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Perturbative analysis far Kaplan's lattice chiral fermiens
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Perturbation theory for lattice fermions with domain wall mass terms is developed and is applied
to investigate the chiral Schwinger model formulated on the lattice by Kaplan's method. %e calculate
the effective action for gauge fields to one loop, and find that it contains a longitudinal component
even for anomaly-free cases. From the e8'ective action we obtain gauge anomalies and Chem-Simons
currents without ambiguity. We also show that the current corresponding to the fermion number
has a nonzero divergence and it Bows off the wall into the extra dimension. Similar results are
obtained for a proposal by Shamir, who used a constant mass term with free boundaries instead of
domain walls.

PACS number(s): 11.15.Ha, 11.30.Rd

I. INTRODUCTION

Construction of chiral gauge theories is one of the long-
standing problems of lattice field theories. Because of
the fermion doubling phenomenon, a naively discretized
lattice fermion field yields 2" fermion modes, half of one
chirality and half of the other, so that the theory is non-
chiral. Several lattice approaches have been proposed to
define chiral gauge theories, but so far none of them have
been proven to work successfully.

Kaplan has proposed a new approach [1] to this prob-
lem. He suggested that it may be possible to simulate
the behavior of massless chiral fermions in 2k dimensions

by a lattice theory of massive fermions in 2k + 1 dimen-
sions if the fermion mass has a shape of a domain wall in
the (2k+1)th dimension. He showed for the weak gauge
coupling limit that massless chiral states arise as zero
modes bound to the 2k-dimensional domain wall while
aO doublers can be given large gauge invariant masses.
If the chiral fermion content that appears on the domain
wall is anomalous the 2k-dimensional gauge current flows
ofI' the wall into the extra dimension so that the the-
ory cannot be 2k dimensional. Therefore he argued that
this approach possibly simulates the 2k-dimensional chi-

ral fermions only for anomaly-free cases.
His idea was tested for smooth external gauge fields.

Jansen [2] showed numerically that in the case of the
chiral Schwinger model in two dimensions with three
fermions of charge 3, 4, and 5 the anomalies in the gauge
currents cancel on the wall. The Chem-Simons current
far away from the domain wall was calculated in Ref. [3).
It is shown that the (2k+1)th component of the current
is nonzero in the positive mass region and zero in the neg-
ative mass region such that the derivative of the current
cancels the 2k-dimensional gauge anomaly on the wall,
as was argued in Ref. [1).

In the continuum perturbation theory Frolov and
Slavnov [4] proposed a gauge invariant regularization of
the standard modeI through an infinite tower of regula-
tor fields. Some similarity between their proposal and
the Kaplan's approach was pointed out by Narayanan

and Neuberger [5). It has been also shown that the chi-
ral fermion determinant can be nonperturbatively defined
as an overlap of two vacua [6], which can be extended to
lattice theories. Using the Narayanan-Neuberger point
of view, we observed in Ref. [7] that nongauge (chiral)
anomalies are correctly reproduced within the Frolov-
Slavnov regularization method.

The results above provide positive indications that Ka-
plan's method for chiral fermion may work. There ex-

ists, however, several potential problems in his approach.
Since the original (2k+1)-dimensional model is vector-
like, there always exists an antichiral mode, localized on
an antidomain wall formed by periodicity of the extra
dimension. If the chiral mode and the antichiral mode
are paired into a Dirac mode, this approach fails to sim-
ulate chiral gauge theories. Without dynamical gauge
fields, the overlap between the chiral mode and the an-
tichiral mode is suppressed as O(e ) where I is the size
of the extra dimension. If gauge fields become dynami-
cal, the overlap depends on the gauge coupling. In the
original paper [1] the strong coupling limit of the gauge
coupling in the extra dimension was proposed to suppress
the overlap. However, a mean-field calculation [8] in this
limit indicated that the chiral mode disappears and the
model becomes vectorlike.

More recently Distler and Rey [9] pointed out that
the Kaplan's method may have a problem in repro-
ducing fermion number nonconservation expected in
the standard model. Using the two-dimensional chi-
ral Schwinger model they argued that either the two-
dimensional fermion number current is exactly conserved
or the light degree of freedom fIows ofI' the wall into
the extra dimension so that the model can not be two-
dimensional.

