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Lyapunov spectra in SU(2) lattice gauge theory
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%e develop a method for calculating the Lyapunov characteristic exponents of lattice gauge
theories. The complete Lyapunov spectruin of SU(2) gauge theory is obtained and Kolmogorov-
Sinai entropy is calculated. Rapid convergence with lattice size is found.

PACS number(s): 11.15.Ha, 11.15.Kc

In Ref. [1] we have studied chaos in lattice gauge
systems by obtaining the largest Lyapunov exponents.
The method used there, though straightforward, has two
drawbacks. First the results have large error bars because
the exponential divergences of trajectories have fIuctua-
tions, which results in an uncertainty in the determina-
tion of the exponential rate of divergence between tra-
jectories in phase space. The second drawback of the
method is that only the largest Lyapunov exponent can
be obtained, but not the whole Lyapunov spectrum.

There is a well developed method for calculating Lya-
punov spectra of systems with many degrees of freedom,
which is explained in Ref. [2] and brieHy outlined here.
Given initially a point q(0) in the phase space and vl,
vectors v, , i = 1, ..., vl. in the tangent space Tq(0) we can
integrate the equations of motion in phase space and si-
multaneously the evolution equations for small perturba-
tions in tangent space to obtain q(t) and v;(t) C T~lil. At
regular time intervals kw, the Gram-Schmidt orthonor-
malization is applied to the tangent vectors v, . The scal-
ing factors 8; obtained by this procedure determine the
Lyapunov exponents as

".lns,"A;= lim)
k=1

where n is the number of iterations performed. The time
needed to obtain the largest Lyapunov exponent depends
on how fast the exponents converge with increasing n.

One necessary condition in the above procedure is that
we are able to identify tangent spaces at different points
of phase space. When the phase space is Euclidean, the
natural identi6cation is used and the problem is trivial.
For lattice gauge theories, where the phase space is not
Euclidean, we must con&ont this problem explicitly. In
this Brief Report two difFerent approaches are proposed
to obtain the Lyapunov spectrum in lattice gauge theo-
ries. In the 6rst approach, we work in phase space and
avoid the problem by embedding the curved phase space
into a larger dimensional Euclidean space. This approach
is most useful for SU(2) gauge theory. The method is
first tested on a 10 lattice to calculate the two largest
Lyapunov exponents and then applied to obtain the com-
plete Lyapunov spectrum on lattices of size 1,2, and 3,
where the scaling behavior is observed. A second more
general approach is to construct the tangent space. The
results of this method for SU(2) are not as satisfactory
as the first one. The advantage of this second method,

however, is that it can be directly applied to other gauge
theories.

The SU(2) lattice gauge theory is defined by the Hamil-
tonian [3,4]

II = ) EP Ei —+ 4 ) ~

1 ——tr U„~,)

where Et are electric 6elds and U„are plaquette vari-
ables which are ordered products of four link variables
U~. The lattice spacing as well as the coupling constant
have been scaled to unity, a = g = 1, and the only pa-
rameter of the system is the scaled average energy per
plaquette g Ea, which we will refer to as E in the follow-

ing. The temporal axial gauge adopted here does not fix
the gauge completely and the system is invariant under
arbitrary time-independent gauge transformations. The
total phase space is the direct product of phase space
for each link. The latter itself is the direct product
RsxSU(2), where the two subspaces are for Ei and Ui,
respectively. The SU(2) group manifold is isomorphic
to a three-dimensional sphere, which can easily be em-

bedded in a four-dimensional Euclidean space. This is

easily achieved if we use the quaternion representation,
where a link variable U~ is represented by a four-vector

(topi, lli) in Euclidean space with the condition of unit
norm, i.e., uo + u = 1. Then, for each link, phase space
forms a six-dimensional subspace of a seven-dimensional
Euclidean space. One way to implement the rescaling
method is to study the evolution of vectors in the cor-
responding seven-dimensional tangent space. In order to
incorporate the condition of unit norm of U~, the initial
conditions must be carefully chosen. In the following, we

choose a slightly difFerent way to implement the method.
Instead of following the evolution of vl. vectors in the

tangent space, we study vL, +1 trajectories z;, i = 0, ..., vI,
in phase space. The trajectory zp(t) is called the refer-
ence trajectory. At regular time intervals t = k7. , vI,
vectors are formed from these trajectories by

d; = z;(t) —zo(t), i = 1, ..., vl, .

These vectors are treated as vectors in Euclidean space.
The normal Gram-Schmidt method is then used to ob-
tain the Lyapunov numbers A, as in (1). A small differ-

ence here is that we do not scale the norm of the vectors
D; = ~d, [

to unity, but to a chosen small value Do. The
scale factor is referred to as 8;. After this procedure, all
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the trajectories except the reference trajectory assume
their new positions in phase space. Although time evolu-
tion itself conserves the norm of U~, Gauss' law, as well as
the gauge condition, the Gram-Sc&midt rescaling proce-
dure violates them slightly, because they form nonlinear
constraints. The condition of »»t norm is easily imposed
by hand. The violation of Gauss' law is expected not to
be serious, the reason for which is as follows. If the values
D; are small, then the violation of Gauss' law is of second
order in D;. If we limit ourselves to sufficiently small D;,
then the violation of Gauss' law in each rescaling step is
negligible. Remembering also that the evolution of the
system respects Gauss' law, the violation does not in-
crease with time. On the other hand, the next rescaling
decreases the previous violation of Gauss' law by a scale
factor 8, , and so the violations do not accumulate. The
same argument applies to small changes in the choice of
gauge.

