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The most promising source of gravitational waves for the planned kilometer-size laser-
interferometer detectors LIGO and VIRGO are merging compact binaries, i.e. , neutron-star —neutron-
star (NS-NS), neutron-star —black-hole (NS-BH), and black-hole —black-hole (BH-BH) binaries. We
investigate how accurately the distance to the source and the masses and spins of the two bodies
will be measured from the inspiral gravitational wave signals by the three-detector LIGO-VIRGO
network using "advanced detectors" (those present a few years after initial operation). The large
number of cycles in the observable waveform increases our sensitivity to those parameters that af-
fect the inspiral rate, and thereby the evolution of the waveform's phase. These parameters are
thus measured much more accurately than parameters which affect the waveform's polarization or
amplitude. To lowest order in a post-Newtonian expansion, the evolution of the waveform's phase
depends only on the combination M—:(MzMz) (Mz + M2) ' of the masses Mz and M2 of the
two bodies, which is known as the "chirp mass. " To post-1-Newtonian order, the waveform's phase
also depends sensitively on the binary s reduced mass p = M&M2/(Mz + Mz), allowing, in principle,
a measurement of both Mz and M2 with high accuracy. We show that the principal obstruction to
measuring Mi and M2 is the post-1. 5-Newtonian effect of the bodies' spins on the waveform's phase,
which can mimic the efFects that allow p to be determined. The chirp mass is measurable with an
accuracy AJH/M —0.1%—1%. Although this is a remarkably small error bar, it is 10 times
larger than previous estimates of AJH/JH which neglected post-Newtonian efFects. The reduced
mass is measurable to 10'%%uo —15'%%uo for NS-NS and NS-BH binaries, and 50% for BH-BH binaries
(assuming 10M~ BH's). Measurements of the masses and spins are strongly correlated; there is a
combination of ts and the spin angular momenta that is measured to within 1%. Moreover, if both
spins were somehow known to be small (( 0.01M' and ( 0.01M2, respectively), then ls could be
determined to within 1%. Finally, building on earlier work of Markovic, we derive an approximate,
analytic expression for the accuracy AD of measurements of the distance D to the binary, for an
arbitrary network of detectors. This expression is accurate to linear order in 1/p, where p is the
signal-to-noise ratio. We also show that, contrary to previous expectations, contributions to AD/D
that are nonlinear in 1/p are significant, and we develop an approximation scheme for including
the dominant of these nonlinear effects. Using a Monte Carlo simulation we estimate that distance
measurement accuracies will be ( 15% for 8% of the detected signals, and & 30% for 60% of
the signals, for the LIGO-VIRGO three-detector network.

PACS number(s): 04.80.Nn, 04.30.Db, 97.60.3d, 97.80.Af

I. INTRODUCTION

Neutron-star —neutron-star (NS-NS) binaries with or-
bital periods of less than half a day will spiral together
and merge in less than a Hubble time, due to gravita-
tional radiation reaction. Three such short-period NS-
NS binaries have been observed in our Galaxy; when
extrapolated to the rest of the Universe these observa-
tions result in an estimated NS-NS merger rate in the
Universe of 10 yr Gpc [1, 2]. A strong gravita-
tional wave signal is emitted during the last few min-
utes of inspiral, before the tidal-disruption and/or coa-
lescence stage begins. If the Laser Interferometer Grav-
itational Wave Observatory (LIGO) [3], and its French-
Italian counterpart VIRGO [4], achieve the so-called "ad-

vanced detector" sensitivity level of Ref. [3], then they
will be able to detect gravitational waves &om the last
few minutes of NS-NS inspirals out to distances of order

1 Gpc [3]. Hence, event rates of order 10' yr ~ may be
achieved. While there is no direct observational evidence
relevant to the merger rates for neutron-star —black-hole
(NS-BH) and black-hole —black-hole (BH-BH) binaries,
arguments based on progenitor evolution scenarios sug-
gest that these merger rates may also be on the order
of 10 yr Gpc [2, 5]. The merger of two 10M& black
holes would be detectable by the LIGO-VIRGO network
out to cosmological distances at redshifts of 2 —3.

The gravitational waveforms arriving at the detectors
depend on the inspiraling bodies' masses and spins, the
distance to the binary, its angular position on the sky,
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and the orientation of the binary's orbital plane with re-
spect to the line of sight. By comparing the observed
waveforms with theoretically derived templates, the ob-
servers will extract these parameters to a level of accu-
racy that is determined by the noise in the detectors,
and by the detectors' relative positions and orientations.
From the output of a single detector, there will be suf-
ficient information to determine the masses of the two
bodies, but not their distance or their location on the sky.
By combining the outputs of the three LIGO-VIRGO de-
tectors, it should be possible to determine the location of
the binary on the sky to within one degree [6, 7], and
the distance to the binary to within 30'%%uo.

There are many potential applications of such measure-
ments, as has been emphasized by Schutz [6]. For exam-
ple, coalescing binaries are potentially very useful stan-
dard candles for astronomical distance measurements-
it has been estimated that &om 102 detected NS-NS
events it will be possible to determine the Hubble con-
stant Ho to within 10% [8—ll]. It may also be possible
to measure NS radii, and thus constrain the NS equa-
tion of state, by measuring the frequency at which the
tidal disruption of the neutron star causes the waves to
shut off [8]. And &om gravitational wave observations of
the final coalescence of two black holes, there may follow
new insights into gravitational dynamics in the highly
nonlinear regime. The eH'ectiveness of these and other
applications depends on the accuracy with which one can
read off, &om the measured waveform, parameters such
as the distance to the binary and the masses of its two
components.

The purpose of this paper is to estimate the limits on
measurement accuracies that arise kom sources of noise
that are intrinsic to the detectors. These sources of noise
include, for example, thermal vibrations in the interfer-
ometers' suspended test masses, and randomness in the
arrival times of individual photons at the interferometers'
mirrors (photon shot noise), which simulate in the inter-
ferometers' output the effects of gravitational waves [3].
Intrinsic detector noise is expected to be the dominant
source of error in the determination of coalescing binary
parameters, in part because gravitational waves inter-
act very weakly with matter through which they pass
[12]. Other possible sources of error which we do not
consider here include (i) systematic errors due to insuffi-
ciently accurate theoretical modeling of the gravitational
waveforms, which will be important primarily for mass
and spin measurements [8, 13] and (ii) amplification or
deamplification of the wave amplitudes by gravitational
lensing eH'ects, which will be important primarily for dis-
tance measurements. See Markovic [9] for a detailed dis-
cussion of this issue.

Many of our conclusions have already been summa-
rized in Cutler et al. [8]. Initial measurement accuracy
analyses have been carried out by Finn and Chernoff [14],
and by Jaranowski and Krolak [15], using a simplified,
"Newtonian" model of the waveform. While Newtonian
waveforms are adequate for predicting how accurately
one can measure the distance to the source, they do
not allow one to calculate how accurately the individ-
ual masses can be measured, as we shall explain below.

—[h] = f h(t) w(t —~) s(~) ddt
rms jh(t) w(t —7.) n(r) d~dt

(1 2)

In Eq. (1.2), the denominator is what would be the root-
mean-square value of the numerator, if the detector out-
put (1.1) consisted of noise alone. Thus, when no gravita-
tional wave is present, each S/N[h] is a random variable
with Gaussian distribution and root-mean-square equal
to 1. Conversely, if S/N[h] is sufficiently large as to ba-
sically preclude the possibility of its arising &om noise
alone, for any of the 10 template waveforms that

For this purpose, one must include post-Newtonian cor-
rections to the waveform.

Much of our work was guided by the following sequence
of considerations. These considerations introduce some
of the issues addressed in this paper, motivate a number
of approximations that we make in our analysis, and give
a preview of some of our main conclusions.

First, coalescing binaries are very "clean" sources of
gravitational waves: the waveform is determined to high
accuracy by a relatively small number of parameters [6].
These parameters are the source's location, orientation,
time of coalescence, and orbital phase at coalescence, as
well as the bodies' masses and spin angular momenta.
Various other complicating physical effects, not described
by these parameters, can be shown to be unimportant.
We can generally assume, for instance, that the orbits
are circular. This is because radiation reaction causes
the orbit's eccentricity e to decrease during the inspiral,
according to e2 oc P ~, where P is the orbital period
[16]. (The effect of a small eccentricity on the phase of
the waveform scales like e .) The emitted gravitational
waves are in the &equency band accessible to LIGO only
for the last few minutes of inspiral, when P ( 0.2sec.
Thus a binary born with e of order unity and P ) 1 h
will have e2 ( 10 @ by the time it becomes "visible" to
LIGQ [17]. Also, tidal interactions between the bodies
have been shown to be negligible [18, 19] (except for the
last few orbits), so for our purposes the bodies can be
treated as structureless, spinning point masses [20].

Second, this high predictability of the gravitational
waveforms means that the technique of matched filtering
can be used to detect the waves [12]. For the most dis-
tant (most &equently observed) sources, this will involve
extracting the waveforms &om the considerably larger in-
strumental noise in which they will be embedded. The
matched filter technique works as follows. The measured
strain amplitude in each detector

s(t) = h(t)+ n(t)

consists of a (possibly present) signal h(t), and the detec-
tor noise n(t), which we assume is Gaussian. To detect
any embedded signal, one first suppresses those &equency
components of the signal at which the detector noise is
largest by convolving with Wiener's optimal filter w(t):
thus, s(t) -+ f w(t —7 )s(r)d7 [21]. Then, for each inspi-
ral waveform h(t) in a large set of theoretical template
waveforms, one computes the signal-to-noise ratio S/N,
defined by
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will be applied to the data each year, then one can assert
with high confidence that a gravitational wave h has been
detected, and that h is close to h. It is easy to show that
if some template waveform h yields a signal-to-noise ratio
of S/N[h] & 6.0 in each of two detectors, then one can as-
sert with & 99% confidence that a gravitational wave has
been detected [8]. Defining the combined signal-to-noise
ratio p of a network of detectors by

p = ) pa~ (1.3)

where p is the S/N in the ath detector, we see that
p = 8.5 represents the "detection threshold" for two
detectors. For a three-detector network, the detection
threshold is still p = 8.5, corresponding to S/N & 4.9
in each detector. Since detections at threshold repre-
sent the most distant coalescences that one can observe
(given the binary s masses, its orientation, and its angu-
lar position on the sky), and since coalescing binaries are
presumably distributed roughly uniformly on large scales
(& 100Mpc), the mean value of p for detected events
will be roughly 1.5 times the threshold value [22]. Thus
"typical" detections will have p = 12.7. Similarly, the
strongest l%%u of signals should have p & 40; i.e. , (100)i~s

times the threshold value.
Third, much more information is obtainable from the

waveform than one might naively expect, for the follow-

ing reason. The I.IGO and VIRGO detectors will be
broad-band detectors, with good sensitivity in the fre-

quency range 10 —500Hz. The gravitational wave trains
from inspiraling stellar-mass binaries typically contain

10 cycles in this range. Now, if the signal h(t)
and template h(t) lose phase with each other by just
one cycle out of thousands, as they sweep upward in

frequency from 10 Hz to 500 Hz, then the integral

J h(w)h(t)iU(t —7 )dv dt will be significantly diminished.

Consequently the value of S/N[h] will be small unless

the phase of the template waveform h is "just right"
throughout the inspiral. Since the evolution of the wave-
form's phase is largely determined by the masses of the
two bodies (through their influence on the inspiral rate),
one might expect to measure the masses of the bodies
with fractional error 1/JV, „„whereA,„,is the total
number of cycles in the observed waveform. This frac-
tional error of 10 s contrasts with the 20% accu-
racy with which one can determine parameters, such as
the distance to the source, that do not affect the phase
evolution (as was first pointed out by Cutler et al. [8]
and by Chernoff and Finn [14]).

Fourth, our extension of the measurement-error anal-

ysis to include post-Newtonian effects introduces the fol-

lowing new features. To Newtonian order, the gravi-

tational wave signal depends on the two masses only

through the particular combination M—:p / M /

where p is the reduced mass and M is the total mass

of the system. This combination is referred to as the
"chirp mass. " The degeneracy in the dependence on

the masses is broken, however, by post-Newtonian ef-

fects that in principle allow one to determine the indi-

vidual masses M~ and M2. In the equation governing
the evolution of the waveform's phase [Eq. (3.9) below),
the post-Newtonian terms are M/r times smaller than
the Newtonian terms, where r is the orbital separation.
Since M/r = 1/20 when the signal is strongest, one might
expect to determine each of the two masses 20 times
less accurately than M. We show in Sec. III that this
expectation is correct, provided the spins of the bodies
are known to be small.

Now, black holes and neutron stars in merging bina-
ries may or may not be rapidly spinning. However if we
cannot assume a priori that their spin angular momenta
are very small, then in attempting to find the best fit
to the data, we must allow for the possibility that the
spin angular momenta are of order their maximum pos-
sible values. We show in Sec. III B that the extra "confu-
sion" introduced by the spin dependence of the waveform
worsens the accuracy of individual mass measurements
by more than an order of magnitude. This is easy to
understand: the leading order spin terms in the orbital
evolution equation [Eq. (3.20) below] are only one-half
post-Newtonian order higher than the leading terms re-
sponsible for splitting the mass degeneracy. Therefore
the effect on the gravitational waveform of errors in Mq
and M2 that keep M fixed can be approximately masked
by somewhat larger, compensating errors in its spins.
Hence the measured values of masses and spins will have
strongly correlated errors [cf. Fig. 3 below], thereby in-

creasing mass-measurement errors [40]. Our results for
measurement accuracies are summarized in Tables I and
II and Fig. 4 below.

The rest of the paper is organized as follows. In
Sec. II we review the anticipated detector noise levels,
the basic elements of signal processing, and the lowest-
order, "Newtonian" waveforms. In Sec. III we calcu-
late expected mass-measurement accuracies, taking post-
Newtonian eEects into account. We do this in two stages:
first neglecting spin effects in Sec. III A, then including
them in Sec. IIIB. Our emphasis is on learning roughly
what accuracies can be expected —in part because to
treat the parameter-estimation problem in full generality
would be extremely complicated. Therefore, we focus on
a somewhat simplified "model" of the gravitational wave-

form, which nevertheless incorporates the effects that are
most important for determining the mass-extraction ac-
curacy. A further approximation which we make is to use
a linear error-estimation formalism, which is valid when
the errors are small (or equivalently, when the signal-to-
noise ratio is large).

Most of the information that allows one to measure the
binary masses is contained in the phase evolution of the
waveform (rather than in its amplitude or polarization).
Since all detectors in a detector network measure very
nearly the same phase evolution, for the purpose of esti-
mating mass measurement accuracies, to a good approx-
imation it should be adequate to model measurements
made by single detector. The mass measurement errors
for % detectors are roughly those for a single detector,
divided by ~N

When measuring the distance D to the binary, on the
other hand, one must also determine the position of the
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Mi M2 bQ,

2.0
1.4
10
15
10

1.0
1.4
1.4
5.0
10

1.31
1.28
1.63
2.02
1.98

0.721
0.713
1.01
1.44
1.43

b,M/M
0.0038'Fo

0.0040'%%uo

0.020%
0.113'%%uo

0.16%

&v/v

0.39%
0.41%
0.54%
1.5'%%uo

1.9%

0.899
0.906
0.927
0.954
0.958

TABLE I. The rms errors for signal parameters and the
correlation coefBcient c~„,calculated assuming spins are neg-

ligible. The results are for a single "advanced" detector, the
shape of whose noise curve is given by Eq. (2.1). Mi and M2
are in units of solar masses, while Et, is in units of msec.
The rms errors are normalized to a signal-to-noise ratio of
S/N = 10; the errors scale as (S/N), while c~„is inde-

pendent of S/N.

edge, and (iii) estimation of measurement errors beyond
the linear, Gaussian approximation. These extensions
are required in Secs. III B and IV. We also develop other
tools which should be useful in future analyses of LIGO-
VIRGO measurement accuracies: we derive an expres-
sion for the minimum signal-to-noise ratio (S/N);„nec-
essary in order that the Gaussian approximation for es-
timation of measurement accuracy be valid, and explain
how to treat degenerate points in parameter space at
which the Gaussian approximation breaks down.

In this paper we will focus on three fiducial types of
binary —NS-NS, BH-NS, and BH-BH —with fiducial
masses MnH = 10MO and MNs = 1.4MO (ualess oth-
erwise specified). Throughout we use units where G =
e = 1. Thus all quantities are measured in units of sec-
onds, except where, for convenience, we use units of solar
masses. The conversion factor is 1MO ——4.926 x 10 sec.

source on the sky and the amplitude and polarization of
the waveform. Hence, to estimate distance measurement
accuracies, we must model measurements by an entire de-
tector network. However in this case it is a needless com-
plication to use post-Newtonian waveforms; as we show in
Sec. IV and Appendix C below, to a good approximation
it is adequate to use Newtonian waveforms in the analy-
sis. This is our approach in Sec. IV, where we estimate
the distance measurement accuracy b,D attainable by an
arbitrary network of detectors. Jaranowski and Krolak
have numerically calculated in several specific cases the
distance measurement accuracy one can achieve with the
LIGO-VIRGO network [15]. We provide a greatly sim-
plified, analytic solution to the distance-accuracy estima-
tion problem, using an approximation due to Markovic
[9]. The approximation consists in neglecting the effect
on distance measurement errors of the relatively small
uncertainty in the angular position of the source on the
sky. Making this approximation, we derive a relatively
simple formula for the rms distance error AD, which ap-
plies to any number of detectors with arbitrary orienta-
tions.

This formula is derived using the linear error-
estimation formalism mentioned above, and consequently
is accurate only to linear order in 1/D We show . that,
contrary to previous expectations, eKects which are non-

linear in 1/D have a significant effect (i.e., factors 2) on
the predicted distance-measurement accuracies, and de-
velop an approximate method of calculation which gives
rough estimates of these nonlinear eKects. This method
is based on a Bayesian derivation of the (non-Gaussian)
probability distribution for the distance D, which incor-
porates our a priori knowledge as well as the information
obtained kom a gravitational wave measurement. The
method also allows us to estimate values of AD for bi-
naries that are seen nearly face-on, for which, as pointed
out by Markovic [9], the linear error-estimation method
breaks down. Our results for nearly face-on binaries are
typically factors of order 2 to 3 smaller than the upper-
limit estimates given by Markovic [9].

In Appendix A we extend the treatment of signal pro-
cessing given in Sec. II to incorporate (i) an arbitrary
number of detectors, (ii) the effects of a priori knowl-

II. DETECTION AND MEASUREMENT
OF GRAVITATIONAL WAVEFORMS

A. Detector characteristics

In order to decide what information can be extracted
from gravitational waveforms, one must have a realistic
model of the detector noise n(t). This noise will have
both Gaussian and non-Gaussian components. We will
restrict our analysis to statistical errors due to Gaussian
noise. It is likely that the eKects of the non-Gaussian
components will be unimportant due to (i) the rejection
of events that are not simultaneously detected in two
or more detectors and (ii) the filtering of the detector
outputs with theoretical waveform templates; however
this issue needs further study.

The remaining Gaussian noise can be described by its
spectral density S„(f),where f is frequency. The LIGO
team has published an estimate of the noise spectrum
that might be attained a few years after LIGO comes on
line —the so-called "advanced detector" noise spectral
density [3]. We use the following rough analytic fit to
their noise curve:

OO) f ( 10Hz,
So {(fp/f) +2 1+ (f /fo) ), f ) 10Hz,

(2.1)

mhere So ——3 x 10 Hz and fo ——70Hz. For frequen-
cies f ( 10 Hz, the noise due to seismic vibrations is so
large that we take it to be e6'ectively infinite. Thermal
noise dominates in the f'requency band 10 Hz & f & 50
Hz, and photon shot noise dominates for f & 50 Hz. We
refer the reader to Refs. [3, 12] for more details on the
sources of noise.

The amount of detector noise determines the strength
of the weakest signals that can be detected, and thus the
distance to which a given type of source can be seen.
The noise level (2.1) mill permit the detection of NS-NS
mergers out to ~ 1 Gpc [3,14,22], giving an estimated de-
tection rate of 10 yr i [2]. In this paper me are prin-
cipally concerned not with detection issues, but rather



2662 CURT CUTLER AND EANNA E. FLANAGAN 49

with the accuracy of parameter estimation. This accu-
racy of parameter estimation depends only on the shape
of the noise spectrum, and on the signal-to-noise (S/N)
of the detection; e.g. , simultaneously doubling both the
noise levels and the signal strength leaves measurement
accuracy unchanged. We normalize our results to a fixed
S/N, and hence our results are independent of the pa-
rameter So appearing in the noise spectrum (2.1).