In this paper we carry out a detailed perturbative
analysis of the Kaplan's proposal for smooth background
gauge fields on a finite lattice taking the chiral Schwinger
model in two-dimensions as a concrete example. In Sec.
II, we formulate the lattice perturbation theory for the
Kaplan's method with the periodic boundary condition.
Since translational invariance is violated by domain wall
mass terms, usual Feynman rules in the momentum space
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cannot be used except in the regions far away &om the
domain wall [3]. To perform perturbative calculations
near or on the wall, we use the Feynman rules in real
space of the extra dimension, as proposed in Ref. [5].
We calculate the fermion propagator for the periodic
boundary condition, which reproduces the fermion prop-
agator in Ref. [5] near the origin of the extra dimen-
sion. A similar calculation is also made for the constant
fermion mass with free boundaries in the (2k+1)th di-
mension. As shown by Shamir [10] the constant mass
term with this boundary condition can also produce the
chiral zero mode on the 2k-dimensional boundary. The
results are similar but simpler than those by the Ka-
plan's method. In Sec. III, using the Feynman rules of
Sec. II we calculate a fermion one-loop effective action
for the U(1) gauge field of the chiral Schwinger model
simulated by the Kaplan's method. We find that the
effective action contains the longitudinal component as
well as parity-odd terms, and that this longitudinal com-
ponent, which breaks gauge invariance, remains nonzero
even for anomaly-&ee cases. This result is compared with
those of the conventional Wilson fermion formulation of
this model [11]. In Sec. IV we derive gauge anomalies
as well as the Chem-Simons current &om the effective
action without ambiguity. Then we show that the cur-
rent corresponding to the fermion number has a nonzero
divergence and the fermion number current flows ofF the
walls into the extra dimension. In Sec. V, we give our
conclusions and discussions.

II. ACTION, FERMION PROPAGATOR, AND
CHIRAL ZERO MODES

A. Lattice action

We consider a vector gauge theory in D = 2k+1 di-
mensions with a domain wall mass term. For later conve-
nience we use the notation of Ref. [5], where the fermionic
action is written in terms of a d = 2k dimensional theory
with in6nitely many Bavors. Our action is denoted as

The action for gauge field S~ is given by

S~ = P ) ) Re(Tr[U„„(n, s)]j
np)v s

+PD ) ) Re(Tr[U„D(n, 8)]j, (2)

where p, v run &om 1 to d, n is a point on a d-dimensional
lattice, and s a coordinate in the extra dimension; P is
the inverse gauge coupling for plaquettes U„„and PD
that for plaquettes U„D. In general we can take P g PD.
The fermionic part of the action S~ is given by

Sp- = —) ) g, (n)p„[U, „(n)g, (n+ p) —U, „(n —p)g, (n —y,)]+) ) g, (n)[Mph+ MpPL, ]ay/i(n)
n, p s n s,t

+—) ) @,(n) [U, „(n)g, (n+ y, ) + U, „(n —p)g, (n —p) —2$, (n)),
ni p 8

where 8, t are considered as flavor indices, P~~l, ——(1 +
»1+1)/2

1—
4a YD [Us,DQs+1 Us —1,DWa —1]

(Mp), i ——U, D (n) b,+1 i —a(8)b, i,

(Mp), i ——U, 1 D(n)b, 1 i —a(8)b', i,

(4a)

(4b)

1—
+ pa[Us, D4's+1 +—Ua 1,DQa 12/a] —+ M(8)gs@s—,

a(s) = 1 —mp[sgn(s+ 2) ~ sgu(L —8 —2)]
1 1
21 —mp, ——&s&L ——

27
1+mp, —L —

2 &s& —2,
(5)

for L& 8 & L. It is e—asy to see [5] that S~ above is
identical to the Kaplan s action in D = 2k+1 dimensions
[1) with the Wilson parameter r = 1. In fact the second
term in Eq. (3) can be rewritten as

and U, „(n), U, D(n) are link variables for gauge fields.
We consider the above model with periodic boundaries
in the extra dimension, so that s, t run &om —L to L —1,
and we take

with M(s) = mp[sgn(8 + 1/2) sgn(L —8 —1/2)]. Note
that our action is slightly difFerent from that of Ref. [5]:
We have the Dth component of the link variable U, D(n)
and all link variables have s dependence. With the gauge
fixing condition U, D(n) = 1 for all 8 and n [9], our action
becomes almost identical to that of Ref. [5], but still the
s dependence exists in our link variables in d dimensions.
The model in Ref. [5] corresponds to our model at PD =
oo, where s dependences of gauge fields are completely
suppressed, and the model at PD = 0 was investigated
by the mean-field method [8].
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B. Chiral zero modes

