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model involving the vector, pseudoscalar, and axial-vector meson poles.
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I. INTRODUCnON

In this paper, we calculate the two-body nonleptonic
decays of charmed meson s using the pole-dominance
model. A preliminary analysis of this type was first at-
tempted [1] several years ago, but we believe that a sys-
tematic investigation of the type presented here has not
been carried out. The nonleptonic weak decay of a pseu-
doscalar meson into two pseudoscalar mesons is parity
violating, so in such decays the pole-dominance model
would involve only vector-meson poles. It is well known
[2] that this idea of vector dominance provides a success-
ful description of the E~~m decays. Recently we have
also discussed [3] the decay of D mesons into two pseudo-
scalars (PP) through vector dominance and there, too, we
find reasonable agreement with experiments. In the
present work we extend the analysis to the general two-
body nonleptonic decays of D mesons to include the de-
cay to a pseudoscalar and a vector (PV) meson and to
two vector ( VV) mesons. Since we now deal with parity-
conserving decays as well, we have to go beyond vector
dominance. In this work, we extend our consideration to
include also the pseudoscalar and the axial-vector-meson
poles. For simplicity, we consider only the lowest lying
poles [4].

Our work has no direct relationship to the extensively
studied factorization model [5] which has generally been
quite successful in describing the decays except for those
that proceed only through what are known as the annihi-
lation diagrams. The pole-dominance model, on the oth-
er hand, has enjoyed many successes in low-energy had-
ron phenomenology, and it would be interesting to see
how it describes charm decay [6].

II. PRELIMINARIES

dices and a&, a2 are real coeScients which we treat as
phenomenological parameters. The primed quark fields
are related to the unprimed ones by the usual Cabibbo-
Kobayashi-Maskawa (CKM) mixing matrix. For the
nonleptonic decays of D mesons into two mesons, the
Hamiltonian (1}leads to two main classes of quark-model
diagrams, the spectator and the annihilation diagrams
shown in Figs. 1(a) and 1(b), respectively. We ignore the
Penguin-type contributions. It is well known that the
annihilation-diagram contribution in the quark model is
helicity suppressed.

In the pole-dominance model, we take the currents in

H~ to be the hadronic currents given by the field current
identities (a,P= 1,2, . . . , 4)

(Vp)I=&2g y(yp)I,

( A„)I=&2fpB„Pp+~2g„(a„)p,
(3)

d' d'

S

(a)

where (P„)p, Pp, and (a„)p are the field operators of the
vector, the pseudoscalar and the axial-vector mesons of
SU(4), resPectively, and gz, fy, and gA are the corre-
sponding decay constants. The nonleptonic weak in-
teraction can then be represented by a two-meson vertex
which can be read off from (1) upon substituting (3).

For nonleptonic decay of charm, the effective weak
Hamiltonian may be written in the current-current form
as [7]

6
H~= [a,(ud')„(s'c)„+a2(s'd')„(uc)„],

,cf,s,

(b)

S

,0,S,

where (q qp)„are color-singlet V —A currents

(q qp)„=iq y„(1 y+)qsp(V„)p+(A„)p. (2)

The indices a,P=1,2, 3,4 represent the flavor SU(4} in-

FIG. 1. Quark-model diagrams for the nonleptonic decay of
D into two mesons. 1(a) describe the spectator diagrams and

1(b) the annihilation diagrams.
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III. CALCULATION OF THE DECAY AMPLITUDE

The Fey nrnan diagrams for the two-body decays
D —+PP, PV, and VV are displayed in Figs. 2—4. In these
figures, the dark dot represents a weak interaction vertex
and the open circle a strong vertex. Also the dotted lines,
solid lines, and wavy lines represent pseudoscalar, vector,
and axial-vector mesons respectively. Note that the
figures 2(b), 3(c), 3(e), 4(b), and 4(c) are the analogues of
the annihilation diagrams in the quark model, the

remaining figures corresponding to the spectator dia-
grams. Only the vector-meson pole contributes to the
parity-violating decay D~PP as shown in Fig. 2. Also,
since D —+PV is a parity conserving decay, a diagram
such as Fig. 3(b) where the pseudoscalar pole is replaced
by a vector pole cannot contribute.