Since the LIGO team's publication [3] of their esti-
mate of the advanced detector's noise curve, there have
been new developments in the understanding of the de-
tector's thermal noise which indicate that the advanced
thermal apoise spectrum may be Hatter than previously
thought [23]. A modified noise-curve estimate, reflect-
ing this new understanding, has not yet been published.
Like the noise spectrum in Ref. [3] on which our simpli-
fied model (2.1) is based, the modified noise curve will

depend on the values of advanced detector parameters
(such as the quality factors of modes of vibration of the
suspension wires and suspended masses) for which only
rough estimates are available. Our approximate analytic
formula describing the modified advanced detector noise
curve, for one choice of detector parameters,

f & 10Hz,

S-(f) =
&

S n (f/f ), 10Hz&f& f /n,

S-(flf-) ' f /n& f &nf

„Sn-'(f/f )', f & nf,
(2.2)

B. Review of parameter estimation

In this section we give a concise summary of those ele-
ments of signal processing that are necessary for parame-
ter estimation. The basic concepts of detection and mea-
surement have also been reviewed recently by Finn [26]
and by Krolak et aL [27], in the specific context of laser
interferometer gravitational wave measurements. In Ap-
pendix A we give a more detailed treatment of parameter
estimation, together with an extensive discussion of the
ways in which the simplified linear formalism described
in this section can break down: (i) when the signal-to-
noise of the detection is low and (ii) when our a priori
knowledge of some of the binary parameters is not neg-
ligible compared to the information obtained from the
measurement.

where S =2.7x10 Hz, f =74Hz, andn=3. 8

[24], assumes particular detector parameters that accen-
tuate the difFerence between Eqs. (2.2) and (2.1). Since
the ultimate shape of the noise curve is not yet well

known, we feel that it is useful to calculate the attain-
able measurement accuracies for both of these shapes of
the noise spectrum. We shall see below (cf. Tables II
and III) that the flatter spectrum of the modified noise

curve (2.2) leads to a modest improvement in how ac-
curately the binary's masses can be measured (for fixed
signal-to-noise) .

h[e]

FIG. 1. Gravitational waveforms from coalescing compact
binaries are completely specified by a 6nite number of param-
eters 8 = (8, . . . , 8"), and so form a surface 8 in the vector

space V of all possible measured detector outputs s = s(t).
The statistical properties of the detector noise endow V with

the structure of an infinite-dimensional Euclidean space. This

6gure illustrates the relationships between the true gravi-

tational wave signal h(8), the measured signal s, and the
"best-fit" signal h(8). Given a measured detector output
s = h(8) + n, where n = n(t) is the detector noise, the most

likely values 8 of the binaries parameters are just those that
correspond to the point h(8) on the surface 8 which is closest

[in the Euclidean distance (s —h
~

s —h) ] to y.

(2 3)

where h, q and h2 are the Fourier transforms of hq and 62.
This definition is chosen so that the probability for the
noise to have some realization no(t) is

p(n = no) oc e (2.4)

Hence if the actual incident waveform is h(t), then from
Eq. (1.1) the probability of measuring a signal s in the

We assume that an inspiraling binary gravitational
wave has been observed, i.e., that the appropriate detec-
tion criterion has been met by the detector outputs. We
now discuss how one determines what parameters for the
inspiraling binary provide the best fit to the measured
signal. The basic &amework is illustrated in Fig. 1. The
set of all gravitational waveforms from two inspiraling
bodies can be characterized by a relatively small number
of parameters (the distance to the source; the time of
merger; five angles specifying the position of the source
on the sky, the plane of the orbit, and the orbital phase
at some given time; and the masses and spin angular mo-
menta of the two bodies —15 parameters in all, assuming
that the eccentricity of the orbit is negligible). We re-
gard this set of waveforms as a 15-dimensional surface
embedded in the vector space of all possible measured
signals. In the absence of any noise, all measured signals
from inspiraling binaries would lie on this submanifold;
in practice, of course, the measured signal consisting of
waveform plus noise is displaced o8' the submanifold.

The statistical properties of the noise determine a nat-
ural inner product on the vector space of signals. Given
two signals hi(t) and h2(t), we define (hi ] h2) by [28]

hi(f)h2(f) + hi(f)h2(f) d
o S-(f)
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detector output is proportional to e ~' " ' " . Corre-
spondingly, given a measured signal 8, the gravitational
waveform h that "best fits" the data is the one that min-
irnizes the quantity (s —h

]
3 —h); see Fig. l.

It also follows from Eq. (2.3) that for any functions

g(t) and k(t), the expectation value of (g]n)(k~n), for an
ensemble of realizations of the detector noise n(t), is just
(g]k). Hence the signal-to-noise (1.2) of the detection will
be approximately given by

—[h] = = (h]h)'/ .
N rms (h~n)

(2.5)

The kernel m(t) of Wiener's optimal filter appearing in
Eq. (1.2) is just the Fourier transform of 1/S„(f)

For a given incident gravitational wave, different real-
izations of the noise will give rise to somewhat different
best-fit parameters. However, for large S/N, the best-
fit parameters will have a Gaussian distribution centered
on the correct values. Specifically, let 8' be the "cor-
rect" values of the parameters on which the waveforms
depend, and let 8' + 68' be the best-fit parameters in
the presence of some realization of the noise. Then for
large S/N, the parameter-estimation errors b,8' have the
Gaussian probability distribution [26]

p(~8*) = ~e (2.6)

Here F;i is the so-called Fisher information matrix de-
fined by

&Bh Bhl
88' 88&

(2.7)

and 4 = gdet(1'/2z) is the appropriate normalization
factor. It follows that the root-mean-square error in 8' is

(2.8)

where Z—:r
The above discussion applies to measurements made by

a single detector. The (straightforward) generalization to
a network of detectors, which will be required in Sec. IV,
is given in Appendix A.

The above discussion also neglects the effects of any a
priori constraints on the parameters that may be avail-
able. The incorporation of such a priori information
can have a significant effect on the predicted parameter-
extraction accuracies (and also on the best-fit parameter
values themselves). This is true not only for those pa-
rameters to which the constraints apply, but also for the
remaining parameters because of correlations. The efFect
is significant whenever, for some parameter, the a priori
information is comparable with the information derived
&om the measured signal. Hence, a priori constraints
are usually important whenever we include in an error-
estimation analysis parameters which are weakly deter-
mined by the data. In Appendix A we derive a general-
ization of Eq. (2.7) [cf. Eq. (A43) below] which roughly
incorporates the efFect of a priori information. This gen-
eralization will be used in Sec. IIIB, where we consider
the dependence of the inspiral waveform 6 on the spins
of the two bodies.

C. The gravitational wave signal
in the Newtonian approximation

Inspiraling compact binaries can be described, to low-
est order, as two Newtonian point particles whose orbital
parameters evolve secularly due to gravitational radia-
tion, where the gravitational waves and corresponding
energy loss rate are given by the Newtonian quadrupole
formula. That is, the orbital &equency 0 at any instant
is given by

0= (2.9)

where M = Mq + M2 is the total mass of the system and
r is the orbital separation. The inspiral rate, for circular
orbits, is given by

r dE 64pM'
dt E dt 5

where p = MiM3/M is the reduced mass. Integrating
Eq. (2.10) we obtain

(256 Mzji/4 (t t)i/4 (2.11)

where t, is the "collision time" at which (formally) r ~ 0.
Since the emitted gravitational waves are quadrupolar,
their frequency f (cycles/sec) is equal to 0/z. The grav
itational waves induce a measured strain h(t) at the de-
tector which is given by (see, e.g. , Ref. [12])

(384/5) i/zirz/3Q(8, (p, g, I.)IJM (
Drt

(2.12)

where D is the distance to the source. The function Q
and the angles 8, y, g, a (which describe the position and
orientation of the binary) are defined in Sec. IV below;
they will not be needed in this section. In Eq. (2.12)
we could have included the factor (384/5) / 7rz/ in the
definition of Q, but choose not to for later convenience.

Because both the amplitude and frequency of the signal
increase as t ~ t„the signal is referred to as a "chirp. "
From Eqs. (2.9) and (2.10), the frequency evolves accord-
ing to

f 3/3 ~5/3 F
11/396

(2.13)
dt 5

where M—:p3/3M3/3 is the chirp mass parameter dis-
cussed in Sec. I. The phase of the waveform P(t)
I 2z.f (t')dt' is

P(t) = —2 —,'M '(t. —t) (2.14)

where the constant of integration P, is defined by P -+ P,
astmt.

In Eqs. (2.12)—(2.14) we have omitted the (obvious)
time delay between signal emission and detection, and
we have implicitly assumed that the detector and the bi-
nary's center of mass are at rest with respect to each
other. The latter requires some explanation. If the de-
tector and binary are in relative motion, the detected
signal is Doppler shifted with respect to the emitted sig-
nal. One cannot determine this Doppler shift from the
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detected signal, since h(t), as defined by Eqs. (2.12) and
(2.13), is invariant under the transformation

(1 + Z)MtrueI p = (1 + Z)@true! (2.16)

where z is the source's cosmological redshift, and also
depend on and reveal its so-called luminosity distance DL,

[6, 9, 26]. Our measurement-accuracy analysis applies to
these redshifted masses and to the luminosity distance.
The determination of the true masses for very distant
binaries will require some method of estimating redshifts;
see, e.g. , Ref. [9].

It is most convenient to work directly with the Fourier
transform of h(t),

h(f) —= j e! 'I h(I)dI, (2.17)

which is easily computed using the stationary phase ap-
proximation [12]. Given a function B(t) = A(t) cos P(t),
where din A/dt « dP(t)/dt and d2$/dt2 « (dP/dt)2,
the stationary phase approximation provides the follow-

ing estimate of the Fourier transform B(f) for f ) 0:

(df i
B(f) = -A(t)

I

—
I

exp [t (2&ft —&(f) —~/4)].

(2.18)

In this equation, t is defined as the time at which

dP(t)/dt = 2m f, and (in a slight abuse of notation) P(f )
is defined as P t(f) . Using Eqs. (2.13) and (2.14) we

obtain

(f, M, p, r, D, t) m (f/A, MA, pA, rA, DA, tA) . (2.15)

Thus, strictly speaking, one can extract from the signal
only the "Doppler-shifted" mass and distance parameters
A~, Ap, and AD, where A is the Doppler-shift factor.
This is not just a feature of our simplified, Newtonian
waveform; it also holds for the true, general-relativistic
waveforms, as can be seen on purely dimensional grounds
and kom the fact that general relativity does not define
any preferred mass or length scales.

Similarly, for binary sources at cosmological distances,
the waves will depend on and reveal the redshifted masses

mergers, there will be a transition from inspiral to a final

plunge [29] near the location of the last stable circular
orbit, which is roughly at r = 6M for nonspinning bod-
ies [30]. The final plunge will last roughly one orbital pe-
riod. (Neutron stars merging with rapidly spinning black
holes may instead tidally disrupt, thereby shutting ofI' the
waves, outside the horizon [18].) For NS-NS mergers, the
two bodies will collide and coalesce at roughly r = 6M.
Generally therefore the inspiral gravitational wave h(t)
will "shut ofI'" at roughly r = 6M, and correspondingly
h(f) will shut off at roughly f = (6s~27rM) i. We there-

fore "correct" the waveform (2.20) by setting h(f) = 0
for f ) (6s) 2aM) i. We note that, when r ) 6M,

lr dr/dtl 2 d2$/dt2 1 (4p')
dP/dh 3(dg/dt)' 55 qM&'

(2.22)

so the stationary phase approximation should repro-
duce the Fourier transform of h(t) with good accuracy
throughout the inspiral. Note that, as advertised in
Sec. I, in the Newtonian approximation the signal (2.20)
depends on Mi and Mz only through the chirp mass M.

Using Eqs. (2.1) and (2.20), we can see how the signal-
to-noise squared accumulates as the &equency sweeps up-
ward:

(S/N) (f)=4, df'
' lh(f')I'

n

=4~'M ~ """'df.
o S (f')

(2.23)

0 02' ! !

In Fig. 2 we plot the integrand d(S/N) /df
4lh(f)l /S„(f),using the advanced detector noise spec-
trum (2.1). The shape of this curve is universal once the
noise spectrum is given: the masses, the relative angles,
the distance to the source, etc. , affect only the overall
amplitude. (This is strictly true only for the "Newto-
nian" signal, but will remain true to a good approxima-
tion when post-Newtonian effects are taken into account. )
While 90Fo of the cycles come between 10 and 40 Hz, and
while most of the energy is released in the last few orbits

t(f) =t, —5(87rf) '~'M

P(f) = Q, —2 [8mMf]. (2.19)

0.015—

Hence from Eq. (2.18), the Fourier transform of the New-

tonian waveform is

() (l l )

I

!
/

o oosl

h(f) = M~ f ) ex—p [i@(f)]D
(2.20)

I I I I L.

for f ) 0, where the phase 4(f ) is

@(f) = 2~ft. —P, ——+ (8vrM f) '~'—
4 4

(2.21)

Equation (2.20) for h(f) is clearly invalid at very high
frequencies, because the real inspiral will terminate at
some finite orbital frequency. For BH-BH and BH-NS

50 100 150
r (Hz)

FIG. 2. This plot shows how the total signal-to-noise
squared S /N for a detected coalescing-binary waveform is
distributed in frequency f, assuming the detector noise curve
(2.1). Most of the signal-to-noise ratio comes not near 70 Hz
where the detector sensitivity S (f) is highest, but rather
at a somewhat lower frequency of 50Hz, because more cy-
cles per unit frequency are received at lower frequencies.
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at f ) 200Hz, we find that 60'Fo of the total signal-to-
noise squared accumulates between 40 and 100Hz, the
&equency band in which LIGO is most sensitive.

We now evaluate the Fisher information matrix (2.7).
For measurements using a single detector, there are only
four parameters on which the Newtonian signal depends:
an overall amplitude A = (Q/D)M5~s, and M, t„and
P, . The derivatives of h(f) with respect to these param-
eters (for f ) 0) are given by

Bh

8 lnA

Bh

8$,

t9h

Ot,
= 2ni f h,

Bh

8 lnM

(2.24a)

(2.24b)

b, (ln A) = 0.10
~

10 )

t' 1O )bi, = 0.40
~ ~

msec,

b,P, =0.25~
~

rad,
(10)

(2.25a)

(2.25b)

(2.25c)

6(lnM) =1.2 x 10
~

~
~

. (2.25d), ( 10 l t' M )"
~s x& qMO&

For low-mass binaries, the fact that we "cut off" the
waveform h(f) for f ) (6s~2+M) has little effect on the
rms errors (2.25), due to the sharp rise in S„(f)at high
&equency. The exact scaling of b, (in M) as Ms~s, and
the fact that At, and b,P, are independent of M, strictly
hold only when the cutoff is unimportant. For BH-
BH binaries with S/N = 10, one has 6t, = 0.60msec,

b,P, = 0.32rad, and b, (in M) = 1.3 x 10 (M/Mo) ~ .
The rather phenomenal accuracy attainable for the

chirp mass M is due to the large number JV,„,of cycles
in the detectable portion of the gravitational waveform.
We see &om Eq. (2.13) that JV,„,scales like M ~, so
b, (in M) is proportional 1/JV,„„asone would expect.

The rms errors (2.25) apply to single-detector measure-
ments. In practice, one will have a network of detectors,
with difFerent locations and orientations. For a network,
E(in M), will be roughly given by Eq. (2.25d), but with
S/N replaced by the combined signal-to-noise p of the
detector network, defined by Eq. (1.3) above. This is
because independent estimates of M are obtained &om
each detector. The same argument does not apply to the
rms errors in t„A,and P, because the gravitational
waves will arrive at the difFerent detectors at different

From Eqs. (2.24) and the noise spectrum (2.1), it is
straightforward to evaluate the Fisher information ma-
trix (2.7) and its inverse Z'~ [31]. General expressions for
the elements of I';~ using Newtonian waveforms, valid for
any detector noise spectrum, are given in Ref. [14]. We

will not reproduce them here. However, for purposes of
comparison to our post-Newtonian results in Sec. III, we
list the rms errors b,A, hM, b,t„and AP, for the case
of low-mass (e.g. , NS-NS) binaries, assuming the approx-
imate waveform (2.20) and the detector noise spectrum
(2.1):

times, and because detectors with different orientations
measure different values of A and P, (cf. Sec. IV below).

We conclude this section by noting that from the mea-
sured value of the chirp mass M alone, one already ob-
tains a lower limit on the larger of the individual masses,
and upper limits on the smaller mass and on the reduced
mass. We adopt the convention that Mq & M2, i.e., Mq
always refers to the larger of the two masses. Then it
follows by de6nition that

Mi)2 t M, M2&2 ~ M @&2 ~ M. (2.26)

However, if y, is unknown, then the mass ratio Mi/Mz
is unconstrained. The bounds (2.26) that follow &om
measuring M may themselves be of astrophysical inter-
est. For instance, if one determines using (2.26) that
Mq & 3MO, then one may conclude that the heavier
body is a black hole [assuming the redshift is small,
cf. Eq. (2.16) above and associated discussion]. Also,
it has been suggested [8] that &om LIGO-VIRGO mea-
surements of NS-BH coalescences where the BH is rapidly
spinning, it may be possible to constrain the neutron star
equation of state by measuring the &equency at which the
NS's tidal disruption causes the waves to shut off. Knowl-
edge of this tidal-disruption frequency, coupled with an
upper limit on the neutron star mass M2 determined &om
the inspiral waveform, would allow one to place an upper
limit on the stiffness of the equation of state.

III. POST-NEWTONIAN EFFECTS
AND PARAMETER ESTIMATION

We now extend the analysis of the previous section to
include post-Newtonian effects. We continue to treat the
bodies as point masses, since tidal interactions have a
negligible effect. Also, for the moment we will neglect
the effects of the bodies' spin angular momenta.

The post-Newtonian approximation provides the most
accurate description currently available of the gravi-
tational radiation &om inspiraling, stellar-mass bina-
ries. Corrections of order M/r (P N corrections) to the
lowest-order, Newtonian waveform (2.12) were calculated
almost 20 years ago by Wagoner and Will [32]. Calcula-
tions of the inspiral rate have recently been extended to
P ' N order, for the case of nonspinning bodies, by Wise-
man [33] (after Cutler et al. [13] and Poisson [34] had
determined the form of the P N correction for the case
y, /M « 1). By "P N order" we mean that corrections to
the quadrupole-formula radiation 6eld and corresponding
inspiral rate that are of order (M/r)* have been taken
into account, along with order (M/r) corrections to the
nonradiative orbital equations which determine, e.g. , the
orbital &equency at a given separation. [There is no stan-
dard convention for "counting" post-Newtonian orders in
calculations involving radiation; e.g. , some authors refer
to the lowest-order radiation 6eld as P N. Our own
terminology is motivated by the application considered
here: since radiation reaction effects cause the inspiral,
O(M/r) corrections to the quadrupole formula accumu-
late secularly and have just as large an eÃect on the phase
of the orbit P(f ) as do O(M/r) corrections to the orbital
&equency at a given radius. ]
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The post-Newtonian waveforms improve upon their
Newtonian counterparts in three respects [35, 36]. First,
they include contributions &om higher-order multipoles
of the stress-energy tensor (e.g. , mass-octupole and
current-quadrupole radiation in addition to the mass-
quadrupole term), whose frequencies are different har-
monics of the orbital &equency. Second, they include
post-Newtonian corrections to the lowest-order expres-
sions for the amplitude of each multipole component.
And, most importantly for our purposes, post-Newtonian
corrections to the energy E(r) and gravitational wave lu-

minosity dE/dt(r) modify the inspiral rate and thereby
the accumulated orbital phase 4'(t). We can write h(t)
schematically as

(3 1)

where x indicates the term's post-Newtonian order, the

integer m labels the different harmonics, and 4(t) is the
orbital phase. Each amplitude 6* has the form

h* (t):— g' (Ml/M2) Q (9, y, g, I,),
pM

(3 2)

where 4(t) has the post-Newtonian expansion

C(t) = I'+ I'+ I"+ O((M/r)') . (3.4)

where r(t) is the orbital separation, g is some function
of the mass ratio, and Q* is a function of the source's
position on the sky and the orientation of the orbital
plane. To connect with the notation of Sec. II and be-
low, we note that the phase P(t) of the quadrupole part
of the waveform is essentially twice the orbital phase:
P(t) = 2C (t) + k, for some constant k that depends on
the relative positions and orientations of the detector and
the binary [37]. Thus, the expansion for h(t) through
P X order is given by

t (t) = Re[ (t 0+ t,'+ t l 5)e"+ (h0 5+ t ")'
+(h0.5 + h1.5) 3i4 + t 1 4i@ + h

1.5 5i4] (3 3)

tion matrix (2.7) using the "model" waveform

h(g) R (go 2 (4"+0'+4"]) (3.5)

That is, we include P X and P N corrections to the
phase of the waveform, since these are decisive for ex-
tracting the mass and spin parameters of the binary,
but we neglect the other post-Newtonian effects that are
nominally of the same order. We expect that the val-

ues of AMl and AM2 calculated using Eq. (3.5) will be
a reasonable approximation to the error bars one would

calculate using the true, general relativistic waveforms

(assuming one had access to them).
There is another, practical, reason for the use of the

truncated waveform (3.5). As explained in Sec. II, we

can simplify the error-estimation analysis by consider-

ing only single-detector measurements, and still obtain a
reasonable estimate of the accuracies attainable for mass
and spin measurements. However, as stated above, each
of the amplitudes 6 has a difFerent dependence on the
angles (0, p, Q, i,). These angles cannot be measured us-

ing one detector alone. The position of the source 0, y is

determined from differences in signal arrival times at (at
least) three widely separated detectors [6]. Moreover at
least two of the detectors must have difFerent orientations
to obtain even a crude estimate of the angles g, (. (which
describe the principal polarization axis of the wave and

the angle between the line of sight and the normal to the
orbital plane, see Sec. IV below). Thus, to make use of
the extra information contained in the post-Newtonian
terms that we are omitting in Eq. (3.5), a full detector
network would have to be modeled. Hence, for simplic-

ity, in our model waveform (3.5) we omit all of the terms

in Eq. (3.3) except for the largest one. (Although we do

analyze a general network of detectors in Sec. IV below,

that analysis takes advantage of the fact that the phase-
evolution information and the amplitude/polarization in-

formation in the measured waveforms are largely inde-

pendent, and —complementary to this section's analy-

sis —focuses on the amplitude/polarization information
alone. )

In Eq. (3.4), O* refers to the P*N order contribution to
the orbital phase. As indicated by Eq. (3.4), the term

vanishes identically, as do several omitted terms
0 2'4in Eq. (3.3). The term hze ' is just the Newtonian,

mass-quadrupole waveform given by Eq. (2.12), while

the terms h1'e' {'}and I 3'e"' {'}are the lowest order
current-quadrupole pieces of the waveform. The term
62 e ' is the so-called "hereditary" or "tail" term pro-
duced by the interaction of the outgoing wave with the
binary's gravitational potential [34, 38]. The interested
reader can And explicit expressions for the amplitudes
6 through P N order in Krolak [35].