To test our method, we have applied it to the SU(2)
theory and measured the two largest Lyapunov expo-
nents. We indeed find that the violation of Gauss' law
remains of the order of 10,which gives us confidence in
the method. The result of a typical run for the Lyapunov
exponents is shown in Fig. 1 for a configuration with
scaled energy E = 4.06. The solid line corresponds to the
largest exponent and the dotted line to the second largest
one. They converge at t = 100. From our previous study
[1] we know that the time scale for saturation of the dis-
tance D(t) between two configurations in the case with-
out rescaling is about 30 at the same energy. The result
obtained with our new, improved method, Aq

——0.667,
is very close to, but slightly lower than, our previous re-
sult E/6 = 4.06/6 = 0.68. We note that the result for
the Lyapunov exponent generally converges from above;
i.e., the Lyapunov exponents are overestimated when the
trajectories are not followed for suKciently long times.
We also observe that A2 is almost identical to Aq. The
reason is that, as we are going to show next, there exists
a whole Lyapunov spectrum which forms a continuous
curve in the large vol@me limit.

This method in principle can be used to obtain the
Lyapunov spectrum of a SU(2) lattice gauge system of an
arbitrary size. Practically, the computing requirements
limit us to rather small lattices. We have numerically
studied lattices of size N, with N = 1,2, 3. Fortunately,
as we will show, the spectrum starts to scale as early as
at size N = 3, which permits us to extrapolate the results
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to the thermodynaimc limit without actually going to a
larger lattice.

We have obtained the complete Lyapunov spectrum. for
systems on 1 and 23 lattices. On a N lattice the phase
space dimension is 3 N x 2 = 18N, because there are
three space directions and three color directions at each
site for magnetic and electric fields. Hence on a 2 lat-
tice there are 144 Lyapunov exponents which are shown
in Fig. 2. Measurements are performed at different times
and convergence in time is observed. In Fig. 2, two mea-
surements at t = 200 (the crosses) and t = 1000 (the
solid triangles) are shown. The latter has a smaller fiuc-
tuaction. We can see that the spectrum is divided into
three equal parts. The first one-third of Lyapunov expo-
nents are positive, while the second one-third are all zero
(they are not exactly vanishing at t = 1000, but they are
clearly seen to converge to zero). The last one-third of
exponents are approximately the negative of the first one-
third. The vanishing Lyapunov exponents correspond to
the conservation of charge (Gauss' law) and the gauge
degrees of freedom at each lattice site. Thus our results
confirm the general properties of Lyapunov spectra [2].
Our result also implies that in addition to the total en-

ergy and static color charge at each lattice site, there is
no other conservative quantity in the system. The results
for a ls lattice are basically the same, but the Lyapunov
spectrum consists only of 18 numbers. For a run with
energy E = 2.632, the value of the largest Lyapunov
exponent is 0.44. We can compare this result with the
result obtained earlier for the model of spatially constant
Yang-Mills potentials [5], where it is found Aq ——hE~/4,
with h 0.38. Inserting E = 2.632 we get Aq ——0.48.
Taking into account the uncertainties in h, we think the
results obtained in these two entirely difFerent approaches
are surprisingly close to each other.
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FIG. 1. The two largest Lyapunov exponents for SU(2) de-
termined by the rescalinq method. The average of the loga-
rithmic scaling factors s,. approaches the limit &om above.

FIG. 2. Complete spectrum of 144 Lyapunov exponents
for SU(2) gauge theory on a 2 lattice. The trajectories were
followed up to time t/a = 200 (crosses) and t/a = 1000 (tri-
angles). The central third fraction of Lyapunov exponents
(enclosed between the vertical dashed lines) corresponds to
the unphysical degrees of freedom that describe gauge trans-
formations and deviations &om Gauss' lair. These exponents
converge to zero in the limit t -+ oo.
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In Fig. 3 we show the scaling of the Lyapunov spec-
trum, where we compare the results &om lattices of dif-
ferent sizes. The solid line is for a 3 lattice, the dotted
line is for a 2 lattice, and the solid squares are for a 1
lattice. In the 3 case we only calculated the positive
Lyapunov exponents. In each case, the initial configura-
tions were chosen as entirely random magnetic fields and
zero initial electric fields. In order to observe the scal-
ing of Lyapunov spectrum with respect to lattice size,
the Lyapunov exponents are scaled with respect to the
largest exponent Aq. The indices for the Lyapunov num-
bers are scaled to the total number of Lyapunov numbers,
i.e., 18 for a 1 lattice, 144 for a 2 lattice, and 486 for
a 3 lattice. The solid squares do not yet scale very well
with the lines, but results for N = 2 and N = 3 coincide
nicely, exhibiting an early scaling behavior. The scaled
Kolmogorov-Sinai entropy, i.e., the sum over all positive
Lyapunov exponents, is

n= ' -20 for N=2 3.