We now consider chiral zero modes of the action S~ in
the weak coupling limit, i.e., VU, „=VU, D = 1. Accord-
ing to Ref. [5], the right-handed zero modes are given by
zero modes of the operator M and the left-handed zero
modes by those of the operator M~, where

0.5

Zero mode function
L=100

U {ITl, = 0.1)
U, (m, = P. f)
UR (m, = 0.5)
U, (m, = 0.5)

(M)„=(Mo) „+&(p)
2

(M )„=(M, )„+ b„,&(p)
2

with g(p) = P" i 2[cos(p&a) —1) in momentum space of
d dimensions. It is noted that 0 & —(7(p) & 4d and zero
modes exist if and only if —V'(p) & 2mo [3]. Hereafter
we only consider the case that 0 ( mp & 2. In this
range of m0, there is only one right-handed zero mode

uR satisfying MuR = 0, which is given by -0.5
-100 -50 0

S
50 100

uR(s) = &

'
[1 —V'(p)/2 —mo]'Co ' for s & 0,

, [1 —(7(p)/2+ mo]'Co for s & 0,

FIG. 1. Two zero modes uL, and uR as a function of s at
mo ——0.1 and Os5 for p~

——p2
——0. We take L = 100.

where the d-dimensional momentum p has to be re-
stricted to 0 & mo + V'(p)/2 so that (1 —'(7/2 —mo) & 1.
The normalization constant C0 takes the value

1 —[1 —V'(p) /2 —mo] 1 —[1 —7'(p) /2 + mo]+
mo + V(p)/2 mo —'(7 (p) /2

This zero mode is localized around s = 0. On a finite
lattice (i.e. , L g oo) with the periodic boundary condi-
tion, there exists another zero mode uL with the oppo-
site chirality satisfying M uL ——0, which is given by
uL(s) = uR(L —t —1) and is localized around s = L
The overlap between the two zero modes vanishes expo-
nentially as L ~ oo:

C. Fermion propagator and zero modes

The fermion propagator in d-dimensional momentum
space and in real Dth space has been obtained in Ref. [5]
for the infinite Dth space (i.e. , L = oo ). It is not difficult
to obtain the fermion propagator for a finite lattice with
periodic boundaries. We have

l
SR(p), t

——— i Q p„p„+M GL(p) PL
)

l i ) p„p„+Mt GR(p)
- st

&(p)) uR(s)uL(s) = Co L
l

1 — " —m
)

&(p)x
I

1 — " +mo
l

)
; 0, (10)

We i11ustrate the shape of the two zero modes uR and uL
at mo ——0.1 and 0.5 for p = 0 in Fig. 1.

where

1 1

+MtM—p + p + (12)

with p„= sin(p„a) . Explicit expressions for GL and GR
are complicated in general, but they become simple for
large L where we neglect terms of order O(e '

) with
c ) 0. We obtain

gee
—n+ ls tl + (gL g)e ts+—(s+t) +—(gR ~)e n+(2L —s —t—) (s t & 0)

GL(p). t =
&

~
—cx+s+cx t + ~ —n+(L —s) —cx (L+t)

&cx s —cx+t + g —n (L+s)—n+(L —t)

Ce —n ls —tl + (g C)en (s+t) + (g C)e n(2L+s+t—)

(s &o, t &o),

(s&0, t&0),

(s, t & o),
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Be +~'
~ + (Atr —B)e +('+t+ l + (AL —B)e +( ' l (s t & —1)

GR(p). t =
&

—~+ (s+1)+a (t+1) A
—cx+ (L—s—1)—cx (L+t+1)Re + Le

a (s+1)—a+ (t+1) t A
—a (L+s+1)—a+ (L—t —1)Re- + Le

(8& —1, t& —1),

(s& —1, t&-1),
(14)

Ge n—Is tl —+ (A G)ea (s+t+2l + (A G)e a (2L+s+t+2) (s t & 1)

where

'7(p)
a~ ——1 — p mo,

2

1 f 1+@21
a~ = arccosh —

~
a~ +

~

& 0,).