We have several types of strong vertices appearing in
the diagrams. These include the VPP, VVP, VVV, and
the VPA vertices. Unfortunately, many of these cou-
plings are not known. For numerical work, we choose to
relate these couplings by a suitable flavor symmetry. In
fact the VVP and VVV couplings can be related to the
VPP couplings through an extended spin-SU(4) symme-
try. Accordingly, we take the strong Hamiltonian as

I

l P, (q, )

o(q) v(q ) v (q )

,(v(q)

o(q) P(q) P,(q)

(b)

i v, (q, )

o(q) p(q) P,(q2)

(c)

)( vt(q, )

o(q) ~(q2) P, (q)

&~ v, (q, )

o(q) ~(q) P, (q2)

(e)

FIG. 3. Feynman diagrams for the decay D ~ Vl P2.

H„„=ig Tr $„PB„P— E„„i&Pe&P„Bifz

+ F„,P„P„— F„„F—,iFi„. (4)
2 2

3 P P 9M 2 Pv v P

This is an obvious generalization of the Sakita-Wali in-
teraction Hamiltonian [8] which is relevant to flavor
SU(3). In (4), the trace is over the SU(4) multiplets, g is

the coupling constant and M represents a mass scale. We
shall identify M with the mass of the decaying particle,
and take g to be the p~m coupling determined from the p
width Th. e VPA interaction is not contained in (4) and
will be taken to be [9]

H„,(VPA)= ig, M Tr[$„[P,a&]]

+ Tr[r)„$ [P,B~„]].
M

better described by group symmetry than the masses.
Furthermore, the vector-meson couplings may be expect-
ed to have a somewhat special status embodied through
universality. At the present time, however, we can only
hope that couplings related by the larger SU(4) symmetry
are not unreasonable. Future experiments involving the
strong decays of charmed vector or axial vector rnesons
would shed light on this issue.

The weak vertices in Figs. 2 —4 involve the decay con-
stants gv, f~, and g„ for various particles. Once again
only a few of these are known from experiments. Now,
spectral function sum rules [11,12] based on asymptotic
flavor symmetries have been quite successful in the past,
and we may use them here to obtain suitable relations.
From asymptotic SU(4) symmetry, it is easy to derive [13]
the result that g~/m~ would be the same for all vector

Despite some attempts in the past [9,10], the coupling
constants g, and gd have not been determined successful-

ly. In our present analysis, we will treat these as un-

known parameters.
It should be mentioned that experience based on flavor

SU(3) symmetry indicates that coupling constants are

i~ v, (q, )

»(q) v(q) v, (q)

~~v, (q, )

o(q) v(q) v, (q, )

I

g P, (q, )

o(q) v(q) p, (q) o(q) v(q)

I P, (q, )

P2(q,)

1

n v, (q, )

o(q) p(q) v, (q, )

n v, (q, )

»(q) A(q) v2(q2)

FIG. 2. Feynman diagrams for the decay D ~P& P2. FIG. 4. Feynrnan diagrams for the decay D~ V& V&.
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TABLE I. Numerical values of the coupling constants and
other parameters used in the paper.

TABLE II. Amplitude A defined in Eq. (7) for the decay
D —+P)P2.

Quantity

gv/m vf.

Ds

gq /mg

g~ /m~

gf /mf

gD /mD

m

Value

4.28
152 MeV
92.6 MeV

1.2

1.46 f
121 MeV

104 MeV

121 MeV

69.5 MeV

69.5 MeV

Decay

D —+K m. +

D Km.
D Kg
D+~K ~
Ds ~KK

Ds+ ~q'm-+

D'~K+K
D' K'K'
D'~~+~
D~mm
D+ K+KG

D+ ~pm'+
D+ —+g'a+
Ds+ K'~+

Amplitude A (10 GeV ')

1.45(a, —0.24a )

1.63a2
0.50a2

1.45(a
&
+ 1.35a2 )

2.05a&
—0.99a )

1.75a )

—0.39a i

0
—0.37a,
—0.37a,
—0.39a )—0.26(a &+a&)

0.17a, +0.21a,
0.08a~+0. 36a )

