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Fitting carrelated data
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We discuss fitting correlated data, with the example of hadron mass spectroscopy in mind. The
main conclusion is that the method of minimizing the correlated y is unreliable if the data sample
is too small.

PACS number(s): 11.15.Ha

I. SPECIFICATION OF THE PROBLEM

We have N samples of unbiased estimators of quan-
tities z; with i = 1, . . . , D. Thus the data set is z;(n)
where n = 1, . . . , N. We assume that the samples z;(n)
are statistically independent versus n for fixed i but may
be correlated in i. Such a situation arises in lattice gauge
theory calculations where there are N independent con-
figurations and D Green functions (linear combinations
of Wilson loops or propagators) are measured versus time
separation i. An introduction to this topic in the context
of lattice gauge theory is provided by Toussaint [1].

The aim is to fit a given function F; which depends
on P parameters a&. This function is to be fitted to the
data samples z, . Thus we need to find the best values of
the parameters a„, the errors associated with these best
fit parameters, and the probability that the fit represents
the data sample.

also needs a smooth model of the distribution Qs.
The natural interpolation for Qs is suggested by the

central limit theorem. Provided the underlying distribu-
tions of z; are suKciently localised, then for large N, X,
will be Gaussianly distributed. We are specifically inter-
ested in the case where the difkrent components x; are
statistically correlated. Thus a general Gaussian surface
will be needed:

1
Q~(x) = H exp ——(X, —X;)Ms(xs —Xs)

2

Equating the first and second moments of these two ex-
pressions leads to the well-known identifications

N
1x, = —) *, ,N n=l

II. REPRESENTATION OF THE PROBABILITY
DISTRIBUTION OF THE SAMPLE

The data samples themselves give a probability distri-
bution

S(z) = —) S (*-*(n))..=1
We shall be interested in estimates of the probability dis-
tribution of the averages X; of the data z, . The most
general way to achieve this is to fold the above distribu-
tion N times:

M,, =NC,;, ',
where

N

) (*;-x,)(*,-x,).
n=1

To find the best fit parameters then corresponds to max-
imizing

exp( —X /2)

where

X' = [F;(a) —X;]M;,[F,(a) —X, ]

with respect to a„ for p = 1, . . . , P. This is the usual
correlated y method.

Diagonalizing the real symmetric positive-definite ma-
trix. C then allows us to write

Evaluating this distribution by simulation corresponds
to the bootstrap method: many samples of N data are
obtained by choosing &om the original N possibilities
randomly (with repetition allowed). In the limit of many
such samples this corresponds to the above distribution
Qs. Such a procedure is in general inadequate for deter-
mining best fit parameters since a smooth representation
of Qs (X) is needed. An even more difficult task is usually
to estimate the acceptability of such a fit. Thus the best
fit parameters will yield X(f) and one must estimate the
probability of such a value arising stochastically. This

D

QG = H exp( —X /2) = H exp —) X„/2

( 2= H exp —) (Yj, —Yq) /2

where

( N ) N

q, lx) = f s' x ——) *&") s *I )s(*f II . ''
v =1 s=1
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and

1

C;~ = Rg;Ai, Ri„, Y~ = R~;X;N /A,',

III. A SPHERICAL GAUSSIAN DISTRIBUTION

For illustration, consider a true probability distribu-
tion of data points

ST (z) = J exp( —z,z;/2),

where i = 1, . . . , D. This is actually quite general since
after a change of variables (translation, rotation, and
scaling), a general Gaussian surface can be brought to
this form. Then we take N samples from this distribu-
tion giving data z;(n) for n = 1, . . . , N. We obtain the
distribution Q& for this sample. We can easily maximize
this distribution and clearly the sample maxima will be
at X; = X;. However, the true maximum is at X; = 0.
Thus we can estimate the probability of a particular sam-
ple having a maximum value of X;. As well as using the
above "correlated y " approach, we also use a diagonal
approximation for comparison. Thus we can calibrate
standard statistical tests (such as y2 per degree of free-

dom) with this simulation in which the exact result is
known.