(15a)

(15b)

G g q B —a+~s —t~ + AI —n+(s+t) + AI a+(s+t —2L)
L(P)st = Re )

(18)

G i i B -a+Is —tl + AI —a+(s+tl + A~ a+(s+t 2Ll
R(p) t= e Re Le

(19)

where

1
AL ——

a+e + —a e

1
AR ——

a e — —a e ++
A' =Bl —a e

I )a+e~+ —1
AR = —Be +, (20)

(15c) and now 0 & s, t & L Singul. arities occur only in AL at

p = 0 such that

B= 1

2a+sinha+
' C= 1

2a sinho.
(15d) mp(2 —mp)

A
p2 a2 (21)

For ]s], [t~ && L the propagator above coincides with
that of Ref. [5]. From the form of AL, A~, B, and C, it
is easy to see [5] that singularities occur only in AL at
p= 0:

Thus, the propagator describes a right-handed massless
fermion around one boundary at s, t = 0 and a left-
handed massless around the other boundary at s, t = I.

mp(4 —mp)
4p2a2 p m 0. D. Fermion Feynman rules

Therefore the propagator GL describes a massless right-
handed fermion around 8, t = 0 and GR a massless left-
handed fermion around ~s], ~t] = L, which correspond to
the two zero modes in the previous subsection. Later we
use the above forms of the fermion propagator to calcu-
late fermion one-loop diagrams. It is also noted that the
fermion propagator away from the two domain walls ap-
proaches the Wilson fermion propagator with a constant
mass term, i.e.,

U, „(n) = exp[iagA„(s, n+ p/2)], (22)

In this subsection, we write down the lattice Feynman
rules for fermions relevant for fermion one-loop calcula-
tions, which will be performed in the next section. We
Grst choose the axial gauge 6xing U, D

——1. Although
the full gauge symmetries in D dimensions are lost, the
theory is still invariant under gauge transformations in-

dependent of s [9]. We consider the limit of small d-

dimensional gauge coupling, and take

dpD iapz) (s—t)

2' ip p+ip~p~ 6 mp —V(p) + 1 —cos(p~a)

for 1 « ~s~, ]t], ~L —s], ]L —t] with st & 0 where +mp is
taken for s, t & 0 and —mo for 8, t ( 0. Therefore the
calculation in Ref. [3] is valid in this region of s and t

Before closing this subsection, we give the form of prop-
agator for the Shamir's f'ree boundary fermions [10]. This
is again given by Eq. (11)with M, t ——h, +q t —a+8, t and

M„= b, q t —a+8, t. For large L, it becomes [10]

where a is the lattice spacing, and g oc 1/~P is the gauge
coupling constant whose mass dimension is 2 D/2 (mass—
dimension of the gauge fields A„ is D/2 —1). It is noted
that the other gauge coupling g, oc 1/~P, is not neces-
sarily small and can be made arbitrarily large. We con-
sider Feynman rules in momentum space for the physical
d dimensions but in real space for the extra dimension.

The fermion propagator is given by

(@.(—p)A(p)) = ~s(p).t,

where S~ has been given in Eq. (11) with Eqs. (13,14)
for the Kaplan's fermions or with Eqs. (18,19) for the
Shamir's fermions.
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The fermion vertex coupled to a single gauge field is
given by

agM. (q)~, ~z'
I l

A, (s, p —q)&. (—p) (24)i &q+p~

2

~,~ =———) A~(s p)A-(t -p)I" (p).q

p, s, t
2 ) A„(s,p)A„(t, —p) [I~ l + I~ ]"„, (26)

p, s, t

BS~'(q) = iC„(q)p„+ S„(q) with
8 qIqa

C„(q) = cos(q„a) and S„(q) = sin(q„a). From this form
of the vertex it is easy to see that the fermion tadpole
diagram for an external gauge field vanishes identically.