0.47a
mesons. Since we can extract g from the data on the de-

cay p~l/, this result leads to a determination of all gz.
Also from asymptotic chiral SU(4) symmetry, we can
derive the spectral function sum rule [14]

g'„ Im „'+fp' =g~2im,', (6)

where A, P, and V are particles with the same internal
quantum numbers. Now experimentally, only f and fz
are known. However, fD has been determined [15] from

QCD sum rules [16]. With the g~'s and fp's known, the
I

sum rule (6) then serves to determine the g„'s.
The numerical values of the various couplings used in

our analysis are displayed in Table I. For the axial-
vector-meson multiplet, we have taken the particles
to be [17] At(1260), E&(1400), f|(1285), D~(2420}, and

Ds (2536).

The decay amplitudes for the PP, VP, and VV modes
are defined as

—i(2n. } 5' '(q —
qt —qt)

M(D(q)~P, (q, )Pz(q, ))= i A,
+2qp V2q, p V2q2p V

—i (2m ) 5' '(q —q, —
q )

M(D(q)~Vi(q&, &t)P2(q2))= q, s '(q )8
+2qp V2q]p V2q2p V

—i (2n. ) 5' '(q —q, —
q~ ) (A, ]) (A,2jM(D(q)~ Vi(q„lt) V2(q2, kq)) = [iC5 p+iDe @tqq2 +iEqtpq2 ]e '

(ql }sit
' (q2),

+2qp V2q &p V2q2p V

where A, B, . . . , E are constants representing the invariant amplitudes. The decay widths are easily calculated in terms
of these amplitudes to be

r(D
8m M' (10)

k3
r(D V,P, )= (a(',

Sm m2)

M kI (D V, V )= ICI' 3+
8~M mm

M2(M —m
&

—m2) M'k'(CE'+C'E) — k +iDi 2M k +iEi
2m m1 2 m mI 2

(12)
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Decay

D K*
D'~K "m'

Do 0K0

D0~PK
D —+Q)K

D K*g
D+~K*'~+

Ds' p ~'
D+ K4+Ko
D+ K*'K
Ds+

Ds

Ds' P'n'

TABLE III. Amplitude B defined in Eq. (8) for the decay D ~ V, Pz.

Amplitude B (10')

2.16a, +0.008a I +0.323az(g, —Q. 611gd ) 0.074a I (g. +0.382gd )

—Q. 320az —0.230az(g, —0.611gd )
—2. 16az+ 1.30a I

—0.323az(g, —0.548gd )

1.64az+0. 230az(g, —0.548gd )
—0.066a, (g, +0.379gd )

2. 16a z +Q. 323a z (g, —Q. 614gd )
—1.43az —0.230az(g, —0.554gd )

—0.066az(g, +0.376gd )

3.67az+0. 388az(g, —0.571gd )

1.72a, +0.008a& —0.074a&(g, +0.382gd )

0, 153az + 1, 3Qa] O, Q93az(g q 0, 379gd )
—2.38a, —0.565a, (g, —0.573g )

1.69a
&
+0.153az+0.400a

& (g, —0.570gd )
—0.098az(g, +0.366gd )

—1.56a, + 1.53az —0.400a, (g,.
—0.570gd)

0.008a& 0.078al(g +0.364gd)
Q

-0.756al
1.68a I

D ~K K+
D~K K
D ~K*K
DO~K "K'
D —+K K+
D+ ~Pm+
D —+ COAT

D+ ~p'm-+
D+ +

D+ +

0.355az+0.031a
&
+0.085a, (g, —Q. 580gd ) —0.020a

& (g, +0.350gd )
—0.355az+0. 361a i 0.085az(g, —0.580gd )

—0.029az —0.001a z(g, —0.580gd )

0.029az+0. 001az(g, —0.580gd )
—0.353a, —0.086a &(g,

—Q. 580gd ) —0.020a &(g, +0.350gd )

0.479a,
0.001a ) +0.228az —0.012a ) (g, +0.409gd )

0.541a
&

—0.223az+0. 122a
& (g, —0.582gd )+0.012a

& (g, +0.413gd )
—0.010az+0. 196a ) +0.005az(g, +0.373gd )

0.087z+0. 334a) —0.011az(g, +0.284gg)

where

(13)k= [(M —m —m ) —4m m ]'1
1 2 1 2

M is the mass of the decaying particle and m &, m 2 are the
masses of the particles in the decay product. The ampli-
tudes A, B, . . . , E can be written down from the Feyn-
man diagrams in Figs. 2 —4. Using the numerical values
of the couplings in Table I, these can be expressed in
terms of the four parameters: a „a2,g„and gd. The re-
sults for the Cabibbo allowed and once-suppressed decays
are listed [18] in Tables II—IV.

