classically),
there would be a time-reversed solution, a white hole, de-
scribing an explosion of a singularity into normal matter.
Now, according to the Bekenstein-Hawking formula the
surface area A of a black hole’s horizon is proportional
to its intrinsic entropy S:

kc®

S = i GA. (9)
In classical processes, the area is nondecreasing with time
and hence entropy. If an intrinsic entropy is associated
with a white hole, it is again expected to be propor-
tional to the area of its horizon. Time reversal of the
area principle would give that this area, and hence the
corresponding entropy, can never increase, an antither-
modynamic behavior. Especially it would be a strongly
antithermodynamic behavior by the white hole when it
ejects a substantial amount of matter. This is among the
reasons that led Penrose to consider the possibility that
there may be a general principle that rules out the exis-
tence of white holes and would therefore be time asym-
metric.

With the premise, in view of the preceding discus-
sion, that gravity may violate a global discrete symmetry
we wish to explore its consequences for the domain-wall
problem.

The crucial issue one faces in implementing this kind
of approach is the determination of the precise form of

these symmetry-breaking terms. In the present-day un-
derstanding of gravity it does not seem possible to give
a satisfactory answer to this question. The strategy fol-
lowed in the literature [15], which we also adopt here,
in analogous discussions has been to write all the higher
dimensional effective operators allowed by gauge invari-
ance of an underlying theory. Of course, one could take
a point of view that the dimension four and lower terms
may also break the discrete symmetry. We take no stand
on this point. In any case, even if this happens it can
only help in destabilizing the domain walls due to in-
creased symmetry breaking. Our point is that even the
tiny higher dimensional symmetry-breaking terms, cut
off by powers of the Planck mass, may be sufficient in
solving the domain-wall problem.

To illustrate how this works, we turn again to our sim-
ple example of a real scalar field. The effective higher
dimensional operators would take the form

C C
Vg = —¢° + —o

o+ 10
Mo, Mz, (10)

Obviously, all the terms with odd powers of ¢ break
the discrete symmetry ¢ — —¢. (We should mention
that while discussing difficulties with a certain compacti-
fication scheme in superstring theory, it was remarked by
Ellis et al. [16] that a specific discrete symmetry in their
model may be broken by terms inversely proportional to
Mp,. But they note further that massless modes of string
theory would not induce such terms and that the massive
modes could be the only possible source of such effects.
However, as we have been pursuing here, the nonper-
turbative effects are expected to be a natural source of
breaking of global discrete symmetries, independent of
whether string theory turns out to be a correct theory
of gravity. Furthermore, as we have emphasized before,
we feel that these effects should be taken seriously as a
possible solution to the domain-wall problem associated
with the fundamental discrete symmetries of nature such
as parity or time-reversal invariance.)

In estimating precisely the amount of symmetry break-
ing we would need to know the values of coefficients C,,.
Barring some unexpected conspiracy, in the following we
will assume that C,, will be of order 1 as they are di-
mensionless. Moreover, it is understood that the scale of
spontaneous symmetry breaking v lies below the Planck
scale. With all this in mind, the energy-density split

between the two vacua would be ~ Mizl-vs. This is obvi-

ously much bigger than the amount 2°_ needed to make

the domain walls disappear. This holds true as long as
Cs > 37—, which for lower scales of symmetry break-
ing gets to be more and more plausible. For example, if
v = Mgur =~ 10'® GeV, we need C5 > 10~ %, whereas
for v = Mw = 100 GeV, we only need Cs > 1077, In
general, if a leading operator in Eq. (10) is of dimen-
sion n, the condition for disappearance of domain walls
is C, > (Me1)"=6. Clearly n = 6 is the critical value,
since for n > 6 C,, would have to be unreasonably large
whereas for n = 6 Cg~1 may suffice.
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IV. EXAMPLES OF T AND P

An important issue that remains to be discussed is
what happens in realistic examples of discrete symmetries
associated with gauge theories of strong and electroweak
interactions. This clearly must be case dependent. Here
we study two discrete symmetries of central importance:
CP(T) and P.

CP or T invariance: The simplest and most popular
example of the spontaneous breaking of C'P is the two
Higgs doublet version of the standard model. One simply
imagines all the couplings in the Lagrangian to be real
and looks for minimum of energy with nontrivial phases.
By an SU(2)xU(1) gauge transformation we can write
the most general solution in the form

(f1) = (1?1> ; (d2) = <U22i6>~ (11)

where v;,d are real numbers. Through the terms of the
type qﬁ];(bz and (QSJ{ $2)? in the potential, the theory knows
of the phase ¢ and in general we can write

V =A+ Bcosé + Ccos24. (12)

For a range of parameters there is a solution with non-
vanishing and nontrivial phase 4, giving a spontaneous
breaking of C P and hence the domain-wall problem.

If we now follow our logic of expanding the effective
higher degree potential induced by gravity in inverse
powers of Mp;, keeping gauge invariance intact, the lead-
ing term is of dimension six:

Ciq

J
2
M3,

AV = (aﬁzqﬁj)g + H.c. + higher-order terms. (13)

Again, the possibility of breaking of C'P by gravity
would be reflected in complex coefficients ¢;;. As we
observed before, only for the dimensionless coefficient
Cg¢ 2 1 the domain walls would be unstable. Thus.
the understanding of the detailed consequences of grav-
ity turns out to be crucial in such a low energy issue as
CP violation and we believe that any hint in this direc-
tion is extremely important. The situation would change
dramatically if one is willing to introduce a complex sin-
glet into the theory and attribute to its complex vacuum
expectation value the source of spontaneous C'P viola-
tion. Now clearly the leading operator, analogous to our
simple example of a real scalar field, is of dimension five.

Parity: The simplest models which describe
spontaneous breaking of parity are based on SU(2) x
SU(2)rx U(1) gauge group with gr = gr gauge cou-
plings [17]. The breaking of parity is attributed to the
large mass for the right-handed gauge boson: My, >
My, . By introducing Higgs multiplets ¢, and ¢r which
are nontrivial representations (doublets or triplets) un-
der SU(2) and SU(2)g, respectively, the above can
be achieved through spontaneous breaking of parity:
[{¢r)| > |{(#L)| (where P : ¢p¢r). The analysis of
gravitational effects parallels completely our discussion
on CP. If P is broken through the vacuum expectation
value of the nonsinglet then the leading P-breaking op-
erators must be of dimension six or larger, and the fate
of domain walls will depend on the dimensionless param-
eters which characterize breaking terms. Another possi-
bility is the existence of parity odd singlet o (P : 0 ——0),
and P being broken through (o) # 0. In this case, the
leading P-breaking gravity-induced term could be of di-
mension five.

V. CONCLUSION

In this paper we have taken seriously the possibility
that gravity breaks global discrete symmetries. If so, this
could be a natural source of instability of domain walls.
We find it curious that such a mechanism to solve the
domain-wall problem does not involve any other scales
than Mp) and the scale of spontaneous symmetry break-
ing v, already present in the theory. Although our main
examples were of CP(T') and P, by no means do we wish
to imply that the effects of gravity have to stop there. As
it emerged from our discussion, whether gravity can play
the desired role depends on the lowest degree induced
effective operator.

We are well aware of the speculative nature of our sug-
gestion so that one cannot yet be certain that it is ac-
tually realized. However, we hope to have conveyed the
necessity of further understanding of gravity before one
can claim the existence of the domain-wall problem.
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