In Sec. I we argued that the waveform's accumulated
phase 4 contains most of the "information" that allows
sensitive measurement of the masses of the bodies. Since
this paper aims at only an approximate calculation of
parameter-estimation accuracies, rather than use the full
P N waveform (3.3), we calculate the Fisher informa-

A. Parameter estimation neglecting spin effects

In this section we estimate how well the masses Mq and

M2 could be determined &om the waveform, if we knew a
priori (or a posteriori by some independent means), that
both bodies had negligible spin. Note that this is difFerent

&om the situation where the spins happen to be zero, but
where we have no knowledge of this fact apart &om the
information contained in the gravitational waveform.

In fact, it would not be justified to assume a priori that
compact objects found in binaries have negligible spins.
For one thing, the formation of close binaries generally in-

volves a period of mass transfer, which would tend to spin

up the accreting body(. Observationally, there are three
known NS-NS binaries that will merge within a Hubble

time; at the time of merger, the pulsars in these bina-
ries will all be spinning at roughly 1—

2%%u0 of their max-
imum possible angular velocities [2]. (The spin rates at
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merger will be roughly a factor of 2 smaller than current
values, due to magnetic dipole radiation. ) We show in
Sec. III B below that allowing for spins of this magnitude
increases the resulting error bars for mass measurements
by roughly a factor of 2, compared to the error bars ob-
tained if spins are assumed to vanish. Nevertheless, we
feel it is instructive to calculate the Fisher information
matrix neglecting spin effects (i.e., assuming the spins
are negligible a priori), both to illustrate the inclusion
of post-Newtonian terms and to provide a basis for com-
parison with the results obtained when we include spins.

We now briefiy derive the P N corrections to the
phase of the waveform. Through Pi sN order, the orbital
frequency, energy, and energy-loss rates (for nonspinning
bodies) are [32, 33]

Mi/~ (—3 p l M ((M&nr = 1+~ + —+O]rs/2 ~2 2M) r Igr) )
(3.6)

E(r) =
—pM f —7 p )M ((M)1+I +

I

—+O
2r g4 4M) r ggr) )

(3.7)

"E() 3
( )»/s 1+(

5 g 336 12M) qr)

+4~1 —
I

+OI I

—
I(r) &kr i

(3.8)

where r is the orbital separation in de Donder gauge (the
standard gauge choice for post-Newtonian calculations),
and t refers to time measured at infinity.

Defining f—:0/x, the frequency (in cycles/sec) of the
quadrupolar part of the gravitational waves, we coxnbine
Eqs. (3.6)—(3.8) to obtain

df/dt ~slsMslsf / 1 —
~

+
~

(mMf)2/ +4vr(mMf)+O((nMf) ) .
(336 4M )

(3.9)

In Eq. (3.9) and below, we use (xMf)i/s as our post-
Newtonian expansion parameter, instead of (M/r) /

We note that (srMf)
i/s equals (M/r) i/2 up to but not in-

cluding terms of order (M/r) /2 This ch. ange of variables
is advantageous because the frequency of the wave is a
directly measurable, gauge-independent quantity (unlike
the radius of the orbit). Equation (3.9) can be easily in-
tegrated to obtain t(f) and P(f), where P = s f fdt is
the phase of the waveform. Defining z = (xMf)2/s, we
find that

t(f) =t. —5(8~f) ''M ' '-1+—
~

+ ~z
4 743 lip)

327r zs/2 + O( 2)
5

(3.10)
W

—10~z'/' + O(z'),

(3.11)

I

where A = (Q/D) M / and

0'(f) = 2xft, —Q, —m/4+ (8+M f-)

x 1+—
i

+
i
z —16mz . (3.13)

20 (743 llpi
9 (336 4M )

Note that the post-Newtonian correction terms in square
brackets in Eq. (3.13) have their greatest effect on the
phase of h(f) at tom frequencies, because they are mul-
tiplied by the overall factor f s/s This may .seem coun-
terintuitive, since the post-Newtonian corrections to the
inspiral rate are largest at small r, or high f; however
the high-frequency portion of the waveform contains far
fewer cycles, so the cumulative effect of PN corrections
on the waveform's phase is smaller there.

Our model waveform (3.13) for nonspinning bodies de-
pends on five parameters: A, P„M,p, , and t, It.
is actually somewhat simpler to compute and interpret
the Fisher information matrix I';~ in terms of the fol-
lowing modified parameters for which the rms errors are
rescaled: lnA, P„lnM, 1ny, , and fet„where fo is some
fiducial &equency. With respect to these parameters, the
derivatives of h(f) are [39]

where, as in Sec. II, we define t, and P, by t -+ t, and
P -+ P, as f -+ oo.

Using Eqs. (3.10) and (3.11) and the stationary phase
approximation, we can repeat the analysis of Sec. II to
obtain h(f). As before, we (crudely) model the end of
the inspiral at r 6M by setting h(f) = 0 for f
{6s/ ~M) i. The stationary phase result then becomes

Bh(f)
BlnA
Bh(f) = 2~' {fife)h{f)B otc

Bh(f)
Bg,

(3.14a)

(3.14b)

(3.14c)

h(f) =
&

'Af —7/s i%

, 0,

0 & f & (6'/'~M)-',

(6/ sM) (f {3.12) Olney 4
= ——{8sMf) / h(f) x 1+ z+8vr z /

6M

(3.14d)
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f —3715 55@i
756 6M )

(3.14e)

yMg Mg pgp M(/J 3M1)
2P, (M1 —M2)

M, M, „„M(P—3M2)
2P(M1 —M2)

(3.16a)

(3.16b)

Using Eqs. (3.14) and the noise spectrum (2.1), we have
numerically computed I",~, its inverse Z'~, and the corre-

sponding errors bP, = QZ&. 4', etc. Since our model
waveforln includes post-Newtonian corrections to the
phase but not to the amplitude, Z'~ is block diagonal:
Z'"+& = 0 for j = P„lnM, lny, , or fot, . Hence,
AA/A = (S/X), while errors in A are uncorrelated
with errors in the other parameters. Table I lists AP„
At„AM/M, and b,p/p, for a range of values of M1
and M2. The results in Table I are for a single detector
and are normalized to S/N = 10. For measurements by
a detector network, the rms errors AM/M, and b,p/p
will be approximately those given Table I, but with S/N
replaced by p, the combined signal-to-noise (1.3) of the
network. As explained in Sec. II, this is because each de-
tector provides almost-independent estimates of JM and
p. The result we particularly wish to draw attention to
is if spins can be treated as negligible then p can typically

be measured to l%%uo, while JH can be determined to
0.01—O. l%%uo

Table I also lists the correlation coefBcient c~„
E~"/(Z~~ 2"")1/2, a dimensionless ratio indicating
the degree to which errors in M and p are correlated.
The quantity c~„is independent of S/N, and by def-
inition satisfies c~„p —1, 1 . We find that typically
]c~„]& 0.90, indicating that the errors in M and p are
strongly correlated. This strong correlation implies that
there exists a linear combination of JH and p, which can
be determined much more accurately than either M or y,

individually [40). In particular, 6 M —(Z "/Z"") /1

is smaller than b,M by a factor of (1 —c2~ )
Indeed, the value of 6 lH —(Z~ "/2"")p computed
using our P waveform (3.12) is approximately the
same as AM [cf. Eqs. (2.25) above] computed using the
Newtonian waveform (2.20) [40].

How accurately can M~ and M2 be determined? While
it is straightforward to answer this question when the
mass ratio is large, we shall see that some care is required
when Mq and M2 are comparable, since in this case the
distribution of errors in Mq, M2 is non-Gaussian. Recall
that we have adopted the convention that Mq ) M2.
Then we have

4~5/2 —1/2) 1/2
)

(3.15)

Using Eq. (3.15), Z ' ' and E ' ' can be expressed as
linear combinations of Z~~, Z~", and Z"". However
it is clear kom Table I that in practice the Z"" term will
give the dominant contribution. Neglecting the terms
proportional to Z ~ and Z ", we find that

V —2&V(I & V+2&V (3.is)

where Ap, = (Z"") / is determined from the variance-
covariance matrix. Roughly speaking, a necessary condi-
tion for the distribution of Mq and M2 to be Gaussian is
that p+-2hp & 2 4/s M (so that the p's 95% confidence
interval does not include the equal-mass case).

From Eqs. (3.15) and (3.18) we obtain the following

95% confidence limits on M1 and M2.

M1(~, p+ 2+@) & M1 & M1(~, p —24'), (3.19a)

M2(M, p, —24@) & M2 & M2(M, p+ 24'), (3.19b)

where the functions M1 and M2 are given by Eq. (3.15)
above. If p, + 24p is greater than the maximum allowed
value of p, , then one should replace p, +2Ap by 2 / M in
Eqs. (3.19). For example, if M = 1.219MD, p, = 0.7MD,
and Ap/P, = 0.004 (the NS-NS case), then one can state
with 95% confidence that M1 and M2 lie in the ranges

For example, if Mq —— 10M0 and M2 —— 1.4Mo,
Eqs. (3.16) imply that AM1/M1 -- 1.94/1/ p and
AM2/M2 = 1.46@/p.

While the expressions (3.16) for Z ' ' and Z
should be adequate for estimating the distribution of er-
rors when Mq )) M2, these expressions unfortunately
diverge when Mq ——M2. This divergence is due to the
fact that the Jacobian of the transformation (M1, M2) ~
(M, p, ) vanishes when M1 ——M2. Of course, the rms
mass measurement errors do not actually become infi-
nite. Rather, the linear approximation that one typically
uses to estimate rms errors loses its validity. That is, the
approximation that

Ah= AA+ AP, + Dt,
Dh Oh t9h

BP,
' Bt,

Bh t9h
+ AMg + AM2) (3.i7)

1 2

for variations Ah of a size determined by typical realiza-
tions of the noise, becomes inaccurate when My —M2 M
0, as Bh/OM1 + Bh/BM2 -+ 0 in this limit.

To overcome this problem we proceed as explained in
subsection A 7 of Appendix A below, and use the proba-
bility distribution function (PDF) for the best-fit values

M, y, of the parameters M, p, , which is simply a Gaus-
sian centered on the true parameters M, /1. (Thus, we
are considering so-called frequentist errors, cf. A 2 of
Appendix A below. ) Let M1 and M2 be the correspond-
ing best-fit values for the individual masses. Substituting
into this PDF the transformation M = M(M1, M2) and

p = y, (M1, M2) yields a non-Gaussian PDF for M1, M2,
from which we can calculate the 95% confidence limits
for Mq and M2. The use of confidence limits is some-
what crude, in the sense that it leaves out much of the
information contained in the PDF, but it is suitable for
our purpose of determining roughly how accurately these
quantities can be measured. Since AJH is very small,
for the purposes of this discussion we can assume M has
been measured exactly. Let p, is the true value of the
binary's reduced mass. Then with 95'%%uo confidence p lies
in the interval
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1.4Mo & My & 1.65Mo and 1.2MO & M2 & 1.4Mo-
Thus Mz and M2 are determined with much less accuracy
than p when the two masses are roughly equal.

Sq j + 3 H A A

dt
aiLL+ -S2 —-(S2.L)L x S,2 2 1) (3.22b)

B. Parameter estimation including spin effects
dS2 ] ~ 3 t A A

dt
a2LL+ -Si —-(Si L)L x S22 2 (3.22c)

We now present a rough calculation of the degree to
which mass measurement accuracy is degraded when the
spins cannot be assumed to be negligible. For the same
reasons as in Sec. III A, we incorporate the effects of spins
on the phase of the waveform, but neglect their effects on
the waveform amplitude.

Let Sq and S2 be the spin angular momenta of the two

bodies, and let L be the total orbital angular momen-

tum. We define the unit vector L by L = L/~L]. Then
Kidder, Will, and Wiseman [41] have shown that, due

to an "I, S" term in the two-body force law as well as
spin corrections to the expressions for the system's mass-
quadrupole and current-quadrupole moments, Eq. (3.9)
becomes modified at P N order to

df/dt = ~'~'~'~'f"~' 1 —
~

+
5 q336+ 4M&

+(4~ —p) *'~'+ O(*'),

(3.20)

where again z—:(7rMf)2~, and where

where ai ——2 + (3Mz)/(2M'), a2 ——2 + (3M')/(2Mz),
L = ~L~ = pv'Mr, and where, to this order, one can use
the expression (2.11) for r(t).

A

The precession of L, Si, and S2 causes P to evolve;
dP/dt as calculated from Eqs. (3.22) does not vanish iden-
tically. Fortuitously, however, P is almost conserved by
Eqs. (3.22), in the following sense. We integrated these
equations numerically from f=10 Hz to f=(6 ~27rM)
for a wide variety of spin magnitudes, initial spin di-
rections, and mass ratios; we found that P never de-
viates from its average value by more than 0.25 (or

0.03P ). Moreover, the nonconstant part of P is
oscillatory, which further diminishes its integrated effect
on the waveform's phase. These properties of the evo-
lution of P are explored analytically and numerically in
Appendix B.

The near constancy of P allows a considerable simpli-
fication of our model waveform: in Eq. (3.20), we simply
take P to be a constant. That is, we treat P as just
another parameter on which the signal depends. The
Fourier transform of our model waveform, including spin
effects, is therefore given by

(113 25 M2 l
12 4 Mi)
(113 25 Mi 5

12 4 Mz
(3.21)

g f—7/6 ic
h(f) =

where now

0& f & (6'i'mM)-',
(6'~'7rM) ' & f, (3.23)

dL
dt

agSg + a2S2

3 (S2 L)Si+ (S, L)S2
2 L (3.22a)

Through P N order, the six components of Si and Sz
affect the waveform's phase only via the particular com-
bination (3.21). (Of course, other combinations appear
at higher order. )

We now discuss the magnitude of the correction due
to P. For black holes, one has a strict upper limit on the
magnitude of the spins: [S;

~

& M; . This is also roughly
the upper limit for neutron stars, though the actual up-
per limit depends on the (uncertain) nuclear equation of
state. We can therefore estimate the maximum size of
P by considering the case where the spins are aligned
with L, and where

~
Si

~
/Mi ——

~
S2 [/M2 ——l. In this

case P = i2
—

i2 (4y, /M). This maximum value P is
always within 10%%uo of 8.5, regardless of the mass ratio.

The P N order equations of motion also contain
"L x S" terms, which do not directly affect df/dt, but

A

do so indirectly by causing the directions of L, Sq, and
S2 to precess during the inspiral —essentially the Lense-
Thirring efFect. The equations describing the secular evo-
lution of L, Si, and S2 through P N order are [42]

0'(f) = 27rft, —p —7r/4+ s(87r~ f)
20 t 743 llpi" '+
9 ~ 336+4M'+(4~ '"'""

(3.24)

Now, for spinning bodies it is not really correct to
treat the amplitude A—:Q(8, $, $, i)D ~ ~ as con-
stant. The precession of the orbital plane described by
Eqs. (3.22) causes the angles @ and i, to vary, and hence

Q(0, rp, vP, i,) to vary, throughout the inspiral. Typically,
the orbital plane precesses around the total angular mo-

mentum vector J = L+ Sz + S2 roughly 20 times during
the observable portion of the inspiral. The result is a si-
nusoidal modulation of the waveform envelope [8,43], and

the amplitude of the modulation can be large when ~Si
~

or ]S2~ is comparable to ]L]. Nevertheless, in the inter-
est of simplifying the calculation, in our model tuaveform

(3.23) tve take A to be a constant We discuss f. urther
below the implications of this simplification.

The derivatives Bh/BlnA, Bh/0(fot, ), and Bh/Br/i, of
the signal (3.23) are given by the same expressions as
in Eqs. (3.14). The derivatives of h(f) with respect to
ln M, ln p, and P are
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Oh(f) 5i s/s„- 55P
8m

6M

+(8~ —2P) *'/'

(3.25a)

Bh(f) 3i s/s — (—3715 55p t= —8~m + x

+(24vr —6P) zs/

(3.25b)

ah f = 3i (8aM f) / (7rMf) h(f) (3.25c)

Using Eqs. (3.25) we again compute the variance-
covariance matrix Z' for a range of values of Mq and M2.
One can show that AP„At„b,M/M, and Ap/p do not
depend on the value of P. The simple way to prove this
is to make a change of variables from (A, P„t„M,p, P)
to (A, P„t„M,p, P'), where

P'—:(4P —16m) M / p (3.26)

Since the waveform phase @(f) [Eq. (3.24)] depends lin-

early on P'f /s, the Fisher information matrix calcu-
lated with respect to the new variables is independent of
P'. This implies that the rms errors in the other param-
eters, and their correlation coefBcients, are independent
of the value of P. The values of AP, c~p, and c„pdo
depend on P, however.

In Table II we list the rms errors AP„bt„AM/M,
Ap, /p, , and AP for the same fiducial binaries that appear
in Table I. In computing the results in Table II we use
the model of the advanced detector noise curve given by
Eq. (2.1). Since we are principally concerned with how

our lack of knowledge of the bodies' spins affects how

well we can determine the other parameters, we take the
"true" value of P to be zero in all cases. As in Table I,
the results in Table II are for a single detector and are
normalized to S/X = 10; for a detector network, the rms
errors AM/M, and Ap/p, and AP will be approximately
those given in Table II, but with S/N replaced by the
combined signal-to-noise ratio p.

Summarizing the results of Table II, we And that
AM/M is roughly an order of magnitude larger than
predicted by the Newtonian analysis of Sec. II, but still
typically less than 0.1%. Thus, despite the "confusion"
introduced by the extra parameters that enter at post-
Newtonian order, we conclude that M can still be mea-

sured with remarkable accuracy. However, compared to
the case where the bodies are assumed to have negligible
spin a priori, we see that Ap has increased by a factor
which ranges &om 20 to 60.