IV. RESULTS

The decay amplitudes for D~PP listed in Table II, do
not involve the parameters g, and gd. Thus it is best to
obtain a fit for a

&
and a2 from these decays. For this pur-

pose we shall use the data on D ~Km decays.
So far we have ignored the final state interactions. We

shall take these into account by considering only elastic
scattering in the final state. In D —+K~ decays, we have,
in terms of isospin amplitudes,

Decay

TABLE IV. Amplitudes C, D, and F. defined in Eq. (9) for the decay D ~ V& Vz.

Amplitudes

D' K*-p+
D K*p
D' K*'~
D+ K%0 +

Ds Pp
D,+~K*+K*o

Do
DO y

0

D K*+K*'
D+ +

C (10 GeV '}
—0.215a z

—0.103a,g,
0. 152az —0.093azg,

—0. 136az
—0.093azg,—0. 103a&g, —0. 131azg,

0. 108a&g
—0. 139azg,

0
—0.025azg,
—0.028a&g
—0.036azg,

D (10 GeV)
—1.16a z

—O. 696a,
0.171a,
—1.47az

—0.924a z
—0.696a

—0.660al
—O. 873az —0.853a

—0.241az
—0. 181az
-0.400al
—0.256a,

E ( &O aev)
0.030algd
Q.027a, gd
0.027azgd

0.030a
& gd +0.038a zgd

0.028a, g„
O. 036azgd

0
0.007a zgd
O. OQ8algd
0.010azgd
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' 1/2
0 — + 2A(D «K m.)= —Az/z+ At/z i

3 3

1/2

A (D ~K m. )=0 0 0
3

A (D ~K 77+)=&3A3/z

1
3/2 i ~ 1/2v3 (14)

iA, /zi=2. 94X10 GeV,

i A„, i
=7.37X 10-' Gev,

~l/2 ~3/2 93 4

(15)

Now, in our model, the isospin amplitudes can be con-
structed if we invert the relations in Eq. (14) and use our
results for the D~Em amplitudes from Table II. This
gives

i A t/z i

= 1.18 X 10 (a
&

—1.04a z ) GeV,

i A 3/z i
=8. 37 X 10 (a, + l. 35az ) GeV .

(16)

Using the values for these amplitudes given by (15), we
obtain the solution [20]

a& =1.79, a&= —0.67 . (17)

There is another solution where iaz/a&i) 1, which we
discard, as discussed in Ref. [3]. We also note that the re-
sult (17) is not very far from the values of a t and az ob-
tained by Bauer et al. [5].

With a, and az determined, we fit g, and g& from the

TABLE V. Branching ratio for the decay D ~P&P2.

Decay

D +K
D'~KO~O
D Kg
a ~K m+

D+ K K+
as
Ds

Theory

3.6X 10
2.1 X 10
6.4x10-'
2.6x 10-'
1.1x 10-'
2.0x10-'
5.1 x10-'

Branching ratio
Experiment [19]

(3.65+0.21)X 10
(2.1+0.5) X 10

&2.3X10 '
(2.6+0.4) x 10-'
(2.8+0.7) x 10-'
(1.5+0.4) X 10
(3.7+1.2) X10 2

D —+K+K
D KK
a'~n-+n-
ao~~o~o
a+ —+K+K
D+~a-+~'
D+ pm+
D+
a+~K m+

2.4X 10
5.0X 10
1.6X10 '
3.9X 10
7.3 x10-'
1.5 X 10
1.1x 10-'
4.4x 10-'
4.5X 10

(4.1*0.4) X 10-'
(1.1+0.4) X 10

(1.63+0.19)x 10-'
&4.6X 10

(7.3+1.8) X 10
&5.3X10 '

{6.6+2.2) x10-'
&8X10 '
&6X10

rA

is the amplitude in the isospin state I and 5r is the phase
shift in that channel. Using the data from the particle
properties data booklet [19],it is easy to obtain

TABLE VI. Branching ratio for the decay D~ V& P2.