The fermion vertex with two gauge fields is given by

where

, tr ( s„ss' (q+ —
) ss(q+ p)

a

x S„Ss' (q+ —
) Ss(q) )

s' (27)

—a —Q, (q) 8 SFi &q+p&
2

' " F
q 2

A (s, p —q)M. (—p)

(25)

d2
(q) ~ (q)]" ' a

where A„(s,p) = A„(s,p —pi)A„(s, pi) with p and pi
fixed.

with tr meaning trace over spinor indices.

(28)

III. PERTURBATIVE CALCULATIONS FOR THE
CHIRAL SCHWINGER MODEL B. Evaluation of zero mode contributions

In the following two sections we analyze the chiral
Schwinger model formulated via the Kaplan's method for
lattice chiral fermions. Using the Feynman rules of the
previous section for D = 3, we calculate the effective
action for external gauge fields, from which we derive

gauge anomalies, Chem-Simons current, and anomaly of
the fermion number current. We perform the calcula-
tions for the Shamir's method in parallel with those for
the Kaplan's method.

A. E8'ective action at fermion one-loop level

Since [A&, A.„] = 0 for U(l) gauge fields, all diagrams
with odd number of external gauge fields vanishes iden-

tically. Furthermore diagrams with four or more exter-
nal gauge fields are all convergent. Therefore only the
diagrams with two external gauge fields are potentially
divergent. The effective action for two external gauge
fields is denoted by

To evaluate I""(p) we decompose it into two parts as

I" (p) = I." (p)+ [I" (p) - I." (p)] (29)

where I&" is the contribution of zero modes and I" —I0
is the remaining contribution. For I0 we replace the
integrand of I"" with that in the a ~ 0 limit, and we

obtain

Io (p).~ =) 8
—V(q)(2mp ( +)

t & & [ .-(q+ p)- -]G'(q+ p). P
xi' [

—ipse(q+ p)pa]Gx(q+ p)i, P~'I, (30)

Gx (q) si ——lim Gx (q)„=, Fx (s, t),0 1

where Fx (s, t) = Fx (t, s) and

with X = I for ~s~, ]tj = 0, or X = R for ~s~, ~t~ = I The.
zero mode propagators t & are given by

(1 —m )'+' for s, t &0,

FI, (s t) = x ( (1 —mo)'(1+ mo) for s ) 0 and t ( 0,mo(4 —mo) t

4
(32)

, (1+mo)'+' for s, t &0,

r (1 )2I —s —q —2 for s, t &0,
4 2

FII(s, t) = x & (1 —mo) ' (1+mo) ' for s ) 0 and t & 0,

)
—2I —s —q —2 for s, t &0,
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for the Kaplan's fermion with the domain wall mass
terms, and

Fr, (s, t) = mo(2 —m())(l —m())'+,
FJt(s, t) = m()(2 —mo)(1 —m())

(34a)

(34b)

for the Shamir's fermion with the constant mass terms
and free boundaries.

We evaluate Io "(p) in the a ~ 0 liinit. In this limit,

C. Evaluation of remaining contributions

We consider the remaining terms in I" . Since the
combination I""(p) —If"(p) is infrared finite, we can
change the integration variable &om q to qa and take the
a -+ 0 limit in the integrand. Thus we obtain

lim I" (p) —Io "(p) = I""(0)= —[ie" I'cs + h""K],
am0 2'

(q+p) qptr[px'7 'Y 'Y 'Yp] ~

—V(q) &2m, ( ) jq+ sj'q'
(q+ p)-qp, t [I'x~ ~ ~-~p]

q pt2ptrpiA 2 t qttr p)Aptr t
oX ) (35)

where
eptr d2q

ct(2ts) = 2rr ttrf[S„Sr (q)Sr(q)]„

x]S Sr'(q.)Sr(q)lr)(22,)

therefore, we obtain

1
I(Atr

( ) ) ~
~ )Aq2 ptrpiA +

/

8)ttr piAptr1.'o' p
X

gpv
Fx (s, t)', (36)

) Fx(s, t)' = Fx(s, s), ) Fx(s, t)' =1. (37)
s, t

where bl, = 1 and b~ = —1. It is noted that Fx satisfies

d qK(' t) =2~, (tr([~.S~'(q)S~(q)].i

x[~.S '(q)S~(q)] .)
b, itr[8„'S—~'(q) S» (q)]„). (4o)