Table II also reveals the "reason" for this loss of ac-
curacy: the correlation coeKcient c„pis extremely close
to —1 [40]. Clearly the strong correlation is due to the

+ +

fact that the frequency dependence of the "L S" term
in the expression (3.24) for the waveform phase 4(f) is

very similar to the frequency dependence of the other
post-Newtonian terms in Eq. (3.24). This strong correla-
tion implies that there is a combination of p, and P which

can be determined to much higher accuracy than p itself
[40]. Specifically, A(p —(2"~ Z~~) P) is smaller than
6p by a factor of (1—c &)

i 2, which is approximately
20 —60 for the cases in Table II. Thus the combination

p, —(E"~/Z~~) P can be determined with approximately
the same accuracy that one could achieve for y, , if spin ef-

fects could be neglected (cf. Table I). Since both M and
this particular combination of p and t9 can be determined
to high accuracy, the inspiral gravitational wave measure-
ment essentially constrains the parameters to lie near a
thin two-dimensional strip in (M, p, , P) space. This is

TABLE II. The rms errors for signal parameters and the correlation coefBcients c~„,c~p, and

c„p,calculated using spin-dependent waveforms. The results are for a single "advanced" detector,
the shape of whose noise curve is given by Eq. (2.1). For the rows marked with s t (snd only for

those rows), the vsrisnce-covsrisnce matrix hss been "corrected" to approximately account for the

fact that the spin psrsineter P must satisfy ~P~ ( P „=8.5. The rms errors are normalized to
s signal-to-noise ratio of S/N = 10. Except for rows marked with s t, errors scale as (S/N)
while the correlation coefficients are independent of S/¹ Except for rows marked with s t, if P
hsd been chosen nonzero with Mi snd M2 unchanged, then AM/M, Ap/Af, snd c~„would have

been unchanged (but EP, c~p, snd c„pwould have been altered). As in Table I, Mi snd M2 sre

in units of Mo, while At, is in msec. The results for the LIGO-VIRGO network of detectors, for

a signal with combined signal-to-noise ratio from all the detectors of 10, will be approximately the

same as those shown here; see text.
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1.14
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b.q4 ~t, b,M/M
0.034%
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0.19%
0.10%
1.06%
0.64%
1.42%
0.59%
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8.44%
9.65%
15.2%
13.4%
76.4%
45.8%
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49.9%

1.04
1.24
1.99
1.73
11.4
6.81
19.5
7.79

-0.988
-0.988
-0.990
-0.989
-0.992
-0.978
-0.992
-0.953

0.993
0.993
0.994
0.994
0.994
0.984
0.994
0.964

-0.9989
-0.9991
-0.9994
-0.9992
-0.99980
-0.9995
-0.99988
-0.9992
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FIG. 3. This plot shows the curve of constant probability
on the pP plane for a NS-BH binary, where p is the binary's
reduced mass and P is a dimensionsless spin-related parame-
ter, such that the true values of these parameters lie inside the
ellipse with 95'%%uo confidence. The strong correlation between
possible values of p and P is evident. To a good approxima-
tion, the chirp mass M is measured to arbitrarily high accu-
racy. Hence in the three-dimensional space of the parameters
(A4, p, P), the true values of these parameters are confined
with high confidence to a thin strip of the above ellipsoidal
shape in a plane of constant JH.

illustrated in Fig. 3, for the case of a BH-NS binary.
Up to this point, the formalism we have been using to

calculate measurement accuracies neglects a priori con-
straints on the parameters, and thus implicitly assumes
that P can take on arbitrary values. This assumption
should be adequate as long as the 95% confidence inter-
vals determined Rom Z~~ are well within the "allowed"
range: ]P] & P „8.5. However we see from Table
II that this criterion is not satisfied when both bodies
are heavier than a few solar masses. For example, when
Mi ——M2 ——10MO we calculate b,P = 19.5. We can
(somewhat crudely) incorporate the restricted range of P
into our formalism, as follows. We replace the a priori
information ]p] & p at hand by an assumed Gaussian
distribution pool(P) oc e ~ ~~~sl for P. In Appendix A we
derive an expression for the variance-covariance matrix
which incorporates the efFect of an (assumed Gaussian) a
priori probability distribution for the signal parameters.
We have used this result [Eq. (A43) below] to reevaluate
the variance-covariance matrix for the two high-mass bi-
naries shown in Table II. (Taking the restricted range of
P into account makes little di8'erence to the other cases
in Table II.) These reevaluated results are marked in Ta-
ble II with a dagger (t). Again, the rms errors listed are
for S/N = 10; note however that since p~ ~(P) is fixed,
the rms errors no longer scale simply as (S/N) i. We
see that taking the restricted range of P into account
leads to the improved estimate Ey/p 50% in both the
high-mass cases.

We mentioned above that in the three known short-
period NS-NS binaries, the radio pulsars will, at the time
of merger, all have spin angular moinenta that are & 2'%%uo

of their maximum possible values. We feel it is an inter-
esting exercise to calculate what measurement accuracies
could be attained if we knew that NS's in nature were
slowly spinning in general, e.g. , if we knew a priori that
P & 0.02P

„
for NS-NS mergers. Repeating the pro-

cedure used above, we take pool(p) oc e ~~~~s.il, and
we use Eq. (A43) to calculate the variance-covariance
matrix for the NS-NS case, for S/N = 10. We find

Ap/p —0.9'%%uo, which is roughly twice the value obtained
in Sec. IIIA, where spin efFects were taken to be corn-
pletely negligible.

We turn again to the question of how accurately the
individual masses can be measured. The procedure for
calculating AM1 and AM2 in terms of 4M and Ap is of
course the same as described in Sec. III A. Thus for the
BH-NS case, using the fact that Ap/p 15%%uo, we find
from Eqs. (3.16) that b,Mi/Mi 30'%%uo and b.M2/M2 =
20%. In Sec. III A we explained that the distribution of
errors in M~ and M2 will be non-Gaussian if p+ 26p )
2 4~s M. By this criterion, if by/p —15%, then we can
reliably estimate EMi and b,Mq by using Eqs. (3.16)
only if Mi/M2 & 5.5

Again, even when the Gaussian approximation is in-
valid, one can still use Eqs. (3.19) to place 95% confidence
limits on Mq and M2. Consider again the NS-NS case,
which we looked at in this context in Sec. III A, with the
true values of the masses being Mq ——M~ ——1.4Mo.
Then fH = 1.22M~, and, using the 2o error bar in-
dicated by Table II (for S/N = 10) we see that, 95'%%uo

of the time, the observers would measure p, to be be-
tween 0.56Mo and 0.70Mo. Correspondingly, the mea-
sured values of Mi and M2 would lie in the ranges
& 4Mo & M& & 3.2Mo and 0.7Mo & M2 & & 4Mo
Thus, in the NS-NS case, measuring p to within 20'%%uo

means determining the individual masses only to within
a factor of 2. The constraints obtained on Mi and
M2, for this case and the BH-NS case, are illustrated in
Fig. 4.

Finally, we repeat these calculations using the Hatter
spectrum (2.2) instead of (2.1) as our model of the ad-
vanced detector noise. The results are shown in Table III.
We see that the main conclusions which we drew from Ta-
ble II are unchanged, but that (for fixed signal-to-noise)
the relative errors AM/M and hp/p are a factor of

1.5 times smaller with the Hatter noise spectrum (2.2).
This is presumably due to the fact that noise spectrum
(2.2) exhibits better sensitivity at low &equencies, where
most of the gravitational wave cycles (and hence most of
the sensitivity) come from.

C. Caveats and future work

Since the results in Tables I—III were obtained using
several approximations and simplifying assumptions, we
feel that it is useful to collect the most important of these
in one place. They are as follows.

First, we restricted attention to statistical errors aris-
ing &om detector noise. In practice, theoretical template
waveforms will be quite diKcult to compute accurately
[8, 13]. Hence some systematic error may also arise &om
fitting the data to imperfect template waveforms. Cur-
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rently a large effort is underway in the relativity com-
munity to calculate templates sufficiently accurately that
these systematic errors will be smaller than the statistical
errors due to noise —at least P N and possibly higher
order templates will be required. We note that template
inaccuracies, while giving rise to important systematic
errors in parameter extraction, will not significantly di-
minish our ability to detect the waves [8].

Second, we assumed the "advanced LIGO" noise-curve
shape, for which we have used two estimates: Eq. (2.1)
and Eq. (2.2). As emphasized above, these are only

FIG. 4. A diagram showing the information obtained
from the gravitational wave signal, constraining the individ-
ual masses M& and Mz of the binary components, in vari-
ous cases. Because of the highly accurate measurement of
the chirp mass M in each case, the individual masses are
essentially constrained to lie on a curve of constant M
(MiM2) (Mi + Mq) in the Mi M2 plane. The mea-
sured value of M provides a sharp lower bound for the larger
mass Mi, and a sharp upper bound for the smaller mass Mq,
since the constant-M curves terminate sharply at the forbid-
den, hatched region. The measurement of the reduced mass

IM gives some (but not much) information about where along
the constant M curve the binary is most likely to be located.
In each case, the solid circles show the true values of Mi and
M2, the solid curve denotes the 68'%%uo (1 cr) confidence interval,
and the dashed extension denotes the 95% (2 0) confidence
interval. The detector noise spectrum (2.1) was assumed.

rough estimates of the spectral shape that the LIGO and
VIRGO detectors will actually achieve. We have seen,
however, that our results do not depend very sensitively
on the exact shape of the noise spectrum.

Third, we have used the approximate, linearized error-
estimation formalism described in Sec. II 8 and Appendix
A; the rms errors so calculated are guaranteed to be ac-
curate only in the limit that the errors are small. When
the errors are so large that the linearized approach is
invalid, then our approach will probably generally un-
derestimate the true variances. To avoid the limitations
of the linearized error analysis, we are currently perform-
ing a Monte Carlo simulation of the parameter extraction
process.

Fourth, we calculated the variance-covariance matrix
Z'~ using the simplified model waveform (3.23), which
is qualitatively inaccurate in a number of respects. In
particular, our model waveform depends on the spins of
the two bodies only through a single parameter, P. We

have neglected the spin-induced precession of the orbital
plane, which also arises at P N order, and we have
neglected the effect of the spin-spin coupling on inspiral
rate, which arises at P2N order. We have also neglected
higher-order multipole radiation (except insofar as the
energy carried away by the higher multipoles affects the
inspiral rate), and have only crudely modeled the cutoff
of the waveform during the bodies final tidal-disruption,
plunge, or coalescence. (In particular, we have made no
attempt to model the spin dependence of the cutofF. )

It is unclear to us whether the inadequacies of our
model waveform have led us to underestimate or overesti-
mate parameter-extraction accuracies. On the one hand,
the P N spin-spin interaction term that we have ne-

glected would, if included, inevitably lead to some degra-
dation of parameter-extraction accuracy (as always hap-
pens when there are more parameters to fit for). On the
other hand, it seems clear that the effect on Ap of adding
the spin-spin term to the waveform will be far less dra-
matic than the inclusion of the spin-orbit term P, for two
reasons: (i) as shown by Kidder et at. [41], for the BH-NS
and NS-NS cases, the effect of the spin. -spin term on the
accumulated phase of the waveform is a factor of at least
20 smaller than the effect of the spin-orbit term and (ii)
the correlation coefFicient ~c„pi is so close to 1 because
the frequency dependences of the y, and P terms in the
waveform phase 4'(f) are so similar; the p and spin-spin
terms are less similar in their frequency dependence.

TABLE III. Measurement accuracies, including spins, as in Table II except that we take the

shape of the noise curve to be given by Eq. (2.2).
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-0.99988
-0.9995



49 GRAVITATIONAL WAVES FROM MERGING COMPACT. . . 2673

Finally, by neglecting higher-order multipoles, spin-
precession effects, and the details of the 6nal plunge,
we have effectively thrown away information that would
be contained in the true waveform. In a more complete
analysis, this "additional" information could perhaps de-
crease measurement uncertainties. In particular, if in
some cases the spin-related modulation of the waveform
carries substantial information about P, then it is clear
&om Fig. 2 that Ap and consequently AMq and AM2
could be reduced by large factors. This is an important
possibility which we are currently investigating.

direction of the binary's orbital angular momentum, and
let

v = cosa = L.n, (4.4)

e' = nxL
//n x L[/

(4.5)

so that ~ is the inclination angle of the orbit to the line
of sight. As seen from the Earth, the orbit looks ellipti-
cal, and the principal axes of the ellipse give a preferred
polarization basis e'+, e'" for the waves. Speci6cally, we
de6ne

IU. ACCURACY OF DISTANCE
MEASUREMENTS

A. Overview

I—nxe
//n x e' /f'

(4.6)

In the previous sections we have investigated how accu-
rately the masses of the inspiraling compact objects can
be measured &om the phase evolution of the detected
gravitational waveforms. The other interesting parame-
ters that are measurable Rom the outputs of a network
of detectors are the distance D to the source, and its po-
sition on the sky. These parameters will be encoded in
the amplitudes, phases, and arrival times of the signals
h (t) read out from the detectors. At least three geo-
graphically separated detectors will be needed in order
to determine the distance [6]. We start by describing, in
detail, the dependence of the signals h (t) on the binary's
distance and sky location.

Let x be the position and d be the polarization ten-
sor of the ath detector in a detector network. By po-
larization tensor we mean that tensor d for which the
detector's output is given in terms of the waves' trans-
verse traceless strain tensor h(x, t) by

4(f) = x~( ) ho(f),

where y+(v) = (1+v2)/2, y„(v)= iv, an—d

(4 7)

ho(f) = x~ D—M f exp [i@(f)]
-23

24 (4 8)

for f & 0. The phase 4'(f) is the same as previously
given in Eq. (3.24), and depends only on the parameters
M, p, P, t„and/, .

If we fix a polarization basis e+, e", then we have

where the minus sign is inserted to accord with standard
conventions; the waves propagate in the direction —n.
The preferred basis is e'+ = e' e' —e'„ e'„,e'" =

e„'+e„' |3e'. In terms of this basis, the w

strain tensor is h(t) = h+(t)e'+ + hx (t)e'", where in the
quadrupole-moment approximation the waveforms h+(t)
and hx(t) are as given in, e.g. , Ref. [12]. Taking the
Fourier transform we 6nd

h. (t) = d. : h(x. , t). (4.1) e' = R &(2g) e (4 9)

Here the colon denotes a double contraction. If the arms
of the detector are in the directions of the unit vectors l
and m, then d = (I t —m m)/2 [45].

We introduce a spherical polar coordinate system
(8, y) centered at the Earth so that the axis 8 = 0
is the Earth's axis of rotation. The angle p is longi-
tude and m/2 —8 is North latitude for 8( vr/2. Let
n = (sin8 cosy, sin8 siny, cos8) be the unit vector in
the direction (8, y), and let e+ and e„"be a basis for
the transverse traceless tensors perpendicular to n. If
we demand in the usual way that e:e„=2b, for
A, B = +, x, then this basis is unique up to rotations of
the form

cos(2$) sin(2$) l
q
—sin(2$) cos(2$) y

' (4.10)

The conventional definitions of e+, e" and the corre-
sponding definition of g for a single detector are given in
Refs. [12, 43]. A network of several detectors, however,
determines a different preferred basis e+, e" (see below),
so for the moment we allow the basis to be arbitrary and
define Q via Eq. (4.9). By combining Eqs. (4.1), (4.3),
(4.7), and (4.9) we obtain the signal read out from the
ath detector:

for soine polarization angle g, where R+B is the rotation
matrix

e+ + ie" M e ' ~ (e+ + ie"). (4.2) h-(f) =R"~( 4)X.(v)F. (n)e""-'ho(f), (4.»)
The quantities

F (n) = e„:d , (4.3)

for A = +, x, are the so-called detector beam-pattern
functions for the ath detector [12].

Consider a coalescing binary source in the direction
n. As in Sec. IIIB, let L denote the unit vector in the

where 7. = —n . x [46]. The first three factors in
Eq. (4.11) taken together are proportional to the quantity
Q(8, y, g, i,) that appears in Eqs. (2.12) and (2.20).

Now the overall amplitude A of the signal at one de-
tector can be measured to an accuracy (cf. Sec. II)

(4.12)
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where p = (h ]
h )

~ is the signal-to-noise ratio (SNR)
measured at that detector. Since

Q(~, v, M, ~)
(4.13)

D
we expect the accuracy of distance measurements to be
very roughly AD/D = 1/p, where p2 = P pz is the SNR
(A27), giving an accuracy of 10%%up for typical detected
signals. However from Eq. (4.13) the signal amplitudes
are also strongly affected by the angles 8, y, Q, and most
importantly the inclination angle ~. Hence, there will be
correlations between the measured values of D and of
these angles, and the accuracy of distance measurement
will be reduced relative to the above naive estimate based
on Eq. (4.12).

It is straightforward in principle to calculate the effect
of all the correlations by calculating the Fisher informa-
tion matrix (2.7) from the waveforrn (4.11) for all of the
variables D, n, v, and g together with the variables M,
P„t„p,, and P discussed in Secs. II and III. An analysis
of this sort, but without including the post-Newtonian
parameters p, and P, has been carried out by Jaranowski
and Krolak [15],who numerically calculate the rms error
AD for various different values of the angular variables.
They use the three detector network consisting of the two
LIGO detectors and the VIRGO detector in Pisa, Italy,
with their planned orientations. Although these authors
do not take into account post-Newtonian effects, it seems
likely, for reasons which we discuss below in Sec. IV C and
Appendix C, that their results for AD will not be sen-
sitive to this restriction. Similar numerical calculations
have been carried out by Markovic [9], who assumed the
same network of detectors. He identified a useful ap-
proximation for calculating AD/D, based on identifying
those variables with which the distance measurement is
most strongly correlated, and neglecting the effect of the
much smaller correlations with the other variables.

In Sec. IV C below we present an analytic calculation of
DD/D which simplifies the treatments given in Refs. [9,
15]. Because the rms error AD depends on several an-
gular variables, it is difIicult to explore its behavior over
the whole parameter space using numerical calculations
of the type in Refs. [9, 15]. Here, by using Markovic's ap-
proximation, we derive an approximate analytic expres-
sion for AD, which is valid for any network of detectors.

We also extend the analysis of Refs. [9,15] in the follow-

ing two respects. First, we parametrize the dependence
of the result on the positions and orientations of all of
the detectors in the following useful way. We show that,
for a given position 0, p on the sky, the detector network
parameters influence AD only through (i) the selection
of a preferred polarization basis (e+, e" ) [or equivalently
a preferred polarization angle g(n), cf. Eq. (4.2) above]
and (ii) two quantities oui(n) and e~(n), where we call
o.D(n) the amplitude sensitivity and 1 —sz&(n) the polar-
ization sensitivity [47]. We discuss these "network sensi-
tivity functions" in detail in Sec. IVB below. They are
defined in such a way that the total signal-to-noise ratio
squared (A27) of a detected signal coming &om direction
n with polarization Q is of the form [cf. Eq. (4.26) below]

p oc ore(n) [1+s'ri(n) cos(4$+ const) f(v) ], (4.14)

where the function

(4.15)

is independent of n and g. The values of cr~ and sLi are,
as an example, O.D ——1 and eo ——0 for the case of two
detectors at the same location, rotated with respect to
each other by 45', and for vertically incident waves. In
Figs. 5 and 6 below we show plots of these quantities as
functions of the angles 0 and p, for the three-detector,
LIGO-VIRGO network.

Second, we extend in Sec. IV D the analysis beyond the
linear, Gaussian approximation outlined in Appendix A,
which is normally used to estimate the rms errors. We
do this by calculating the exact (within the Markovic ap-
proximation), non-Gaussian probability distribution for
the distance D which incorporates both our a priori
knowledge and the information obtained from a gravi-
tational wave measurement. This extension becomes im-
portant in two different regimes. The first regime is when
v = cos c —+ 1, corresponding to binaries that we perceive
to be almost face-on. In the limit v ~ 1, the value of AD
predicted by the linear approximation becomes infinite.
As shown by Markovic [9], this is because two of the sig-
nal parameters become degenerate (i.e. , the derivatives
Bh/80' become linearly dependent) as v -+ 1. Markovic

gave rough estimates of the effect of this breakdown of
the linear formalism on the predicted value of AD; the
effect is not treated in the exact numeric calculations of
Ref. [15]. Here, using the non-Gaussian distribution for
D, we obtain an improved approximation to AD near
the points of degeneracy. The second regime where our
non-Gaussian extension of the error-estimation method
is important is the limit of low signal-to-noise, and corre-
spondingly of large relative errors in the measured bi-
nary parameters. Since the Fisher matrix method of
calculating the rms errors in the measured parameters
gives essentially the leading order term in an expansion
in powers of (S/N), this method will be inaccurate at
low values of S/N. By using an approximation which
takes into account the dominant effects that are nonlin-
ear in (S/N), we numerically estimate AD for diiFer-
ent values of the parameters n, v, and g. We show that
the linear estimates for AD are typically off by factors
& 2, even for signal-to-noise ratios of more than twice the
threshold value for detection, due in some cases to large
non-Gaussian tails in the PDF for D. Thus, effects that
are nonlinear in (S/N) are often not a small correction
for typical detected signals.

Finally, in Sec. IV E we apply our nonlinear error esti-
mation method to calculate the distribution of measure-
ment accuracies for the LIGO-VIRGO network, using a
Monte Carlo simulation. We estimate that 8% of the
distance measurements will be accurate to ( 15%, and

60% to & 30%.
Our analyses are applicable to binaries at cosmological

distances, provided we interpret D as the luminosity dis-
tance to the source, and M as (1+z) times the true chirp
mass, where z is the source's redshift [6, 9, 14]. However,
a potentially important effect that we neglect is the spin-
induced modulation of the signal amplitudes discussed
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in Sec. IIIB and Ref. [43]. Hence, our results for 6D
should be regarded as rough estimates (and probably also
as lower limits, since it seems most likely that including
spin efFects in the computation will increase b,D). How-

ever, the tools we develop below will be useful in future,
more complete analyses of distance measurement accura-
cies.

We use throughout this section the notations of Ap-
pendix A.

B. The network functions cro(n) and eo(n)

A~ = R"~(2@)yg( ) '~'/D (4.16)

which are intrinsic to the incident waves, and the detector
amplitudes

The overall SNR (A27) and the Fisher information ma-

trix (A30) are determined by inner products involving the
signal h(t) and its derivatives Bh/88' with respect to the
signal parameters O'. We now show that a large class of
these inner products depends on the network properties
(i.e., the detector positions x and polarization tensors
d ) only through the two functions of sky location, trD {n)
and sD (n). We start by defining the complex amplitudes

First, correlated sources of noise will presumably be lim-
ited to pairs of detectors at the same detector site, so
that the detector-network noise matrix (A3) will have a
block-diagonal form with each block corresponding to a
detector site. If the detectors at each site are all oriented
the same way, as is likely, then the product of beam pat-
tern functions appearing in Eq. (4.22) will be constant
over each block in the indices a, b that corresponds to
a nonzero subblock of the matrix S„(f).Hence, from
Eqs. (4.20) and (4.22), we see that the imaginary part
of O will vanish. Second, if we change the basis e+, e"
by a transformation of the form (4.2), which amounts to
redefining the polarization angle g by

/1+sD Oe=oip
0 1 —s~) ' (4.24)

wh~~~ 0 & sir & 1. This defines the network functions
ai2(n) and ski(n). The required value of Dg = &g(n) is
given by

(4.23)

then O will transform according to Q ~ R(2&g) Q
R(—2hQ). For fixed n, we can by choosing &g suitably
make Q diagonal, and so be of the form

A = ) A~F+(n)
B=+,x

(4.17) tan(4b, g) =
+++ xx

(4.25)

h (f) =A e ' ~k(f) (4.18)

where k(f):—De'4'ho(f) is independent of D and P, .
The inner product of two signals h and h' written in this
way, with amplitude parameters A~ and A&, is given by
Eqs. (4.8), (4.18), and (A7):

(h~h') = Re A"A'i, ~ (k k).