Consider first the diagonal y for orientation. Then we
evaluate by simulation the average value of y for the 6t
to X; = E, = 0. This corresponds to a zero parameter 6t
and so it is only the goodness of 6t that can be addressed.
'This is usually quanti6ed in terms of the value of the ex-
ponent y . The model and analysis then treat each of
the D directions independently, so we obtain a value of
y2/D independent of D. The value of y2 = NX;/C;;

Yj = R~;X;N'/A

Consider, for example, a zero-parameter fit to X; = F;
where I"; is the true value (the average over many sam-

ples). Then for one sample, the maximum is at X; =
X, P I'; and one can estimate the expected value of y2.

1
Now letting P; = R;&F~N2/A, the probability distribu-

tion Q~ is a sum of D independent variables (Yj, —Ei, )
with unit variance. Thus (y2) = D is expected. As we

shall see later, there may be quite large corrections to
this estimate in practice.

For a general fit X, = F, (a) with P parameters a, it
is useful to regard this as a constraint on the uncorre-
lated variables Yj, = Xi, (a). The set of Xi, values as the
parameters a vary will be a P-dimensional surface and
the fit minimizes y within this surface. So, e8'ectively,
y~& is zero for P components and thus the expected value
of y2 only comes from the remaining D —P dimensions
or "degrees of freedom. " Thus in the simplest case one
expects y2 to be D —P.

What has become well known in the lattice gauge the-
ory community is that the correlated y approach is not a
very stable method [2]. Examples can also be constructed
which give counterintuitive results [3]. I shall illustrate
this with a simple simulation.

TABLE 1. Correlated g /D for N data with dimension D
(averages from 10000 samples).

N
10
20
30
40
50
100

D= 1
1.29
1.12
1.07
1.05
1.04
1.02

D=3
1.83
1.25
1.15
1.13
1.08
1.03

D=5
3.03
1.44
1.27
1.17
1.13
1.06

D=7
9.16
1.74
1.38
1.25
1.21
1.09

D=10 D=15

2.38
1.59
1.39
1.30
1.12

6.45
2.22
1.70
1.49
1.19

—2
for each dimension. Now the averages of X, and C;; are
1/N and 1, respectively, with both these estimates being
unbiased. Thus if fiuctuations among samples for both
these quantities are neglected, we obtain an average of
y2/D of 1 as expected. However, their ratio will be a bi-
ased estimator, in general. For small N values, because
the sample values fiuctuate quite widely [the variance of

C;, is 2/(N —1)], the value of g2 = X;/C;; for each di-
mension is enhanced on average by the contribution &om
low values of C;;. Indeed, for large N, analytic evalua-
tion gives y2/D = 1+ 2/N. Our simulation values are
shown in Table l as the D = 1 column and are consistent
with this analytic estimate. Thus there can be a small
bias in the expected value of y /D even for uncorrelated
evaluations. As we shall see such biases become much
stronger for correlated yz.

The way to illustrate the problem is to look at the
shape of the Gaussian surface given &om the sample data.
One way to visualize the shape of the sample distribu-
tion QG is to obtain the eigenvalues A and eigenvectors
of C. Small eigenvalues correspond to a narrow distribu-
tion in the direction of the appropriate eigenvector. The
width in any direction of the true distribution is 1. What
we find by simulation is that the smallest eigenvalue of C
from a sample of N data points can be very much smaller
than 1 for small ¹ Of course, for N = D, the points
will be linearly degenerate and thus Am;„= 0. The re-
sults are shown in Fig. 1 and Table II. One sees that for
N = 55 (a typical number of configurations in a hadron
spectrum calculation) and for D = 7 the smallest eigen-
value is around 0.5 on average. Thus the distribution
is 70% narrower in the direction corresponding to that
eigenvalue.

The consequences of such a deformation (i.e. , that the
underlying spherical distribution appears squashed in the
sample) are considerable in attempting to fit to the sam-
ple distribution. For example, let us consider again the fit
of the true value X; = 0 to the sample distribution Q~.
This corresponds to a zero-parameter fit and so it is only
the goodness of fit that can be addressed: y2 is expected
to have an average value of D. Our results are shown in
Table I. For example, we find, for the correlated fit, g /D
is 3.03 with D = 5 and N = 10. Using the usual criterion
of y2 per degree of freedom would then imply that there
was a very small probability (about 1%) that X; = 0 was
the maximum of the distribution, which is quite wrong.
This large y value arises since in this case the average
value of y involves the sum of the inverses of the eigen-
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TABLE II. Data points N needed for smallest eigenvalue
0.5 arith dimension D.