Decay
Branching ratio

Theory Experiment [19]

D ~K*
Do K40 0

DO +K-
D0 OKO

D ~/K
D ~coK
D K
D+ K40 +

D+ p+KO
Ds+ ~p+~'
D+~K'+K's ~
D+~K K+s ~
Dg+ ~Pm+

D+ p+~~

D ~K K+
D~K +K
D0~K*'K'
DO~K*'K'
D+ K*OK+
D+ ~Pm+
D ~COOT

a+ ~p'm+
D+ +~
D+ p+I

1.4X 10
6.8x 10-'

10.2 x 10-'
1.3x 10-'
1.1 X 10
1.8 X 10
1.0X 10
1.4X10 '
6.4X 10
2.2 X 10
1.6X 10
3.6X 10
3.5x 10-'

0
3.3 X 10
4.4X 10

2.2X 10
2.9 X 10
2.0X 10
2.0X 10
5.3 X 10
1.7X 10
1.1X 10
1.1X10
5.1 X 10
9.6x 10-'

(4.5+0.6) X 10
(2.1+1.0) X 10
(7.3+1.1)x 10-'
(6.1+3.0)x 10-'
(8.8+1.2) X 10
(2.5+0.5)x 10-'
(2.1+1.2) X 10
(1.9+0.7) X 10
(6.6+1.7) X 10

&2.2X10
(3.3+0.9)x 10-'
(2.6+0.5) x10-'
(2.8+0.5) x 10-'

&1.4X10 '
(7.9+2.1)x 10-'
(9.5+2.7) X 10

(2.0+1.0) X 10
(3.5+0.8) X10 '

& 1.6X10
&8X10

(4.7+0.9)X 10
(6.0+0.8) X 10

&6X10
&1.2X10 '
&1.0X10 '
&1.4X10 '

data on the decay modes D~PV and D~VV. We find
that the best fit corresponds to the values

g, = —10.14, g = —9.85 . (18)

TABLE VII. Branching ratio for the decay D~ V& V&.

Decay
Branching ratio

Theory Experiment [19]

D ~K* p+
DO K+0 0

Ds+ 4p'
a,+ K*+K"

DO~K*OK*O
DO y

0

a+ K'+K"
0p'

6.5 X 10
8.5x 10-'
7.9X 10
4.3 X10-'
5.7X 10
1.5x10 '

2.6x10 '
2.2x10-'
5.9 X 10
1.2X 10

(6.2+2.5) X 10
(1.5+0.6) X 10

&1.5X10 '
(4.1+', ,') X10-'
(5 2+1.4) X 10

—2

(50+1 7)X10

(2.7+ i'2) X 10
(1.8+0.5) X 10
(2.6+1.1)x 10-'

& 1.3X10

The branching ratios for various decay modes determined
by our values of the parameters in (17) and (18) are exhib-
ited in Tables V-VII, together with the experimental
data. In preparing these tables, we have used, wherever
possible, phase shifts for elastic scattering in the final
state as determined from the data. Considering the un-
certainties in our choice of the coupling constants, it is
remarkable that most of our results are in reasonable
agreement with the data.
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It should be remarked that our parameter fit in (17)
and (18) leads to a destructive interference between the
pseudoscalar and axial-vector meson poles in the annihi-
lation diagrams in D ~PV. Thus decays such as
Do~ttiEo and Dz+~p+m. which proceed only through
the annihilation diagrams lead to tiny branching ratios
due to large cancellations in the contributions of Figs.
3(c) and 3(e). Unfortunately, because of this, small
changes in our choice of the couplings can get magnified
in the prediction of these branching ratios [21]. We
would also like to point out that in D~ VV decays, we
did not consider the diagram analogous to 4(c) where the

pseudoscalar meson pole is replaced by an axia1-vector
meson. There is no straightforward way of estimating
the A VV strong coupling. The general agreement of our
results with experiments in fact shows that the axial-
vector pole diagram in D ~ VV may be neglected. It also
shows that the simple pole model considered in this paper
generally works quite well.
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