Here the positive de6nite Hermitian matrix r. is

(4.19)

(4.2o)

and S„(f)in the denominator is the average of the spec-
tral noise densities in all the detectors. If the detectors
are all identical, and correlated sources of noise [repre-
sented by the ofF-diagonal elements of S„(f)]are unim-
portant, then e is just b

In terms of the wave amplitudes A~, the inner product
(4.19) is, &om Eq. (4.17),

{h(h') = Re [A~A~0 ] (k k),
where the matrix 0 is given by

0 (n) = ) F {n)Fs {n)K

{4.21)

(4.22)

We see that all inner products of the type (4.19) de-
pend on the network parameters only through the 2 x 2
Hermitian matrix 0. Two key simpli6cations now arise.

which characterize the signals seen at the various detec-
tors. In terms of these quantities, the signal (4.11) can
be written as

The combined SNR (A27) can be determined in terms
of these network functions by combiriiilg Eqs. (4.16),
{4.21), and (4.24) to gjve

p = po aD(n) c()(v) + sD(n) ci(v) cos(4$) (4.26)

where c()(v) = (1+v ) /4+v, ci(v) = (1+v2)'/4 —v' =
(1—v2) 2/4, and g is given by Eqs. (4.23) and (4.25). The
quantity

) 5/6 I' f ) —2/2

r, = 6.5Gpc
IqMo) g70Hz)

( ~ ) -i/2
x

(3 x 10 4ssec) (4.28)

The fiducial values of the detector parameters So and fo
used here are those appropriate for the advanced LICO
detectors [3], cf. Sec. II above. Note that the dependence
of the SNR (4.26) on the polarization angle Q vanishes
when the binary is perceived to be face-on (v = 1), as
we would expect physically due to rotational invariance
about the line of sight. In the opposite limit of edge-on
binaries (v -+ 0), the incident waves are highly linearly
polarized, and the SNR typically depends strongly on g,
varying by factors of 10 or mere as g is varied [see Fig. 6

(4.27)

appearing in Eq. (4.26) is the SNR that would apply
to one detector if a face-on {v = 1) binary were directly
overhead. From Eqs. (4.8) and (4.27), we find po = ro/D,
where for the noise spectrum (2.1) the distance ro is
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2aD = ) (e„),~. (e„)ki ( ) r (d ),~. (d )ki &.
A a, b

(4.29)

If we denote the erst term in curly brackets by S;~I,~, then
it is straightforward to show that

g,,k, = —b;, bki + (b,kb, i + b;ib, k) + (b;, nkni + bkin'nj)

(b,kn,—ni + b;in, nk + b, kn, ni + b~in'nk)

+A, Aj AJg'+)- (4.30)

This yields for the amplitude sensitivity function the for-
mula

o~(n) = 2r [ 2d: db —4n (d db) n

+ (n d n)(n db n) ],
where we have used the property Tr d = 0.

It is similarly straightforward to evaluate the polariza-
tion sensitivity 1 —s~(n). We introduce the notation

(4.31)

below].
We now derive simple formulae for the functions o~

and s~. Prom Eq. (4.24), it is clear that 0~ is just half
of the trace of the matrix O, which is invariant under
rotations. Using Eqs. (4.3) and (4.22) gives

(d- I db) = (da)ii ~ij kl (db) kl

=2d: db —(Trd ) (Trdb ),
where d denotes the projection (b;k —n, nk)(b,
njnl) (da)ki of d perpendicular to n. Then, using the
relation from Eq. (4.24) that Tr Q2 = 2~ (1+ s2 ), and
Eqs. (4.3) and (4.22), gives

(4.32)

(4.33)

d = —sin(2a)(e- e- —e- g e-)j28 8

+ cos(2n) (e& 3 e& + e& e&)/2. (4.35)

The values of (8, y, n) for the various detectors are
(59.4', —90.8', 243') for the LIGO detector in Hanford,
Washington, (43.5', —119.4', 171') for the LIGO detec-

s&(n) = ) (d
~ db)„(d,

~
dd) r. '

abed

(4.34)
We now evaluate o D and cD for the LIGO-VIRGO de-

tector network. Let e„-= n, e& and e& be the usual basis
of orthonormal vectors. Then for a detector at position
0, p on the Earth's surface, such that the angle measured
anticlockwise from the local eastward directed meridian
to the bisector of the detector arms is a, the polarization
tensor is

0.

FIG. 5. The amplitude sensitivity function o.z&(n), as a function of position on the sky parametrized by th
coordinates 8 and p, for the detector network consisting of the two LIGO detectors in Hanford, Washington and Livingston,
Louisiana, and the VIRGO detector in Pisa, Italy. The axis 8 = 0 is the Earth s axis of rotation, and p = 0 is 0 longitude.
Only sky positions over the northern hemisphere are shown, because o.~ takes the same values at antipodal points. The function
o'o(n) has the following meaning: for a source of waves in the direction n, the combined signal-to-noise ratio of the whole
network, averaged over all polarization angles @ of the source (equivalently, averaged over rotations of the source in the plane
perpendicular to the line of sight), will be proportional to oo(n). The thick black lines indicate the positions of the three
detectors. This plot can be generated by combining Eqs. (4.31) and (4.35) of the text with the network parameters given after
Eq. (4.35).
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0. 8

0.

0.

FIG. 6. The polarization sensitivity function 1 —s&(n), for the LIGO-VIRGO detector network; see caption of Fig. 5. This

plot can be generated by combining Eqs. (4.30), (4.32), (4.34), and (4.35) of the text. The quantity eo(n) essentially measures

the "skewness" or asymmetry in the sensitivities of the network to the two independent polarization components of waves

propagating in the direction n. When e~ 0, the network has roughly equal sensitivity to both polarization components.

When e& —l, on the other hand, one polarization component can be measured far more accurately than its orthogonal

counterpart. In this case the signal-to-noise ratio for incident, strongly linearly polarized bursts of waves (e.g. , those from

edge-on coalescing binaries) will depend sensitively on the polarization axis, i.e. , it would vary by large factors if the source

were rotated in the plane perpendicular to the line of sight. Note that the polarization sensitivity is poor (& 0.2) for direction

directly overhead the two LIGO detectors (because the two detectors are nearly parallel), and is typically & 0.3 over most of

the sky. Good sensitivity is achieved in isolated regions.

tor in Livingston, Louisiana, and (46.4', 10.25', 117') for
the VIRGO detector in Pisa, Italy [15]. We assume that
the detectors at all three sites are identical and that
noise sources are uncorrelated, so that f'rom Eq. (4.20),
r = b . The resulting plots of o~ and 1 —s~ are
shown in Figs. 5 and 6.

C. The Markovic approximation

We now explain the approximation method used by
Markovic [9], which we modify slightly below. We start
by considering the accuracy An with which a given
source can be located on the sky. The location n will
be largely determined by "time of Hight" measurements
between the various detectors, i.e., measurements of the
quantities 7. —ws = —n (x —xs) in Eq. (4.11) [6, 15].
Hence, the variables n and v will be strongly correlated,
and An will be largely determined by the ratio of the
timing accuracies b, (7 —rs) to the light travel times be-
tween the various detectors. Schutz [6] has estimated the
resulting angular resolution to be 1 square degree for
typical detected signals, which is roughly in agreement
with the recent detailed coalescing binary calculations of
Jaranowski and Krolak [15]. It is also in rough agree-
ment with numerical simulations of Giirsel and Tinto [7],
which were carried out in the context of arbitrary bursts

of gravitational waves. Hence, we see from Eq. (4.11)
that typical variations in n will give rise to variations in

the measured value of D that are small compared to AD.
Thus, the correlations between D and n should be small,

and to a good approximation we can treat n as known
when calculating AD [9].

In the approximation that n is constant, we can divide
the remaining parameters into two groups. The first con-
sists of the four "amplitude" parameters D, v, Q, and P„
which determine the two complex amplitudes A+ and A &&

via Eq. (4.16). The second group of parameters consists
of M, t„p,together with some spin parameters, which
enter only in the phase @(f) of the Fourier transform of
the signal, and control the evolution in time of the phase
of the waveform [48]. In Appendix C we show that the
second group of parameters decouples &om the first to
linear order in I/p, and in the constant n approxima-
tion. More precisely: if one calculates the Fisher matrix
(A30) for all of the variables except n, inverts it to obtain
the covariance matrix Z'~, and takes the 4 x 4 subblock of
Z'& corresponding to the amplitude group of parameters,
then the result is the same as if one computes the Fisher
matrix for just the four amplitude parameters alone, and
then inverts that. Heuristically what this means is that
the effect of the correlations between (D, v, @) and all
of the parameters P„t„M,etc. , can be computed by
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considering the correlations with just one phase variable,
namely, P„the orbital phase at coalescence [48].

We now calculate the Fisher information matrix (A30)
for the four amplitude parameters D, v, g, and P„and
for an arbitrary detector network, as this should yield
a good approximation to AD. The approximation that
was used in Ref. [9] was in fact to consider only D, v,
and g; below we find [cf. Eqs. (4.37) and (4.39)] that the
fractional corrections due to also including P, are of order
SD (n) sin(4$), where g is given by Eqs. (4.23) and (4.25).
Since 0 & eD & 1 always, the &actional corrections are
always & 1 [49].

From Eq. (A30), it is clear that the Fisher matrices
calculated using two different sets of variables are sim-

ply related by transforining with the Jacobian matrix
of the variable transformation. Hence, we can use any
convenient set of variables to evaluate I';j and Z'~, and
afterward transform to the physical variables of interest.
We define the variables n and P by

1 I'

i,p) D q(1+v')/2) ' (4.36)

The waveform (4.11) depends linearly on these variables,
which simplifies the computation.

Using Eqs. (4.16) —(4.18), (4.21), (4.24), (4.27), (A30),
and the relation pp = ro/D, we obtain

I',, = r02 oui(n) [Il,, +SD(n) G,, ], (4.37)

4co 0
0 1
0 0

—4nP 0

0 —4o.P
0 0
1 0
0 cp

(4.38)

—4cic4 2ns4 —2P84 0
2n84 —c4 0 —Ps4
2P84 0 c4 cx84

0 —Ps4 cxs4 cic4

(4.39)

Inverting the matrix (4.37) and taking the 2 x 2 subblock
corresponding to the variables n, p, we find with the help
of MATHEMATICA that

pij 1

r,'0~ (1 —s2~)

1 + EDC4
0 1 —E'~ C4

(4.40)

Finally, transforming this with the 3acobian of the trans-
formation (4.36) and taking the (D, D) element of the
resulting matrix yields

AD =
2 T(n, v, g),

ng Po

where

(4.41)

ns [(1+v ) —SD cos(4$) (1 —v )]T(n, v, g)
2oLi (1 —82~) (1 —v2)2

(4.42)

where the variables are 8' = (Q, o. , P, P,). Defining co ——

n + P, ci ——P —a, c4 ——cos(4$), and 84 ——sin(4$),
the matrices F and G are given by

and ng is the number of detectors. The dimensionless
function T satisfies

T(n, v, g) & 1, (4.43)

since from Eqs. (4.31), (4.33), and (4.24) it follows that
oD & ng/2 and 0 & ski & 1 always, for any detector
network.

Equation (4.41) is the main result of this subsection.
We now discuss its properties and range of applica-
bility. It clearly breaks down and overestimates AD
when v ~ 1. As shown by Markovic, this is because
Bh/cjD oc Bh//Bv at v = 1, so that the linear error-
estimation method breaks down. However, it will under-
estimate the true measurement error for sufficiently small
values of the SNR p, because of the inadequacy of the
linear error-estimation formalism in this regime (cf. Ap-

pendix A). In Sec. IVD below we numerically calculate
more accurate values of AD/D, and show that even for
small values of v, and even for relatively large values of p
(e.g. , p & 20, more than twice the threshold), the results
predicted by the formula (4.41) can be off by factors & 2.

Hence, the formula (4.41) is of only limited applicabil-
ity. Its main virtue is that it allows one to understand
qualitatively how the distance measurement accuracy is
influenced by the parameters OD, s~, g, and (to a more
limited extent) v; and thereby by using Figs. 5 and 6
how it varies with sky location n. We now discuss the
dependence of AD/D on these parameters.

As the polarization angle g is varied, it can be seen
that

T;„(n,v) & T(n, v, Q) & T „(n,v), (4.44)

where T;„and T „are given by substituting
cos(4$) = kl in Eq. (4.42). As an illustration, Figs. 7
and 8 show T;„andT „asfunctions of n at v = 1/+2.
It can be seen that the distance measurement accuracy
can vary over the sky by factors of order 20, for binaries
at a fixed distance and with fixed inclination angle. The
reason for this strong variation of more than an order of
magnitude is easy to understand. A key feature of the
result (4.42) is the factor of 1/(1 —si ), which diverges

in the limit rD ~ 1. This divergence is not an artifact of
our approximate, linear error-estimation method (unlike

the divergence in T at v -+ 1). The physical reason for

the divergence as eo ~ 1 is that for directions n such

that 1 —SLi(n) « 1, the detector network has very poor
ability to disentangle the two polarization components of
the incident waves, both of which are needed in order to
determine D. As shown in Fig. 6, there are large regions
on the sky in which the polarization sensitivity 1 —r~ of
the LIGO-VIRGO network is poor, which correspond to
the regions of high AD/D in Figs. 7 and 8 [50].

Part of the reason for the low values of 1 —eD for the
LIGO-VIRGO network is that the two LIGO detectors
are nearly parallel, so that they access essentially a single

polarization component of the gravitational wave field.

(They were chosen in this way in order to enhance the
reliability of detection of burst sources. ) The addition
of a fourth detector would greatly improve the polariza-
tion sensitivity of the network. In Fig. 9 we plot that
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FIG. 7. The dependence of the distance
measurement accuracy b D/D on the sky lo-
cation n, the polarization angle g, and the
cosine v of the angle of inclination of the orbit
to the line of sight is approximately given by
ED/D oc T(n, v, vP), where the dimensionless
function T is de6ned in Eq. (4.42). Here we
plot for the LIGO-VIRGO detector network
the quantity T „obtained by maximizing
T over all polarization angles Q, at v = 1/2,
as a function of 8 and y. Higher values of T
indicated by regions of lighter shading corre-
spond to poorer measurement accuracy.
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CO8 e
0. 8

fraction O(s~)/4z of the sky in which the polarization
sensitivity is ( 1 —s~, for the LIGO-VIRGO network.
We also as an illustration plot the same quantity for a hy-
pothetical four-detector network consisting of the LIGO
and VIRGO detectors together with a detector in Perth,
Australia, whose parameters [cf. Eq. (4.35) above] are
assumed to be (8, p, n) = (121', 116',90').

The quantity T(n, v, Q) shown in Figs. 7 and 8 gives
distance-measurement accuracy as a function of Earth-
fized coordinates (8, io). The distance-measurement ac-
curacy for coalescing binaries at a given right ascension
and declination, averaged over many sources with differ-
ent arrival times, will clearly be given by the average over

y of T (due to the Earth's rotation). Values of this aver-
aged accuracy in the band 0.15 (

i
cos 8i + 0.65 are typi-

cally a factor of 2 better than those outside this band,
over the poles and near the celestial equator. Similarly,
the average over y of 1/O'D(8, &p) is roughly proportional
to the average maximum distance to which sources can
be seen at a given declination; it does not vary by more
than 20%. Note that the distribution of sources on the
sky is expected to be approximately isotropic because the
large distance () 200 Mpc) to typical coalescences.

Lower bounds for b,D/D can be obtained by combin-
ing Eqs. (4.27), (4.41), and (4.42) and minimizing over
n, v, and @. If we define

20

15

8

3

0

10 FIG. 8. The quantity T;„which is ob-
tained by minimizing T(n, v, g) over @, at
v = 1/2; see caption of Fig. 7.

Cos 8
0. 8
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FIG. 9. The quantity A(ro), which is the solid angle on
the sky for which the polarization sensitivity is less than
1 —cD, for two different detector networks. The solid line indi-
cates the LIGO-VIRGO detector network, and the dashed line
a four-detector network consisting of the LIGO and VIRGO
detectors together with a hypothetical detector in Perth, Aus-

tralia. These plots were generated using 1000 randomly cho-
sen directions n. The great improvement in polarization sen-

sitivity due to the additional detector is apparent: e.g. , the
polarization sensitivity is & 0.25 over 6070 of the sky for
the three-detector network, but on}y over 20 Jo of the sky
for the four-detector network.

AA, which is exact because the signal depends linearly
on these amplitudes (see subsection A6 of Appendix A
below). Substituting Eq. (4.16) into this PDF then yields
the exact, non-Gaussian distribution for the parameters
D, v, g, and P„where we mean "exact" in the context
of the Markovic approximation An = 0. From this non-
Gaussian distribution, values of AD can be determined
which are more accurate than those given by Eq. (4.41)
in the regime v ~ 1 and for low signal-to-noise ratios.

In this subsection we calculate so-called Bayesian er-
rors instead of &equentist errors. The distinction is care-
fully explained in Appendix A2. The distinction is im-
portant only beyond leading order in I/p, and hence
unimportant elsewhere in this paper. In practical terms,
the use of Bayesian errors means that the rms errors will
be expressed as functions of the measured, best-6t values
for the source parameters, instead of their true values.

By using Eqs. (4.19) and (4.27) one finds that the ex-
ponential factor in Eq. (A10), given a gravitational wave
measurement, is proportional to

r2
exp ——' (A. —A. )*(Ab —Ab) K' . (4.50)

Here the quantities A are the amplitudes that we mea-
sure at each detector (by using matched filtering). The
corresponding PDF for the intrinsic amplitudes A~ is,
from Eqs. (4.17) and (A10),

r2
x exp ——' (A„—A„)*(A~—Agg) 0"~

2

+max = max &D(ii)
n

= 1.04 (for I IGO-VIRGO),

we obtain the following lower bounds on AD/D:

(4.45)

(4 46)

Ag = (0 ')g~I" Ab K

(4.51)

(4.52)

AD 2 D)
i/o'max ro

'

AD 1

D p

(4.47)

(4.48)

p( /2o
D (4.49)

together with the upper bound for the overall SNR p,

Here pI l(A~) is our a priori PDF for the amplitude pa-
rameters, and A is a normalization constant.

As an aside, Eq. (4.52) provides us with the maximum-
P

likelihood estimator D (in the constant n approximation)
of the distance to the binary in terms of the measured
amplitudes A . This is because Eq. (4.16), reexpressed in
terms of careted quantities, may be inverted to determine
D in terms of the Ag's:

These bounds remain roughly valid when eKects that are
nonlinear in ro/D are approximately taken into account
(cf. Figs. 13—17 below).

/3—
D=

P2 d2
(4.53)

D. Extension of analysis to beyond
the Gaussian approximation

where [cf. Eq. (4.36) above]

~' = —,
' IA+I'+ IA I' —IA++A'I (4.54)

As explained in Appendix A, the Fisher matrix ap-
proach to calculating the probability distribution func-
tion (PDF) for the measured parameters is an approxi-
mation whose validity depends in part on the particular
set of variables one uses to evaluate the Fisher matrix. In
particular, the approximation works best for parameters
on which the signal h(t) depends linearly The key idea.
for dealing with the degeneracy limit v —+ 1 is to calculate
the Gaussian probability distribution for the amplitudes

IA+I'+ IA I'+ IA++A'
I

. (4.55)

The PDF pI I(A~) in Eq. (4.51) represents our a pri
ori information about the distribution of the parame-
ters A~ [or equivalently from Eq. (4.16) of the param-
eters (D, v, @, P, ) ], given that a signal has been de-
tected. Since we expect sources to be uniformly dis-
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d p oc dg dP, e(1 —v ) dv

x O(D) e(D „—D) D dD. (4.56)

tributed in orientation and in space (on the relevant
scales of + 100Mpc), we take

Dp 1 + s'D cos(4vPO)

rp oui(1 —s2D)

Dp 1 —eD cos(41IO)
o.ii (I —s D2)

(4.58a)

(4.58b)

Here 0 is the step function, and the cutoff for distances
greater than D

„
is a (somewhat crude) representation

of our knowledge that very distant sources would not
have been detected. A suitable choice for D

„
is the

distance ro, cf. Eqs. (4.26) and (4.28) above. Our results
below are insensitive to the exact location of this cutoff,
but it must be included to make the PDF (4.51) formally
normalizable. Now let Dp, vp, Qp, and P,o be the pa-
rameters obtained from the amplitudes A~ by inverting
Eq. (4.16), so that, in particular, Do ——D Sub. stituting
Eqs. (4.16) and (4.56) into (4.51) yields a non-Gaussian
PDF for the variables (D, v, g, P, ) which depends on
the parameters (Dp, vo, 1Pp, P p). From this PDF it is
straightforward in principle to calculate 6D, by first in-
tegrating over v, Q, and P, to determine the reduced PDF
p(D) for D alone. If one first expands the argument of
the exponential to second order in the quantities D —Dp,
v —vp, 1' —'i/0, and P, —P,o, the result obtained is just
Eq. (4.41) above, which is accurate to linear order in I/p.