D
3
5
7

10
15
20

N
16
35
55
86

140
196

values of C. A very small eigenvalue will have the effect
of increasing g2 inore than that obtained from the esti-
mated value of 1 for each eigenvalue. Again this e6'ect is
of O(1/N) as for the correlated case above. An analytic
calculation for large N gives y2/D = 1 + (D + 1)/N.
The difference is that the coefficient now increases with
D. Moreover, the expression becomes in6nite at N = D.

This effect can be even more pronounced in making
a constrained fit since the distortion of the surface may
shift the best 6t value as well as affecting the probability
of the 6t. We simulated such a 6t by 6nding the most
probable point such that

X; = F;(a) = ah, i .
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FIG. 1. The largest and smallest eigenvalues of C for N
data samples in D dimensions.

This is a one parameter 6t and the true value of a is zero.
For each sample, we 6nd the a value giving the maximum
probability Qo. We can also estimate the error on this
best fit parameter within each sample by looking at the
second derivative of y2 with respect to a in the usual
way [1]. For N = 10 and D = 5 for a correlated fit, we

6nd the error on the parameter a to be 0.056 on average
over many samples. However, the average over many
samples of the best fit value of a itself is (a2) = 0.20.
Thus, in this case, the error ascribed to the best 6t value
from the study of the quadratic sample surface is too
small —about one-half of that actually present. This is a
warning that the severe distortion of the sample Gaussian
surface can upset the naive error analysis.

For the same situation with N = 10 and D = 5 but an
uncorrelated fit, we get (a2) = 0.10 both from the sec-

ond derivative error analysis within each sample and also
&om the observed distribution of the best fit over many
samples. Thus a diagonal y fit gives quite consistent
results. Moreover, the true error on a is larger from a
correlated fit. This can be understood since the diagonal

fit makes a stronger assumption about the nature of
the data set and so allows a tighter 6t.

Furthermore, the acceptability of these fits can be ob-
tained from the value of y2/(D —1) itself. We find a
much bigger value for a correlated fit (2.26) than for a
diagonal fit (1.28). At face value, this would suggest that
the correlated fit was unacceptable. This latter effect is
just the same as that described before and is due to the
bias &om the sample Huctuations at small ¹

A standard method of finding the error on a sample
value of 6t parameters a is to repeat the whole fit with
many bootstrap samples derived &om the original sam-
ple. This corresponds to using samples of the point dis-
tribution Qs (X) introduced earlier. A small bias can be
introduced by this procedure and this can be corrected
as discussed in the Appendix. With the correlated y2

method, this is inherently dangerous since the fluctua-
tions in the shape of the Gaussian surface can be exag-
gerated. For example, if N = 10 and D = 5, a bootstrap
sample of N may only have contributions from five data
sets. Thus the smallest eigenvalue will be zero with dras-
tic consequences. In contrast, the bootstrap method is
a completely satisfactory method for finding the overall
errors with a diagonal y fit. A jackknife method can
also be used instead of the bootstrap method but it has
no obvious advantages except less computation.

Thus we learn that a representation of the probability
surface as a general Gaussian is rather unstable if the
number of data points is insufficient. In general, we need
N ~ D2 to have a reasonable description with no big
distortion of the shape in any direction. This can be
understood roughly from the fact that the D-dimensional
surface is determined by D(D + 1)/2 real numbers. The
distortion averaged over all directions is less than that in
the worst direction. Thus the y estimates made above
need N ) 10(D + 1) to be less than 10%. To avoid
serious fiuctuations in sample estimates, it is prudent to
take N ) max�(D2, 10(D+ 1)).