The reason of this early scaling behavior has not been
fully understood yet.

Now we study the energy dependence of the Lyapunov
spectrum. For initial conditions, we chose the link vari-
ables U~ = cos(p/2) —in. 7 sin(p/2) randomly and the
total energy is varied by selecting h, which limits the
range of the parameter p to (0, 27rb'). In the top part of
Fig. 4 the Lyapunov spectra corresponding to three dif-
ferent energies on a 3 lattice are plotted in the scaled
form. The solid triangles correspond to an average pla-
quette energy of E = 4.25, the squares correspond to
E = 3.21, and the crosses correspond to E = 1.67. We
see that at this small lattice size, the spectrum does not
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FIG. 4. Energy scaling on a 3 lattice. In the top part,
the positive part of the spectra for three different energies are
shown. The solid triangles correspond to an average plaquette
energy of 4.25, the squares correspond to 3.21, and the crosses
correspond to 1.67. They do not scale with energies. In the
lower part, the scaled Kolmogorov-Sinai entropy n is shown
as a function of energy. In the large-N limit, we expect it to
be a horizontal line.

yet scale with energy, or, in other words, the scaled sum-
mation o. is a function of E. In the above three cases,
o. = 2.0, 1.7, 1.3, respectively. The energy dependence of
o. on energy is shown in the lower part of Fig. 4, where
we see o. increases with energy. In the previous study
[1], we found that if the lattice is large enough (N ) 6),
the largest Lyapunov exponent Aq depends linearly on en-
ergy, Aqa 6g Ea; i.e., Az does not depend on the lattice
cutoff a. (Here and in the remainder of this paragraph,
we keep g and a explicitly in order to make connections
with physics in the continuum limit. ) If we assume that
in the large lattice limit the other Lyapunov exponents
are also independent of the lattice cutoff a, from dimen-
sional consideration, they can only depend linearly on
g E. Then in the large volume limit we expect that o. is
independent of energy and is a universal number, which
is approximately 2. We obtain the Kolmogorov-Sinai en-
tropy density in the thermodynamic limit

E 0— ~-. ~

1 . 10= ) A, =aAi= —gs,
(Na)s 9

0 0.2 0.4 0.6
{i+1/2)/(18N )

! Q I I I

0.8 1

where e = 3E/as is the energy density. To represent the
entropy growth rate in terms of temperature, we make
use of the thermodynamic relation o.T = c+P. Using the
fact that the partition function Z(T, g, a) in the classical
limit of the lattice gauge theory depends only on the
combination of g2Ta, it is easy to prove e = 3P [6]. Thus
we have crT = 3c, and we find that the characteristic
entropy growth rate for SU(2) is given by

FIG. 3. Scaling of the Lyapunov spectrum with lattice size
N. The solid line corresponds to a 3 lattice; the dashed
line is for a 2 lattice. Only the positive Lyapunov exponents
are shown. The exponents A, are scaled with the maximal
Lyapunov exponent A „=Aq for each lattice size, and the
index i is scaled with total number of Lyapunov number 18N .

CT' 1 2 6 1
0. 9 0 12

(6)

Its inverse gives an estimation of the thermalization time
for highly excited SU(2) gauge fields.

The above method is quite successful for SU(2) gauge
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theory, but it is not obvious how to apply it to SU(3)
gauge fields. The reason is that this method relies on
the quaternion representation, which is quite special for
the SU(2) group. In this final part, we propose a more
general method which can be used to-study other gauge
theories such as SU(3).

We try to construct a tangent space upon the curved
phase space (E~, U&) and then study the evolution of vec-
tors in this space. The tangent space of E~ is simple, in
which a vector is just bE~. We shall be careful about how
to specify a vector in the tangent space on U~. Here, to be
consistent with our de6nition of the congugate momenta
E~ as the left group generators [3,4], we define a vector
bI in the tangent space of U~ as

bU) = tb)U) (7)

A vector in the complete tangent space is the direct prod-
uct of b~ and bE~. The linear evolution equations for b~

and bE~ are derived from the equations of motion of U
and E:

d
b) =—6E) + t [E),b)],

dc

bEp =—) (—2i)tr U„')
J (l),rn, b

where U„'& is obtained from U„, which contains link I
and m in one of its four positions, by substituting U~ by
r U& and then U by v U, where r are Pauli matri-
ces. These equations can be integrated along with the
equations of motion of EI, and U~ in the phase space.

We have tried this method on SU(2) gauge theory,
where the results can be compared with the results ob-
tained by our first method. Good agreement is found
for large positive exponents; but for the smaller ones,
the convergence of the new method is not satisfactory.
Future work is still required here.

In conclusion, we have developed a method to study
the Lyapunov characteristic numbers of lattice gauge the-
ory. The whole Lyapunov spectrum of SU(2) is obtained
explicitely and the scaling behavior is observed. The
Kolmogorov-Sinai entropy is obtained.
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