Thus, in order to go beyond this linear approximation,
one has to integrate the PDF (4.51) over v, g, and P, .
Because this is difEcult to do exactly, we now make an ap-
proximation which treats the correlations between D and
(g, P, ) to linear order in 1/p, but treats more precisely
the strong correlations between D and v. This approx-
imation should give rough estimates of effects that are
nonlinear in I/p, and moreover removes the singularity
in our previous result (4.41) at v = 1. The approximation
consists of expanding the argument of the exponential in
Eq. (4.51) to second order in Q —go and P, —P,o, and
integrating over g and P, . One then obtains a function
of v, D, vo Dp, and $0, the dependence on P,o drops
out. This function is of the form (prefactor) x (expo-
nential factor). The prefactor depends only weakly on D
and v in comparison to the exponential factor, so we can
approximate it to be constant [52]. We then obtain the
following PDF, which may also be obtained by substi-
tuting the transformation (4.36) into the Gaussian PDF
for the variables n, P that corresponds to the variance-
covariance matrix (4.40).

The result is, in terms of the rescaled distance B =
D/Dp,

1 v
dp(v, D) = lV'D exp — ——vo262

1 1+~ 1+~o2
2A222' 2

xO(D)O(D /Do —'D)O(1 —v )dvdD.

(4.57)

Here 0 is the step function, A is a normalization con-
stant,

and Qo ——Qo + A@(n) [cf. Eq. (4.25) above]. In terms of
these quantities, the previous, approximate result (4.41)
1s

AD 2/v0262i + b, 2z

Dp 1 —v02
(4.59)

From the PDF (4.57) one can numerically calculate the
reduced PDF for D alone,

1

p(D) = dv p(v, D),
—1

(4.60)

and thereby determine AD. As an example we show
in Fig. 10 a plot of p(D) for a particular choice of the
parameters Dp, vp, 'I'Pp, and for a particular direction on
the sky. The non-Gaussian fall off in this figure at large
values of D is a general feature, although its magnitude
in this example is larger than is typical. It can be seen
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FIG. 10. An example illustrating the necessity of going
beyond the Gaussian approximation. Consider a neutron-
star —neutron-star binary merger in the direction given by
(0, y) = (50', 276'). The LIGO-VIRGO network parameters
for this direction are cr~ ——1.03 and cD ——0.74. Suppose that
an experimenter determines from the measured signal the fol-
lowing "best-fit" (maximum-likelihood) parameters: distance
Do ——432Mpc [corresponding to a signal-to-noise ratio of
p = 12.8, assuming the advanced detector sensitivity level
(2.1)], masses Mq ——Mz ——1.4MO, cosine of inclination angle
vo ——0.31, aud polarization angle @0 = 56.5'. Then the dis-
tribution that she would infer by a Bayesian analysis for the
distance to the source is shown by the solid curve; it is given
by Eqs. (4.57), (4.60), aud (4.28) of the text. The Gaussian
approximation [Eq. (4.41) of the text] to this distribution is
shown by the dashed curve. The distance measurement ac-
curacy is atypically poor in this example; see Fig. 16 below.
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that the distance measurement accuracy is a factor of
2 worse than that predicted by Eq. (4.41).
Now &om Fig. 10 it can be seen that the value of

D which maximizes p(D) is not the same as Do, i.e. ,
the D component of the point (vp, Dp) which maximizes

p(v, D). Hence, the "maximum-likelihood" method for
estimating signal parameters is ambiguous —the results
obtained for one variable depend on whether or not other
variables are integrated out before the maximum is taken.
As explained in Appendix A, we advocate as the "best-
6t" value of D the expected value

I
i

I I I ( I ( (
]

I

/
/

/

(D) = fD p(D)dD= f Dp(v, D)dvdD (4.61)

instead of the maximum-likelihood estimate Do.
(Maximum-likelihood estimation will need to be used,
however, to obtain initial estimates of the signal param-
eters. ) Correspondingly, to estimate distance measure-
ment errors we use the quantity

D (27)
(4.62)

This can be calculated numerically &om Eqs. (4.57) and
(4.60), and in general will depend in a complicated way
on the parameters Az, A2, and vo, and very weakly on
the rescaled cutoK D „/Do. For the binary merger ex-
ample of Fig. 10, we show in Fig. 11 how the accuracy
(4.62) varies with vo, and in Fig. 12 how it varies (through
the parameters AI and A2) with the distance Do

The merger of a BH-NS binary of masses 10Mo and
1.4MO would produce a signal whose amplitude is 2.11
times stronger than the NS-NS merger of Fig. 12 [from
Eq. (4.28) above]. Hence, taking also into account a cos-
mological enhancement factor of (1+ z) / [9], a plot of

) ( I
/

I 'l f
~

( I I g/ I I

I

03—

() —--
0 0.2 0.4 0.6 0.8

FIG. 11. The solid line shows the distance measurement
accuracy b,D/D for the binary merger discussed in the cap-
tion of Fig. 10 (for which Ah ——Q. 1Q, A2 —0.057), as a
function of the cosine of the angle of inclination, vo. The
improvement in accuracy at high values of vo is due in part
to an increased signal-to-noise ratio there. The dashed curve
shows the prediction (4.41) of the linear error-estimation the-
ory, which diverges as vo ~ 1.

I

0 200 400

D (Mpc)
600 800

FIG. 12. The distance measurement accuracies that result
from displacing along the line of sight to the Earth, to various
distances Do, the binary merger of Fig. 10. As in Fig. 11, the
dashed curve shows the approximate linear estimate (4.41),
and the solid curve shows the more accurate estimate (4.62).
The curves terminate at that distance ( 700Mpc) beyond
which the merger is no longer visible, assuming the detector
sensitivity level (2.1) and a combined signal-to-noise threshold
of 8.5.

DD/D versus Do for a BH-NS binary otherwise the same
as the binary in Fig. 10 would look roughly the same as
Fig. 12, but rescaled to extend to luminosity distances

2 Gpc (the exact value depending on the cosmological
model) [9].

E. Simulation of what the LIGO-VIRGO
network will measure

In order to explore more completely the distance
measurement accuracy (4.62) over the whole parame-
ter space, we carried out the following Monte Carlo
calculation. Random values of Dp, vp, Qp, 8, and

were chosen, distributed according to the measure
dD(') dv() dgsdcos8dy. Those parameter choices for
which the combined SNR (4.27) (for NS-NS binaries)
was less than the threshold of 8.5 were discarded, and
samples were generated until 1000 NS-NS signals had
been "detected. " Because of this thresholding procedure
(which roughly corresponds to the actual thresolding pro-
cedure that will be used), the distribution of values of
Do, eo, etc. , for detected events will not be given by
dDO dvo ChPD dcos8dp. For example, there is a signifi-
cant bias in detected events toward high values of eo,
i.e., toward face-on binaries.

Scatterplots of the distances Do, signal-to-noise ratios
p, and distance measurement accuracies (4.62) for these
randomly generated data points are shown in Figs. 13—
15. We used the LIGO-VIRGO network functions shown
in Figs. 5 and 6. Figures 13—15 give some idea of the
potential capability of the LIGO-VIRGO network. The
distance scale in these graphs is determined by the de-
tector sensitivity level (2.1) that we have assumed, which
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FIG. 13. The distances Do for 1000 NS-NS binaries whose

locations and orientations were randomly chosen, and the cor-

responding predicted signal-to-noise ratios p for the I IGO-
VIRGO network. The lower dashed line is the signal-to-noise

threshold of 8.5, below which sample points were discarded;
the upper dashed line shows the maximum possible value

(4.49) of p st a given distance. Six points with p between 50

and 90 are not shown. The number of sources with p larger
than a given value p is proportional to p, . The detection of
this many binary inspirals with the advanced LIGO-VIRGO
detectors would take several years, if merger rates are as cur-

rently estimated [1,2], and assuming the detector sensitivity
level (2.1).

FIG. 15. Distance measurement accuracy versus signal to
noise for the same 1000 NS-NS binaries; see caption of Fig. 13.
The dashed line shows the theoretical lower bound (4.48). As
in Fig. 13, six points with p between 50 and 90 are not shown.

is uncertain to within a factor of 2. The distance scale
would also be 2 to 3 times larger for NS-BH binaries,
as mentioned above. By contrast, the distribution of
measurement accuracies, which we show in Fig. 16, is
independent of the scale of the detector noise This fi. g-
ure shows that the measurement accuracy will be better
than 30% for over half of the detected sources.

A relatively large fraction, about 1/5, of detected
events have poor (& 50%) measurement accuracies. This
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FIG. 14. The distance measurement accuracy AD/D

computed from Eq. (4.62) for the same 1000 NS-NS bina-
ries, versus the distance Do,. see caption of Fig. 13. The
spread in the values of d,D/D is due to difFerent source di-
rections and orientations. Note that the accuracy for sources
within 200Mpc (of which there are estimated to be 3 per
year [1, 2]) can vary between 2% snd 25'%%uo. For the
most distant detectable sources (at ~ 1200Mpc), the accu-
racy can sometimes be as good as 20/0. The dashed line
shows the theoretical lower bound (4.47) derived using the lin-
ear error-estimation formalism; points below this line mostly
have values of vo close to one for which value the linear error-
estimation theory fails.

0 r

0 0.5
hD/D

FIG. 16. The frequency of occurrence of different ranges
of D / DoDut of a total of 1000 signals, for the LIGO-VIRGO
detector network. It can be seen that 8% of detected sig-
nals will have distance measurement accuracies of better than
15+0, while 60% of them will have accuracies of better than
3070. These conclusions are insensitive to the overall scale of
the detectors' intrinsic noise, which essentially sets the event-
detection rate. By contrast, they are sensitive to the number
of detectors in the detector network, and to their orientations;
see text and also Fig. 9.
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FIG. 17. Distance measurement accuracy versus the de-
tector network polarization sensitivity 1 —r&(n), for 1000
NS-NS binaries; see caption of Fig. 13. The strong correla-
tion between very poor distance-measurement accuracy and
low polarization sensitivity is evident —essentially all points
with AD/D ) 0.5 have 1 —eD & 0.2.

V. CONCLUSIONS

Modulo the caveats in Sec. IIIC, we have con6rmed
the general conclusion that one can measure the binary's
chirp mass M with rather astonishing accuracy. While
our estimates of AM/M are a factor of 20 greater
than those obtained from the less accurate Newtonian
analysis [14,15], we have found that AM/M should still
be 0.01%—1% for typical measurements.

We have investigated the idea that detailed phase in-
formation might also allow accurate determination of the

is primarily due to the effect discussed in Sec. IV C: low
values of the detector network polarization sensitivity
1 —s'D(n) over much of the sky. The efFect of the polar-
ization sensitivity can be clearly seen in Fig. 17, which
is a scatterplot of polarization sensitivity versus distance
measurement accuracy.

Finally, we emphasize that our results should be re-
garded as fairly rough estimates, because we have ne-
glected the following efFects: (i) The spin-related mod-
ulation of the amplitudes A~ mentioned in Sec. IVA
and discussed in Ref. [43]; (ii) the correlations between
the variables D, v and g, P„except to linear order in

1/p; and (iii) the correlations between the parameters
D, v, g, P, and the "phase parameters" M, p, Ig. As dis-
cussed above, we show in Appendix C that these corre-
lations vanish to linear order in 1/p, but there will be
some correlation effects at higher order. Despite these
neglected effects, we feel that the approximation method
that we have used based on Eqs. (4.57) and (4.60) gives
results that are considerably more accurate than previous
linear treatments [as summarized by Eq. (4.41)], because
the dominant correlations at linear order in 1/p are those
between D and v, and we have treated these correlations
exactly.

binary's reduced mass p. A calculation that neglected the
effects of the bodies' spins on the waveform suggested
that p might typically be measured to within 1%.
However a more complete analysis showed that errors
in p can be substantially masked by compensating errors
in the spin parameter P. Including the correlations with

P, we estimated that Ap/p = 10% for low-mass (NS-NS)
binaries and that Ap/p 50% for high-mass (BH-BH)
binaries. Moreover, AMq/Mq and AM2/M2 are gener-
ally much greater than Ap/p, unless Mq/M2 )) 1 (BH-NS
case .

These results are somewhat disappointing; it would
have been more exciting to 6nd that post-Newtonian
effects allow both masses to be determined to within
a few percent. In this regard, however, it is useful to
keep two points in mind. First, since typical measure-
ments will have S/X = 10, one should detect events with
S/X ) 50 roughly 1% of the time. For the advanced-
detector noise curve (2.1), and assuming the coalescence
rates estimated in Ref. [2], such strong events should be
seen once per year for NS-NS binaries, and several
times per year for NS-BH and BH-BH binaries [22]. For
these strongest sources, measurement errors will be a fac-
tor of 5 lower than their typical values. Second, the
measurement-derived PDF on the parameter space con-
strains the values of Mq, M2, and P much more strongly
than is indicated by their individual variances, as illus-
trated in Fig. 3 above. The large rms errors are due
to correlations between the measured parameters; cer-
tain linear combinations of the parameters (eigenvectors
of the covariance matrix) are determined with high ac-
curacy [40]. This may be useful when combined with
information obtained by other means.

With regard to potential accuracy of distance measure-
ments, our key conclusions are the following.

(i) We have confirmed the general conclusion reached
previously [15, 9] that correlations between the distance
D and other angular variables (primarily the angle of in-

clination of the binaries orbit) will reduce AD by a fac-
tor of typically 2 or 3 from the naive estimate AD/D =
1/(signal-to-noise); see Fig. 15 above.

(ii) Distance measurement accuracy will depend
strongly on the direction toward the source relative to
the detectors, as shown in Figs. 7 and 8. This is because
of the different polarization sensitivities of the detector
network in different directions, and the fact that the corn-
plex amplitudes of both polarization components of the
incident waves are needed in order to determine the dis-
tance. The polarization sensitivity of the I IGO-VIRGO
network is somewhat poor in this regard (because the two
LIGO detectors are almost parallel); it would be substan-
tially improved by the addition of a fourth detector. This
provides additional motivation for the construction of ad-
ditional interferometers around the world, which would
also improve the angular accuracy of sky-location mea-
surements [7].

(iii) Previous estimates of distance measurement er-
rors have been accurate only to linear order in 1/D. Our
results indicate that this linear approximation will be
inadequate for typical detected signals, so that the incor-
poration of nonlinear efFects will be necessary in order
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to accurately ascertain measurement errors (and also to
accurately estimate the distances themselves; see subsec-
tion A3 of Appendix A).

(iv) We have carried out a Monte Carlo simulation of
distance measurement accuracies for a large number of
randomly chosen sources, using a method of calculation
which roughly estimates the nonlinear eKects, and incor-
porating the amplitude sensitivity and polarization sensi-
tivity of the LIGO-VIRGO detector network. Our results
suggest that 8'%%uo of measured distances will be accurate
to better than 15'%%uo, and that 60% of them will be
accurate to better than 30%%uo.
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the number of detectors, and s (t) is the strain ampli-
tude read out &om the ath detector. There will be two
contributions to the detector output s(t) —the intrinsic
detector noise n(t) (a vector random process), and the
true gravitational wave signal h(t) (if present):

s(t) = h(t) + n(t). (Al)

We assume that the signal is a burst of known form,
but depending on several unknown parameters 8
(8, . . . , 8"), so that h(t) = h(t; 8). Thus, we do not
consider the cases of periodic or stochastic waves [12].
We also assume for simplicity that the detector noise is
stationary and Gaussian. For the LIGO and VIRGO de-
tectors, the stationarity assumption is justified for the
analysis of short, burst waves [27]. However, the actual
noise may have important non-Gaussian components, the
implications of which for the purposes of signal detection
thresholds and data analysis are not yet fully understood.
We do not deal with this issue here.

With these assumptions, the statistical properties
of the detector noises can be described by the auto-
correlation matrix

& (&) ~=(s (&+&)»(&)) —(so(&+&)) (»(t))
= ( -(t+ ) (t)) —( -(t+ )) ( (t)) (A2)

where the angular brackets mean an ensemble average or
a time average. The Fourier transform of the correlation
matrix, multiplied by two, is the power spectral density
matrix:

APPENDIX A: ESTIMATION
OF SICNAL PARAMETERS 1 (f) s = 2j dv e' '~ C (7)~„(A3)

In this appendix we review some aspects of the statis-
tical theory of estimation of signal parameters as applied
to gravitational wave astronomy. This subject has been
concisely summarized in Appendix A of Ref. [27], and
has recently been treated in detail by Finn [26]. Hence
in many places we merely write down the key results,
without proof, in order to establish notation and equa-
tions for use in the text. However, we also present some
extensions to the formalism developed by Finn [26]: We
carefully distinguish between Bayesian and frequentist
estimates of errors, and discuss the validity of these two
methods of error calculation. We show that maximum-
likelihood parameter estimation, while useful, is not the
optimal data-processing strategy, and, following Davis
[53), suggest the use of the so-called Hayes estimator. We
derive an expression for the minimum signal-to-noise ra-
tio (S/N);„necessary in order that the usual Gaussian
approximation for estimation of measurement accuracy
be valid, and explain how to treat degenerate points in
parameter space at which the Gaussian approximation
breaks down. Finally we give a discussion of the e8'ects
of including a priori information, which corrects the cor-
responding material in Ref. [26].

1. Basic formulas

The output of a network of detectors can be repre-
sented as a vector s(t) = (si{t),. . . , s, (t)), where n~ is

This satisfies the formal equation

( -(f) (f')*) = -'~(f —f')S-(f)-
or more generally and precisely

exp i dtw t nt

{A4)

1= exp —— d wt S„w, A5
2 p

for any sufficiently well-behaved test functions ur (t).
Here tildes denote Fourier transforms, according to the
convention that

h(f) = j e' ~'h(t)dt.

We note that there are two di8'erent commonly used def-
initions of power spectral density in the literature. The
above convention is used in Refs. [3, 12, 26, 35, 44]. The
alternative convention is to use a spectral noise density
defined by S (f) = S (f)j2, as used in Refs. [21, 27,
54—56].

The Gaussian random process n(t) determines a nat-
ural inner product (. . . ~. . .) and associated distance or
norm on the space of functions h(t). As discussed in
Sec. IIB, this is de6ned so that the probability that the
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(g~h)
—= 4Re df g (f)* Is (f) '] hg(f

noise takes a specific value no(t) is

p[n = n, ] ~ e-&"'~"'&~',

and it is given by [28]

(A6)

61]. The following discussion is based on that of Loredo
[52].

In the frequentist approach, one first specifies the al-
gorithm the experimenters should use to determine the
"best-fit" values 0 of the parameters 0 kom the gravita-
tional wave measurement s:

0 = 0(s).
lt also satisfies the equation [26]

( (n~g) (n~h) ) = (g~h), (A8)

s(t) = h(t; 0) + n(t).

The central quantity of interest is then the probability
distribution function (PDF) for 0 given the output s(t).
As Finn has shown [26], this is given by

for any functions g and h.
In this paper we are interested only in the estimation

of signal parameters once a gravitational wave burst has
been detected. Thus, we suppose that we have measured
some detector output s(t), and that it satisfies the appro-
priate criterion for us to conclude that it contains a signal
of the form h(t; 0) for some unknown set of parameters
0:

b' = (0') —0'

0'p(0~0) d0 —0', (A12)

/l.

gives the "bias" b' of the estimator 0(s). The diagonal

elements of the expected value of (0* —0') (0~ —0~) char-
acterize the measurement error. More specifically, we

define

Z*„'., = K'„'.[0;0( )]

This is also called a statistic or estimator. Next, one
assumes that Eq. (A9) holds for some value of 0, and

by substituting this equation into Eq. (All), and using

Eq. (A6), one derives the PDF p(0 ~0) for 0 given 8. Then

the expected value with respect to this PDF of 0' —0',

p[0
~
s, detection] = Af p l(0) e

(A10)

0' h 0 + n —0' 0~ h 0 + n —0'

(A13)

Here A = JV(s) is a normalization constant, and piol(0)
is the PDF that represents our a priori knowledge.