If one has fewer data points than this, then either one
can estimate the expected probability distributions by
simulation as in the example above, or one can assume
a simpler model of the surface. The simplest model is
to treat the data as uncorrelated. Then one has effec-

tively D one-dimensional situations. Put another way,
the minimum width is now to be taken along the pre-
scribed D axes not along any arbitrary direction. For
example, we use the same distribution introduced above
but now with the different dimensions treated as uncorre-
lated. Then with D = 7, N = 13 data points is sufBcient
to have the smallest eigenvalue greater than 0.5 (to be
compared with N = 55 needed for correlated y ). Thus
the shape is much more stable to Quctuations. Of course,
this approach is only acceptable if there are indeed no
statistically significant correlations in the data, as is the
case in our example distribution.

A more realistic approach is to model such correla-
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tions by less parameters than a general quadratic —for
instance, an overall common magnitude may represent
the main effect. So putting y; = x;/xi with yi ——xi
may result in y being less correlated than x. Such an ap-
proach has the side eKect that y; are no longer unbiased
estimators. To proceed, one makes a diagonal y fit to
the data sample in the y variables. The error in the fit
parameters is taken from a bootstrap analysis in which
the original z data are bootstrapped. Then any bias can
be accommodated as shown in the Appendix.

IV. CONCLUSION

Do not use correlated y~ with N data samples of D
data unless N ) max (D2, 10(D + 1)). If you have in-
sufficien data samples but there is statistically signifi-
cant evidence for correlation among the data, then try
to model any correlations among the data with less pa-
rameters. Even if some correlation among the data is
suspected, it is reasonable to use an uncorrelated y2 fit
but to estimate the errors on the parameters by an over-
all bootstrap of the fit rather than &om the dependence
of y2 on the parameters. The only drawback of such a
procedure is that it may be difficult to estimate the good-
ness of fit since the correlations among the data may not
have been adequately treated.
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APPENDIX: BOOTSTRAP BIASES

Here we discuss biases that can result from evaluating
the average of some function of a quantity which is an
unbiased estimator. We define an unbiased estimator as
one for which the sample value X averaged over many
samples is the true average x. So (z) = z. We have in
mind that z will be the sample average of some unbi-
ased data and its distribution Qs can be estimated by
bootstrap as described in Sec. II.

Now if z is unbiased then f (x) will in general be biased.
A simple illustration that explains the origin of this effect
is that if x has a gaussian distribution with standard error
0', then (z 6 0')2 = x2 + o2 6 2xa'. Hence the average of

z2 is shifted systematically f'rom the (average of z)2.
If the distribution of x is Qs(z) with sample average

x, then the average of f over this distribution is

1f = Czf(x)QS(x) = f(z) + e—f"(z),
2

where i) is the variance of the distribution Qg. This is a
rough estimate of the bias. Now the distribution Qs(x) is
itself only a sample and it has a sample mean x which is
distributed (in an unbiased way) around the true mean z
with distribution Qp with variance uz. To O(1/N), the
true variance i)z is equal to the sample variance v. The
average over many samples gives

1
(f(z)) = f deaf(x)qp(r —z) f(x)+ vf"(z)—.

2
Thus there is a further bias &om the distribution of

the sample mean. The key is that this bias is the same

(to order 1/N) as that above: namely, the difFerence be-
tween the sample values of f and f(z) This. suggests the
unbiased estimator for f(z):

Now this expression can be evaluated in a straightforward
way by bootstrap simulation. The average of f(z) over
the bootstrap samples gives f, while f(z) is obtained
by evaluating f with the sample average z. Note that
since x is an unbiased estimator, the average of x over
the bootstrap samples should be the same as the sample
average in the limit of many bootstrap samples.

This technique is also valid for the parameters a of a fit
to the data. The combination 2a —(a)~ will be unbiased
where the angular brackets here imply an average of the
a values obtained &om fitting many bootstrap samples
of the original data set.

The unbiased estimator can be thought of as the naive
value f(x) with a systematic correction [f(z) —f] This.
correction will itself have some error when evaluated &om
one data sample. An estimate of the error to be ascribed
to this unbiased estimator can be obtained by a further
bootstrap. One creates many first level bootstrap sam-

ples, and for each one calculates fU by a further nested
bootstrap. Then the variance of the values of fU ob-
tained is available. This is computationally demanding
but straightforward in practice. This is analogous to the
nested jackknife method proposed to deal with this same
problem of bias [4].
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