2. Two types of measurement accuracy

We now discuss how to characterize the accuracy of
measurement of the parameters 0. Normally statisti-
cal "1o" experimental errors are defined operationally
in terms of the average of the actual errors over an en-
semble of repeated identical measurements (which cor-
responds mathematically to the width of an appropriate
PDF). Now in practice one cannot repeat or duplicate
a given gravitational wave measurement, but in princi-
ple one can do so by waiting a suKciently long time and
throwing away all detected signals that do not match the
original one. In this manner one can operationally define
an ensemble of "identical" measurements. The notion
of error which results then depends in a crucial way on
what is meant by "identical. " One can either demand
that the signals h(t) incident on the detectors be iden-
tical and consider the resulting spread in the values of
the detector outputs s(t) given by Eq. (A9), or demand
that the detector outputs s(t) be identical and consider
the resulting spread in the values of the incident signals
h(t). The two notions of error which result can be called
Bayesian errors and frequentist errors, adopting the ter-
minology from common usage in a more general context
[52]. We now discuss in more detail the definition and
meaning of these two types of error, in order to clarify
the relationship between our method of calculating mea-
surement error and previous work in this area [26, 27, 15.

Here the notation on the first line indicates that Zf pq de-

pends on the functional form of the estimator 0 as well as
the assumed signal parameters 0, and the angular brack-
ets on the second line denote expectation value with re-
spect to the noise n. The matrix (A13) is a measure of
parameter-extraction accuracy that includes the efI'ect of
the bias, since

Er,', = (b0" b0') + b'b', (A14)

where b0' =—0* —(0').
The physical meaning of the quantity (A13) is the fol-

lowing. Suppose that a large number of identical gravi-
tational wave trains, described by the parameter values
8, impinge on the detector network. For each measured
signal, the experimenters calculate using the algorithm
0 the best-fit values of the source parameters. Then the
rms average deviation of these best-fit values kom the
true value 0 is given by Eq. (A13). Moreover, the usual
method of implementing a Monte Carlo simulation of the
measurement process would also predict errors given by
(A13) [61].

In the frequentist Inethod, one focuses attention on a
particular incident signal h(t; 0), and considers diff'erent
possible measured detector outputs s(t). By contrast, in
the Bayesian approach, one focuses attention on a partic-
ular measured detector output s. The error in measure-
ment is simply taken to be the width (variance-covariance
matrix) of the PDF (A10) for the true value 0 of 0 given
the measurement s. Thus. ,
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(A15) (8* —8) (8' —8) p(818)d8 (A18)

where (8') = J'8'p(8
I s)« Note that this measure of

error depends on different quantities than its &equentist
counterpart (A13) —the measured signal s, and the a
priori PDF p~ ~.

The physical meaning of the quantity (A15) is the fol-

lowing. Suppose that a large number of different gravi-
tational wave trains are incident upon the detector net-
work, where the distribution of the wave parameters 8 is

given by the PDF p~ l. Only a small fraction of these
will produce, at the output of the detectors, the signal

s(t). In this small fraction, however, there will be some

spread of values of the parameters 8, because of difFer-

ent realizations of the detector noise n(t) that combine
with the incident waves to produce the measured signal
according to Eq. (A9). This spread is characterized by
the matrix (A15).

The measure of error (A15) characterizes the total
amount of information that is contained in the measured
signal s, which is independent of how the experimenters
choose to process this signal. In practical situations, how-

ever, one typically would like to know what accuracy can
be achieved by a given, imperfect, data-processing al-
gorithm (e.g., one which takes a manageable amount of
computer time). It is possible to define a more general
Bayesian error that is appropriate for the situation where

a particular algorithm or statistic 8( ) is chosen to esti-
mate the signal parameters 8 from the measured signal
s. This measure of error is

ZB,,„——Zn „„[s,8(s);p ( )]

[8' —8(s)] [8' —8(s)]p(8 I
s)«~

~

Physically this quantity is just the (square of the) rms av-

erage, over the small fraction of incident waves discussed
above, of the difference between the true value 8 of the
parameters and the "measured value" 8(s). It is clear

that the rms errors Zg „„[s,8(s);p~ &( )) will be mini-

mized and take on their minimum values ZB „„[s;pl l ( )]
when one chooses for 8 the so-called Bayes estimator [54]

t)'. (s) —= / 'p8( e)(ds8.

One final point about Bayesian errors is the follow-
ing. Suppose that the experimenters calculate &om the
measured signal s the best-fit value 8 = 8(s), and then
discard all the remaining information contained in the
signal s. Then there are very many signals s' that could
have been measured and that are compatible with the ex-
perimenters' measurements, in the sense that 8(s') = 8
[26]. Correspondingly, there is a larger spread of possible
values of 8, and hence the predicted rms measurement
errors based on the measurement 8 alone are given by
the following modification of Eq. (A16):

Here p(8 I
8) is the probability distribution introduced by

Finn [26] for the true parameter values 8 given the es-

timated values 8. It is given by the standard Bayesian
formula

p(818) = &p' '(8) p(818), (A19)

where 4 = JV(8) is a normalization constant that de-

pends on 8. Note that the matrix (A18) depends only

on the measured value 8 of the estimator and not on its
functional form 8(.).

The predicted measurement error (A18) difFers from
the previously defined measurement error (A16) because
the measured signal s contains information about the
likely size of the error, so that discarding s makes a dif-
ference. For example, suppose that a detector-output
data train contains a signal from a coalescing binary, and
that by some standard algorithm the experimenters de-
termine best-fit values of the binaries parameters. Then
given these best-fit values, one can estimate the likely size
of the measurement error —this is given by Eq. (A18).
However, if they also determined that the data train con-
tains an uncommonly large non-Gaussian burst of noise
that accounts for 20%%uo of the estimated signal amplitude,
the estimates of the likely parameter-extraction errors
would clearly have to be modified.

Which of the above-defined measurement errors is ap-
propriate to assess the capability of the LIGO-VIRGO
detector network? It is generally accepted that, if one
has a given measurement s, the Bayesian approach is the
fundamental and correct one, and that the frequentist ap-
proach is justified only to the extent that it reproduces
the results of Bayesian analyses. This is essentially be-
cause, given a particular measurement s, it is irrelevant
to consider an ensemble of other, different measurements
s' [52]. However, for our purpose of trying to anticipate
the capability of gravitational wave detectors before any
measurements are available, it seems that this message
loses its bite. It certainly seems reasonable to imagine a
fixed gravitational wave train incident upon the detector
network, and to inquire about the spread (A13) in mea-
sured values of the source parameters due to differing
realizations of the detector noise.

In fact, there is a certain sense in which &equentist
errors and Bayesian errors are equivalent, which is well
known: the average of the predicted &equentist error over
the whole parameter space is the same as a suitable aver-
age of the predicted Bayesian error. Thus, in a sense the
same errors are being calculated in each case; it is just
their dependence on parameters that is being changed.
In particular, if the predicted errors do not vary strongly
with the parameters 8, then the two types of error will be
approximately equal. A precise statement of this "equal-
ity of averages" which is straightforward to derive is
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, Z*'.„..[ 8( ) p"'()]

aaynn[ && (')l'

(A20a)

(A20b)

fects that are nonlinear in 1/p contribute significantly to
the predicted accuracies (as for example when measuring
distances to coalescing binaries), or when p is sufficiently
small that the a priori information represented by p~ ~ be-
comes significant. (However, this may be the rule rather
than the exception for typical detected gravitational wave
bursts; see Sec. IVD above. )

Here the various matrices Z'~ are defined in Eqs. (A13),
(A16), and (A18), respectively, and the factors JV(s)

Jl

and A(8) are the normalization constants appearing in
Eqs. (A10) and (A19), respectively. The (formal) mea-
sure 'Vs is defined such that

(F(n() = fVnF(n]e (A21)

for any functional F[n] of the noise n.
Because of this equality of averages, we conclude that

either Bayesian or &equentist errors can be used to an-
ticipate the capabilities of the LIGO-VIRGO network,
essentially because one is only interested in the range of
possible errors and not their value at a fixed point in
parameter space. Similarly, if one is using Bayesian er-
rors, it is appropriate to use the matrix (A18) instead of
(A16) to anticipate measurement accuracies, since from
Eqs. (A20) the measure of error (A18) is simply an av-

erage of (A16) over values of s for which 8(s) = 8. This
conclusion has already been reached in a recent paper
of Finn's [26] in which he advocates the use of what
in our notation is essentially ZB „[8M',Ip (.)], where

8ML is the so-called maximum-likelihood estimator (see
below). (However, his calculation of this quantity does
not incorporate the a priori PDF quite correctly, as we
show below. ) Previous analyses of parameter-extraction
accuracy for gravitational wave detectors by Echeverria
[57] and by Krolak and collaborators [15,27, 35, 61] have

used the frequentist error Z&„[8;8ML()]. By contrast,
in Sec. IV of this paper we have calculated the Bayesian
error

Z*'.„..[ &'"( )] = Z*'.„..[ 8 .( ) p"'( )] (A22)

because, as we argue below, it is more accurate to use

OB, rather than OMg.
One final important point about the two types of error

is the following well-known fact: to leading order in 1/p,
where p is the signal-to-noise ratio [Eq. (A27) below], the
two approaches yield identical results. More specifically,
assuming the Gaussian noise statistics (A6), we have

Zr!.q[8 8M~()1 = ZB.y..[8M~ &"'()] & I1+ &(p ')]

(A23)
when 8Mi, = 8. Moreover the same quantity [given by
Eq. (A34) below] is also obtained to leading order using
the Bayes estimator (A17), and also &om the estimator-
independent measure of error (A15). This is essentially
because to this order, all the PDFs are Gaussian. These
assertions are straightforward to prove using the tools
developed by Finn [26], and moreover are well known
in more general statistical contexts. Hence the distinc-
tions that we have been drawing only matter when ef-

3. Choice of data-processing algorithm 8( ~ )

Given a particular measurement s, the PDF (A10) in
principle contains all the information contained in the
measurement about the source parameters 8. However
in practice one often wants to focus on a small portion of
this information, by calculating a "best estimate" value

8(s) together with estimates of the statistical errors. The
choice of estimator 8(.) is determined both by practical
considerations, and by whatever criteria are adopted to
judge "good" estimators; there is no unique choice.

One obvious criterion is to choose that estimator which
minimizes the expected error in parameter extraction.
However, one could choose to minimize either Bayesian
or &equentist errors, and also the errors depend on the
parameter values (8 or 8). If one minimizes the aver-
age over parameter space of the measurement error [as
given by the common value of Eqs. (A20)], then the re-
sulting best estimator is just the Bayes estimator (A17),
which we have used i.n Sec. IV D. Its use for gravitational
wave data analysis has been suggested by Davis [53]. Un-
fortunately, as Davis indicates, calculation of the Bayes
estimator is very computationally intensive, as it typi-
cally involves a multidimensional integral of a function
whose evaluation at each point requires the numerical
calculation of an inner product of the type (A7). Our
application of the Bayes estimator in Sec. IVD was an
exception in this regard, because all the inner products
could be evaluated analytically. Hence, it seems likely
that the Bayes estimator will be used only after prelimi-
nary estimates of the signal parameters have been made
using Wiener optimal filtering. The use of the Hayes es-
timator also goes by the name of "nonlinear filtering"
[53].

A simpler estimator that has been proposed by Finn
[26, 14], Krolak [61], and others in the gravitational
wave data-analysis context is the so-called maximum-
likelihood estimator 8ML(s). This is defined to be the
value of 8 which maximizes the PDF (A10). It is conve-
nient because it is closely related to the Wiener optimal
filtering method [12] that will be used to detect the sig-
nals —the detection procedure outlined ia Sec. I will
essentially return the maximum-likelihood estimates of
the source parameters (see below). However, once the
signals have been detected, there is no reason to only
use maximum-likelihood estimation —other estimation
methods can be used to give better results. Hence, the
quantities Z& „[8ML,p (-)] or Zr [8; 8ML(.)] represent
the potential accuracy of measurements only to leading
order in 1/p. (If maximum-likelihood estimation is the
only estimation method used, then they represent the ac-
tual accuracy of measurement). We note that the quan-
tities 8Mi, (s) and 8B (s) can difFer by substantial Factors
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for detected gravitational wave signals, as for example in
Fig. 10 above whel'e (D) = 1.44Dp.

Maximum-likelihood estimation also has the follow-

ing disadvantages. First, as discussed in Sec. IVD, the
maximum-likelihood estimator for a particular variable
does not necessarily maximize the reduced PDF for that
variable obtained by integrating over the other variables.
By contrast, the value of the Bayes estimator (A17) for a
given variable does not depend on whether or not other
variables have been integrated out. Second, the best-fit
point obtained by the maximum-likelihood method de-
pends on the choice of variables used to parametrize the
waveform h(t;8). For example, in Sec. III of this pa-
per we could have used as variables either the individ-
ual masses Mq and M2 of the binaries components, or
the chirp and reduced masses M and p. Since proba-
bility distributions for (Mi, M2) and (M, p) are related
by a nontrivial Jacobian factor, a local maximum of
one of them will not correspond to a local maximum
of the other. A slightly different kind of maximum-
likelihood estimator, which maximizes the likelihood ra-
tio A(8) oc exp —(h(8) —s h(8) —s)/2 instead of the
PDF (A10), does not suffer from this problem. This is the
maximum-likelihood estimator that is usually discussed
in the statistics literature. However, it does not take into
account in any way our a priori knowledge.

We conclude that calculations of measurement accu-
racy using OML represent the true potential measurement
accuracy only to leading order in 1/p. If this leading
order approximation becomes invalid (as occurs for suf-
ficiently small SNR's), then one should use instead ei-

ther the Bayesian error (A22) or Z& „[HB„p~l( )]. One

could also use Z&, [8; Hn, ( )], but this is much more dif-

ficult to calculate than (A22) when the large p limit does
not apply.

(h(8) h(8) )
V'(h(8)

I h(8))

Now if the a prior probability p~s~(8) can be approx-
imated to be constant, then the value HMI. of 8 which

maximizes the PDF (A10) for a given signal s also maxi-

mizes p[8] [58]. Hence we can find HMi, (up to the overall
amplitude of the signal [59]) by computing the overlap
(A24) of the signal with various templates, and by choos-
ing the template which gives the maximum overlap.

When a signal is present and the signal-to-noise ratio
is large, the maximum value p[HML] of p[8] will approxi-
mately given by

(A25)

p[HML] = (h(8) h(8)) (h(HMi, ) h(8ML)). (A26)

The quantity

p = (h(8) h(8)) (A27)

5. The Gaussian approximation
and conditions for its validity

We now consider the high signal-to-noise limit in which
many of the subtleties that we have been discussing
become unimportant. In particular, in this limit the
Bayes and maximum-likelihood estimators become iden-
tical. From Eq. (A10), the maximum-likelihood estima-

tor OMg satisfies

is what is usually referred to as the (square of) the SNR
of the signal h(t;8). When correlated sources of noise
are unimportant so that the matrix (A3) is diagonal, this
overall SNR will be given by combining in quadrature the
SNR's for each individual detector, cf. Eq. (1.3) above.

(h, ;(HMQ) h(HML) —s) —[»p ],;(HML) (A28)
4. Relation between maximum-likelihood estimation

and Wiener optimal Sltering

In Sec. II, we discussed a method for finding best-fit
parameters 8 which was based on maximizing the over-
lap of the measured signal with theoretical templates
[cf. Eq. (1.2) above]. We now briefiy indicate the rela-
tionship of this method to the maximum-likelihood pro-
cedure. That the two methods are equivalent in general
has been shown by Echeverria [58].

Given the measured signal s(t), define for any 8 the
quantity

(h(8) I s)
v'(h(8)

I h(8))
(A24)

This is the signal-to-noise ratio (SNR) defined in
Eq. (1.2), and can be calculated by integrating the signal
s(t) against a Wiener optimal filter whose Fourier trans-
form is proportional to S„(f)i h(f; 8). The quantity
p[8] is a random variable with Gaussian PDF of unit vari-
ance. Its expected value is zero if no signal is present,
when s(t) = n(t). If a signal is present, so that Eq. (A9)
holds for some 8, then the expected value of p[8] is

where the subscript, i means derivative with respect to
0' for 1 & i & k, and k is the number of parameters. If
the a priori information is unimportant so that the last
terin in Eq. (A28) is negligible, then as outlined in Sec. III
the following simple geometric interpretation applies: Let
8 be the finite dimensional surface formed by the set
of all signals h(t;8) in the space of all possible signals
h(t). Then the measured signal s(t) will generally not lie
on the surface 8, and the best-fit point h(t; HMi, ) is just
that point on 8 that is closest to s(t), where distance
is measured using the norm ~~f~~2 = (f

~
f) derived &om

the inner product (A7). Correspondingly, h(HMi, ) can be
obtained by just dropping a perpendicular from s(t) onto
the surface 8, which is the content of Eq. (A28) and is
illustrated in Fig. 1.

When the SNR p is suKciently large, one can
find approximate expressions for Zr, ~[8;HMi, (.)] and

ZB~„«[HMi„p~~(.)]. Such a calculation has been carried
out by Finn [26]. We now briefly outline the calculation,
and also extend it to determine the next-to-leading or-
der terms in an expansion in 1/p, in order to determine
how large p needs to be for the leading order term to
be a good approximation. Throughout this subsection
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we assume that the a priori PDF p( ~ is approximately
constant; in Appendix A 6 we consider the eKects of non-
constant p( ).

First we find an approximate solution to Eq. (A28).
Abbreviating 0ML as 0, inserting Eq. (A9) into Eq. (A28)
and expanding in the difference h0 = 0 —0. we obtain

0'=0*+ F(0) ' (n~h, )+8~'l0'+6"l0'+O(n ).

Here

In this expression and below we have for brevity omitted
the commas denoting derivatives, and all quantities are
evaluated at 0. We lower and raise indices with the tensor
{A30) and its inverse, so that, for example,

h*, =—(r-')'" h „,.

There is a similar expression for b~ ~0'. Equations
(A29) and (A6) now determine the PDF p(0I0). Using
Eq. (AS) and its extension to fourth-order moments, and
Eqs. (A29) and (A13), we obtain

I'(0), :—(h;(0) h (0)) (A30)
Z,*,. [0;0,()] = (r-')'~+ ~'lz'~.

is the so-called Fisher information matrix [cf. Eq. (2.7)
above]. The second-order term 8~ l0 is

S~'l0 =(noh, ) (noh~)

(h' IhA, ) + —(h'Ih q) (noh~) (n(h") .

(A31)

K=I' (A34)

cf. Eq. (2.6) above. The correction term in Eq. (A33) is

At leading order, p(0I0) is a multivariate Gaussian with

mean 0 and variance-covariance matrix given by the erst
term in Eq. (A33):

I

&»Z*~ =(h Ih~") —(h'„Ih,) (h~" Ih')+-', (h'Ih", ) (»Ih', )+-', (h*lh. i) (h'Ih")
-(h*Ih ",)

—(h"[h, ") + (h"Ih. )(h'[h'i)
+(h'Ih'")(hgIh' i) + 2(h'fhki)(h" Ih' ) . (A35)

In the case where there is only one variable so that 0 =
(0i, . . . , 0") = (0i), it follows from Eqs. (A33) and (A35)
that

(h'
I

h"') 15 (h"
I

h')'
(h'lh') (h Ih)' 4 (h ~h)'

where primes denote derivatives with respect to 0 . The
correction terms in the square brackets in this expression
will be small whenever

)) (((h"' h")/(h' h)))
(((h' h')/(h' h)))'

(A38)

where for any function of frequency F(f), we define the
weighted average ((F(f )) ) to be (Fh ] h) / (h

~
h) .

Equations (A37) or (A38) give suflicient conditions for
the Gaussian approximation to be valid, when there is
only one unknown parameter 0 . When there are several
unknown parameters, a generalization of Eq. (A37) is
obtained by interpreting the prime to mean the operator
v'8/80' that differentiates in some direction v' in the
space of parameters 0, and requiring the condition to
hold for all directions v'. This yields the condition

(A39)

which is required to hold for all v'. We note that,

{A37)

Using Eq. (A7), the equation p = (h I h), and assuming
for simplicity that S„(f)= S„(f)l,this reduces to the
condition

although Eq. (A33) does correctly indicate the regime
(A38) where the Gaussian approximation is valid, the
correction term ( ~Z'~ is not an accurate expression for
the leading-order correction to the measurement accu-
racy, because as we have argued above the true potential
measurement accuracy is given by using the estimator
0B,( ) and not 0Mr, ( ).

One frequent source of confusion about the leading or-
der expression (A34) for the measurement error is the
following. A general theorem in statistics called the
Cramer-Rao inequality [27, 55] states that for any un-

biased estimator 0 [60],

Zr„~[0;0()]) F(0) (A40)
Hence, one might imagine that the quantity (A34) is a
lower bound for the accuracy obtainable by most reason-
able estimators, and also for low signal-to-noise ratios.
That this is not the case can be seen from the following
consideration, which we discuss in the body of the paper:
at degenerate points 00 for which the signal derivatives
Oh/00' become linearly dependent, the matrix (A30) be-
comes degenerate, and the predicted rms errors given by
the matrix (A34) become infinite. More careful calcu-
lations of, for example, Zr„q[0;0Mi,( )] at such degener-
ate points, going beyond linear order, give finite results.
Hence the inverse of the Fisher matrix is not a generic,
useful lower bound. The reason that the Cramer-Rao in-
equality does not apply is that most estimators are not
unbiased and cannot easily be made so. When one gen-
eralizes the inequality (A40) to incorporate the effects
of bias [55], an extra factor appears on the right-hand
side multiplying the Fisher matrix, which can be small.
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This can allow Zr„~[0;0( )] to be much smaller than the

inverse of the Fisher matrix, for some statistics 0.

6. Incorporation of a priori probabilities

s = s'b. ,- + s~, (A42)

where (h;
~

s ) = 0 for 1 & i & k, and have absorbed
a factor of exp [

—~[s ~~2/2] into the normalization con-

We now turn to the effects of a priori information.
First, we remark that it is not necessary for a priori in-
formation to be very detailed or restrictive in order that
it have a significant effect on parameter-extraction accu-
racy. All that is necessary is that it be more restrictive
than the information contained in the waveform, for some
of the parameters O'. In other words it will be important
whenever the statistical error ((60')2) which we obtain
from Eq. (A34) for some parameter 0' is much larger than
our a priori constraints on O'. For example, this would
be the case if we obtained rms errors for measurements
of the dimensionless spin parameter a of a black hole to
be larger than one, since we expect ~a~ & 1 always. If
we include such poorly determined variables in a calcu-
lation of the variance-covariance matrix Z and neglect
the a priori restrictions, then the results obtained for the
rms error in 0' may be severely overestimated. This is
not unexpected; what is more surprising is that due to
the effects of correlations, the rms errors obtained for
the other parameters may also be overestimated by large
factors (see, e.g. , Sec. III 8 above). We now extend the
approximate calculations of the previous subsection to
incorporate a priori information, and also now calculate
Bayesian as well as &equentist errors. Our results in this
subsection correct Eq. (3.19) of Ref. [26].

Roughly speaking, a priori information will be unim-
portant when the PDF p~ l does not vary substantially
within 1 or 2u of the best-fit point 8. This condition is
logically independent of the condition (A38), although
both will be satisfied in the high p limit. Hence, we can
treat separately deviations from the leading order mea-
surement accuracy (A34) that are due to second-order
derivatives h;~ of the signal [cf. Eq. A35 above), and
that are due to a priori information. In the remainder of
this subsection we therefore assume the condition (A38)
and consistently neglect all second-order derivatives b;~.
In particular we treat the Fisher matrix (A30) as a con-
stant in this approximation. [Note that our results will

be exact in the case where the dependence of h(0) on the
parameters 0 is exactly linear, as in Sec. IVD above. ]

We start by considering the Bayes error (A15). When
we neglect second-order derivatives of h we find that the
PDF (A10) takes the form

p[0 ~s, detection] = JV' p'l(0)
x exp[—-'I';, (0* —s*) (0' —s')].

(A41)

Here we have decomposed the measured signal according
to

stant JP. If the PDF pool siinply restricts the allowed
ranges of the parameters, then the PDF (A41) is a trun-
cated Gaussian distribution whose variance-covariance
matrix ZB y„[s;pi l( )] will normally be within a factor
of 2 or so of F . If p& & is approximately Gaussian
with variance-covariance matrix Zo, then we see from
Eqs. (A15) and (A41) that

(A43)

p(HML~H) oc exp —2v r v,
where

(A45)

v=H-Z, r H-Z, . Z . 0,
= Zi F 0 —const

(A46)

(A47)

Using Eqs. (A13), (A45), and (A46) we see that the result
(A33) becomes modified to read

Zr„q[0'HML(. )] = I' ' + b b, (A48)

where the bias b = Zi . Zo (Ho —0). A more inter-
esting quantity is the Bayesian error (A18), which from
Eqs. (A19) and (A47) is given by

ZBayes[HML i P ( )] ZBayes [HBei P (')]
=z +r. z, .r. z, . r. (A49)

This expression gives approximately the same results as
Eq. (A43), the difFerences never being more than 25%.
The variances Z" given by Eq. (A49) are always larger
than those given by Eq. (A43), as a result of our having
thrown away all the information in s apart from 0(s).

The result (A49) disagrees with a corresponding anal-
ysis of Finn (Eq. (3.19) of Ref. [26]). The reason for the
disagreement is that Finn solves Eq. (A28) to obtain 0 as
a function of HML and n, and then invokes the PDF (A6)
of the noise to find p(H~HML). This method of calculation
[analogous to the method used for calculating p(HML~H)]

This is the formula which we use in Sec. III B above to
incorporate our a priori knowledge about the spin pa-
rameter P.

Next we calculate an approximate expression for the
second type of Bayesian error given by Eq. (A18), which
is appropriate for the situation where we discard all in-
formation about the measured signal s except the best
estimate values 0(s) of the parameters. For simplicity,
we assume that pool(0) is a Gaussian with mean Ho and
width Zo. We also use the maximum-likelihood estima-
tor OMg, however, the same results are obtained for the
Bayes estimator HB, . From Eqs. (A28) and (A9) and
neglecting second-order derivatives of h, we find

(Z ).. (0', -0 ) =(h,
~

)+(Z ), . (0, -0 ),

(A44)

where Zi = r + Zo . Together with Eq. (A8) this
implies that
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is invalid because it implicitly assumes that

p[n = n. ]0ML] =- &[n = no]

which is not the case. The fact that Eq. (A50) does not

hold can be seen from the joint PDF for 0, OML and n,
which is

p[0Mr„0,n] oc p l(0) e ~"'" b(0Mi, —0ML[h(0) + n]).

(A51)

T. Treatment ef degenerate variables

As we have noted in Sec. IVD, the accuracy of the
linear approximation (A39) which yields the simple PDF
(A41), depends in part on what set of variables 0' are
used in the calculation. A different PDF will be ob-
tained from this approximation if one first makes a non-
linear change of coordinates 0' ~ 0'(0~). Hence, the
PDF (A41) will approximate most closely the true PDF
when it is computed using variables for which h, ~ is as
small as possible.

Consequently, there are two qualitatively different
ways in which the linear approximation may break down.
First, for sufficiently low signal-to-noise ratios, the extrin-
sic curvature of the surface 8 formed by the set of wavc-
forrns h(t;0) may be sufficiently large that Eq. (A39)
is not a good approximation for any set of coordinates
O'. In this case the "Gaussian" method breaks down
completely. Second, the approximation may break down
simply because of a bad choice of coordinates. This is
usually the case at points of degeneracy where the vec.. —

tors Bh/cj0' become linearly dependent. which we discuss
in Secs. III and IV and at the end of Appendix A5 above,
At such points the straightforward linear approximation
method breaks down, but can usually be remedied by first
making a nonlinear change of variables, applying the lin-
ear approximation, and then changing back to the orig-
inal variables. One then obtains a PDF in terms of the
original variables which is non-Gaussian, as in Sec. IX'0
above. from which measurement, errors can be calculated.
As has been pointed out by Markovic [9]. measurement
errors at such points typically scale like 1/gp insteacl of
like 1/p. This will be true if the lowest-order derivative
of. h, which is nonvanishing in all directiolls, is the second
derivative.

APPENDIX B: APPROXIMATE CONSTANCY
OF THE SPIN PARAMETER P

THAT INFLUENCES
THE WAVEFORM'S PHASE

The leading order contribution of the bodies' spins to
the secular growth of the gravitational-wave phase has
been derived by Kidder, Will, and Wiseman [41], and is
given by the term proportional to 47r —P in Eq. (3.20).
The quantity P is defined by Eq. (3.21) and depends on
the masses of the two bodies Mi and M2, their spins Si
and S2, and the unit vector in the direction of the orbital
angular momentum L. Over the course of the inspiral
„'3 will evolve, because the directions of the vectors L,
Sl, S2 will be changing due to spin-orbit and spin-spin

r'

f.~2 =- S2 L,
A,

a3 ——Si xS2 I,

(Bl)
(B2)

(B3)

r

o4 ——Sl S2.

The o.~'s are not all ind. ependent variables as they satisfy
the constraint

2 4 ( 2 2
u& + n2 + O.

& + O.4
——1+ 2O. lt."~2O.4.

The reason that it is convenient to use these variables
is the following. The spin-evolution equations (3.22)
comprise nine equations in nine unknowns, with three
conserved quantities (the magnitudes of the three vec-
tors). Thus, there are effectively 6 degrees of freedom. If
we specify the three independent values of the variables
f..~ t, . . . , n4. then the remaining 3 degrees of freedom can
be parametrized by an overall rotation matrix. More
precisely, given the vectors S~, S2, and I, there will be a,

unique rotation matrix R which takes L into L = e, (the
unit vector along the z axis), Si into a vector Si in the

r

x-z plane, and S2 into some S2. The vectors Si, S2, and
I are determined by R and by the variables ul, . . . , f.~4.
Hence, the variables n~(t) for 1 ( j ( 4 and R(t) can
be used instead of the vectors themselves to paralnetrize
a, solution to t, he spin-evolution equations. Now it turns
out that the evolution of the o.'~ 's decouptes from the evo-
lution of R. in the sense that each dn~/dt depends only

. fl.4 and is independent of R. This greatly sirn-
plifies our au@.lysis

If we use units in which M = 1 and define s~
for j = 1, 2, then we obtain from Eqs. (3.22), (Bl).
and (2.10) the following coupled system of equations for

(B6)

820!2

I ~ ~1&3)

—15as ' t'M2 Mi I + sini —s2n2
2~V

(87)

(B8)

interactions.
Nevertheless, in our analysis in the body of the pa-

per, we have assumed that the factor y = 47r —P which
appears in Eq. (3.20) can be treated as constant. This
assuInption is necessary to make the analysis tractable.
In this appendix we present evidence which strongly sug-
gests that y is always constant apart from some small
amplitude oscillations, showing that our assumption of
constant y is a reasonable one for all coalescing bina-
ries. XVe calculate the evolution of y by integrating the
orbit-averaged equations (3.22) governing the evolution
of the spins, using both analytic and numerical methods.
A more complete discussion of the evolution of the spins
and orbital angular momentum, and of their inHuence on
the emitted gravitational waves, can be found in Ref. [43].

We start by introducing some dimensionless variables.
Let S~ be t,he unit vector in the direction of S~ for j ==

1, 2. and define
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Here L = @gal denotes the magnitude of the orbital an-

gular momentum, and we have changed the dependent

variable from time t to orbital separation r. The omit-

ted equation for dna/dr can be obtained by combining

Eqs. (B5) —(B8). From Eq. (3.21), the spin parameter P
is given in terms of these variables by

113 25 2
p = (s1n1+ s2n2) + — (M2s1n1+ M1s2n2) ~

12 4M' M2

(B9)

17.85

17.75

17.7

17.65

6 7 8 9 10

NS-BH

65 66 67 68 69

We have numerically integrated Eqs. (B6)—(B8) for
various initial spin and angular momentum directions,
for the cases of NS-NS, NS-BH, and BH-BH binaries.
We assumed all neutron stars have masses of 1.4 Mo, and
black holes have masses 10Mo. We integrated inward,
starting at that value of r at which the emitted waves
enter the LIGO-VIRGO waveband at 10Hz, and ending
at r = 6M near the last stable circular orbit [30]. In
the special case that one of the spins vanishes, it can be
seen from Eqs. (3.21) and (3.22) that P will be conserved
[43]. Hence we took both spins to be nonvanishing. We
also assumed that their magnitudes are maximal, so that
s~ = M2 for j = 1, 2 [cf. Sec. IIIB], as these are the
values which can be expected to give the largest changes
in P.

Typical results are shown in Figs. 18—20. The factor
g = 47r —P undergoes small oscillations with an ampli-
tude of order 0.1 which is small compared to the mean
value of y. This mean value depends on the mass ratio
and on the initial spin directions, but always lies between
47r —P „=3 and 47r + P „=22, where P „

is as
given in Sec. III B. The angles between the vectors given
by az, . . . , o.4 also oscillate, all with the same frequency.
[This frequency is not the frequency with which the total
spin S = S1 + S2 precesses around L [43], as that pre-

NS-NS

FIG. 19. The evolution of y for a NS-BH binary; see cap-
tion of Fig. 18. The black hole was assumed to be maximally
rotating.

cession does not change the angles between the vectors,
and thus is not described by Eqs. (B6) —(B8).]

Some insight into the behavior of the general solutions
to Eqs. (B6) —(B8) can be gained by considering the
special case when the magnitude of one of the spins (say

S1) is small, so that s1 = ~S1~/M (& 1. This condi-
tion will sometimes be satisfied by NS-NS and BH-BH
binaries, but will always be satisfied by NS-BH binaries
since all compact bodies satisfy ~S~~

( M. . Below we
find analytic solutions to first order in 8~. As we now de-
scribe, in the approximation 81 « 1 the amplitude of the
oscillations of P (and hence also of y) is always smaller
than 1/4, for all initial spin directions and for all mass
ratios. Although rapidly spinning NS-NS and BH-BH bi-
naries will not satisfy Sq « 1, nevertheless we find that
amplitudes of the oscillations of P in the numerical so-
lutions agree roughly with those predicted by the small
spin approximation. (For some special initial spin direc-
tions, such as a~ ——n3 ——0, the analytic solutions are
poor approximations to the numerical solutions, but in
all such cases that we have checked, the amplitudes of
the P oscillations are still & 0.2.)

The solutions to first order in sq can be written as

n, (r) = nI ) (r) + n(. ) (r) s, + O(s, ), (B10)
13.35

13.25

l&cg
9 (0 75 00 125 150 175

FIG. 18. During the last few minutes of inspiral, the an-
gles between the bodies' spins SI, Sq and the orbital angu-
lar momentum L all oscillate, in addition to and separately
from the precession of the total spin S = Sq + Sq around
L. This oscillation gives rise to an oscillation of the param-
eter y = 47r —P which governs the contribution of the spins
to the accumulated phase of the emitted gravitational waves
[cf. Eq. (3.20)]. Here we show a typical plot of y as a func-
tion of the orbital separation r, for a NS-NS binary. The spin
and orbital angular momentum directions were taken to be
8& oc i + k, Sz oc —j, and L oc i + j at the initial gravita-
tional wave frequency of 10 Hz. The spin of each neutron star
was assumed to have the maximal magnitude of (1.4MO)
corresponding to a rotation period of a few miliseconds. It
can be seen that in each case the amplitude of oscillation of
y is very small compared to its mean value, so that to a good
approximation we can take y = const.

BH-BH
13.45-

13.4

13.35.

13.3

13.25-

1

$10 20 30 40

FIG. 20. The evolution of y for a BH-BH binary; see cap-
tion of Fig. 18. Both black holes were assumed to be maxi-
mally rotating.

for 1 & j & 4. Now as we have already mentioned,
it can be seen from Eqs. (3.21) and (3.22) that when

Bq ——0, the angle between S2 and I is conserved, so that
P is constant. However, in this case the angles between
the small spin Sq and the other two vectors will not be
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conserved. Thus, the zeroth-order solutions o. . will be
nonconstant. tA'e start by deriving these solutions.

Substituting sq ——0 into Eqs. (B6) —(B8) we ffnd that
is constant, i.e. , nz ——n2, = n2(r, ), where r; is the(o) . (o)

initial orbital separation, and that

1

dr

dA4
(o)

dr

= —bio.3
(o)

(o)= —640.3

(B11)

(B12)

1582

128PM2
'

15
h4 — (s2nz, + I 8),

128p

(B13)

(B14)

O. p
—= h.40.~ 6 hi0. 4

(o) (o) (B15)

we find that n (r) is constant, n (r) = n, = n (r, ),
and

da,'+ (o)= —2hg 640.3dr
(B16)

This equation can be solved by combining it with the
constraint (B5). To zeroth order in st, the constraint
can be expressed using Eq. (B15) in the form

and b:—(Mz —M& )/(MqMz). The coefficient h4 is non-
constant as I = p+r depends on r Howe. ver, since it
will typically vary slowly compared to the oscillations in
the angles, we can approximate it to be constant. (The
evolution of h4 gives rise to a slow evolution in the am-

plitude and frequency of the oscillations of the ni i' s. )
Defining

can now be obtained by combining Eqs. (B13) —(B15)
and (B18) —(B23). These expressions depend in a com-
plex way on all of the initial spin direction parameters
ui;) 0.2, ) and 0.4;, and also on 82) on the mass ratio
Mt/M2, and on the initial orbital separation r, /M. For
the equal mass case Mi ——M2, the "frequency" vo is
given by

82 255 1125
M2 4096 16384

(B25)

Values of vp for Mq g M2 are typically much larger than
this.

The first-order corrections n (r) can be obtained us-
2

ing the zeroth-order solutions and Eqs. (B6) — (B8).
However, we are only interested in determining the
leading-order behavior of P, and for this purpose we need

only evaluate nz . From Eqs. (B7) and (B22) this is

given by

l3(r) = A + Bcos 4 + i sin C, (B27)

where the constants B and C are first order in sq. The
resulting expression for the total amplitude of oscillation
A = y B2 + Cz in terms of the variables nt„.. . , n4, ,

Mt/M2 and r is complicated and not very illuminat-

ing, so we do not reproduce it here. Instead we show
in Figs. 21 and 22 the quantity A „=A „[n2,, n4, , ]

15 1 s n»
0!2 r

128pvp My I
x [ns, sin@ —v (n+, —n+) (cos4 —1)].

(B26)

Substituting Eqs. (B26) and (B18) — (B23) into (B9)
gives a result of the form

ns (r) + v [n+(r) —n+] = K, (B17)

where

VpV=
2hih4'

2 2 2
vo = h~+ h4

2 — 2
K = 1 —0!2

—2hgh4a2, ,

—(1+n2, )
vo

(B18)

(B20)

n+ ———(6,' —h4)
~o

(B21)

Combining Eqs. (B16) and (B17) yields the solutions

ns '(r) = ns, cos 4 + v(n+, —n+) sin@,
0'3, i

o!+(r) = n+ — sill 4 + (n+. ~
—n+) cos 4,

V

where n+, ——n+(r, ), n. s, ——ns(r;), and

(B22)

(B23)
FIt . 21. When one of the spins is small, the evolution of

the parameter X = 4s —P is approximately given by

Xp + A cos [vpr + const],

C = vp(r —r, ) {B24)

Note that vo is the frequency of oscillation of the n 's

frequency with respect to changing orbital radius r,
not changing time t.

Analytic expressions for the functions 0, . . . , 0.4
~ (o) (o)

where the "frequency" vo and amplitude A are slowly varying
functions of r. Here we show the amplitude A for an equal-
mass binary, at an orbital separation of r = 6M, as a function
of a2, ,- = S2-1 and 0.4,; = SI.S2, where the maximum is taken
over the remaining angles. S~, S2, and I are unit vectors in
the directions of the initial spins and the initial orbital angular
Inomentum.
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initial conditions, and analytically, in the regime where

[Si] (& M . In all cases we find that the amplitude of
the oscillations of y is & 0.25.

0. 3

0.2

0.

APPENDIX C: THE DECOUPLING OF PHASE
AND AMPLITUDE PARAMETERS

IN THE FISHER INFORMATION MATRIX

The phase 4(f) of the Fourier transform of the wave-

form can be written in the form

FIG. 22. As in Fig. 21, but for a NS-BH binary with
Mi/M2 = 1.4/10.

obtained in the following way: (i) Use Eq. (B5) to elimi-
nate o.s, in terms of ni;, n2;, and n4,", (ii) numerically
maximize over values of o.i; that lie in the range be-

tween the values ns; ns; d
V

(1 —os,.) (t —ns;) allowed

by Eq. (B5); (iii) choose the maximal spin magnitudes
si ——Mi, s2 ——Mz ,'(iv) choose the final orbital separa-
tion r = 6M, the value for which the amplitude A will
most likely be largest. It can be seen from these plots
that for all choices of initial angles, A & 0.25.

In the special case that M1 ——M2, the formulas sim-
plify and we find that A oc 1/~r (this is not true in
general). Specifically we find in this case that

376B cr1,i (12,i 2&4,i
384

15
+ (4 —cr&;j (ni; n2, ; + 2n4;) v&128

(B28)

d =U "c„ (C2)

in such a way that

Bh =ih,
|9CL1

and that for m ) 2 [49],

t9b

BC1

tto 2

n

=0.
The key point now is that the inner product

(C3)

(C4)

~(f) = ) c-(f/f. )",
n=1,2, ...

where (cii, cr2, as, . . .) = (0, 1, —5/3, —1, —2/3, . . .), and
the parameters c1, c2, c3, c4, etc. , are simply related
to the parameters 4t„t„JH,p, P, etc. , via Eq. (3.24).
The number of variables c„will depend on the post-
Newtonian order to which hIi(f) is calculated; the fol-

lowing analysis holds for any number of these variables.
We can make a linear transformation to new variables

235 a2;o,3;
512 +rvo

(B29)

where vo is given by Eq. (B25).
To summarize, we have determined the evolution of the

quantity y = 47r —P both numerically, for a wide range of

where p is any of the "amplitude" parameters D, @, v,
and d1, will also be proportional to the right-hand side of
Eq. (C4) for m & 2, and so will vanish. This can be seen
from the structure of Eq. (4.11). Consequently, in the
new variables D, v, g, and d, m = 1,2, . . . , the Fisher
matrix (A30) will be block diagonal, which establishes
the result stated in Sec. IVC.
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