Here no summation over p, v is implied.
The parity-odd term I'cs is the coefBcient function of a

three-dimensional Chem-Simons term in the axial gauge
[9], which satisfies I'cs(s, t) = —I'cs(t, s). It is easZ to
show that

).I'cs(, t) =—

�

~tV $2q dqtr j8„S& (q)B„Ss(q)) = —2 . "tr jB„S+ (q)Sy(q))
@v=6

This would be zero if there were no infrared singularities in S~. However, because of the contribution from zero
modes, S~ is singular at q = 0. Therefore,

~/2) I'cs(s t) = —) I'cs(t s) = 4 lim ") bx[S„(q)C„(q)Gx(q)]„
t t

vr/2 d= —4) .~xFx(s, s)»m 2' q + E

Fx(s, s) .
q= —) 2hx ' arctan-

7rX

= —) Fx(s, s),
X'

- r/2

gv —6

(41)

where Fx(s, t) is given in the previous subsection.
Since SJ; becomes the Wilson fermion propagator with constant mass term for 1 (( ]s~, ]t], ~L —s~, ~L —

t~ with st ) 0
[see Eq. (17) ], it becomes

d3) t'ct(', t)A„(', t»A„(t, —tt): —." fAtcA„(tt. tr)trA„( tr„—t», , tr{]S„S— S,]]S,S-'S,]]S.S S ]},
s, t

(42)
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which coincides with the result of Ref. [3]. This is a good
check of our calculation. From Ref. [3] we obtain

) K(s, t) = ) K(t, s)

dps A„(ps, p) ps A„( ps—,
—p) x (

1 for +ma,

for —mo.

t ([B„S 'B„S ]„d2g

27r 2

+ [B„S~'SF]„)
1= ) —Fx(s, s). (44)

(43) The derivation of the last equality is similar to that of
Eq. (41).

D. Total contributions

The parity-even term K satisfies K(s, t) = K(t, s) and Combining the above contributions we finally obtain

2

S,~ ————) d z ) Fx(s, t) A„(s, z)
~

h" — " —
~
A„(t, z)

K(s, t) —) Fx (s, t)—' A„(s, z)A„(t, z)
X

+ ) ib F (s, t) —"A„(s,z)e "0 A (t, z) + iI' (s, t)e""A„(s,z)A (t, z) (45)

This is the main result of this paper. It is noted that
the above formula is valid for both the Kaplan and the
Shamir methods. The following consequences can be
drawn from Eq. (45) above.

The parity-odd terms, which are proportional to e ",
are unambiguously defined, contrary to the case of the
continuum regularization for anomaly-free chiral gauge
theories [4] which only regulates the parity even terms
[5,7]. These parity-odd terms break gauge invariance in
the two-dimensional sense.

For anomalous chiral Schwinger model, the parity-odd
term with X = R is localized around s = 0 and that
for X = L is localized around s = L. The effective ac-
tion above for anomalous chiral Schwinger model via Ka-
plan's method or Shamir's variation is different from the
one via the usual %'ilson fermion in two dimensions [11]:
The term proportional to 1 gs, which cannot be evalu-
ated analytically for s-dependent gauge fields, is special
for chiral fermions from three-dimensional theories, and
the presence of this term prevents us from concluding
whether the anomalous chiral Schwinger model can be
consistently defined via Kaplan's (Shamir's) method.

For anomaly-free cases such that g& g&
——PI gI, , the

parity-odd terms are exactly canceled locally in s space.
Here gR~L, ~

is the coupling constant of a fermion with pos-
itive (negative) mo which generate a right-handed (left-
handed) zero mode around s = 0. The simplest but
nontrivial example is a Pythagorean case, gR ——3, 4 and
gI. = 5 [9]. Even for these anomaly-free cases, the lon-
gitudinal term, whose coefficient is K —Fz/2, remains
nonzero in the effective action, so that gauge invariance
in the two-dimensional sense is violated. In this regard

the form of the effective action via Kaplan's (Shamir's)
method is similar to the one via the usual Wilson fermion
[11].

Let us consider the effective action for s-independent
gauge fields as in Ref. [5]. Since P „e""A„(z)A„(z) = 0
for s-independent gauge fields, the Chem-Simons term
vanishes. The other parity-odd term is canceled between
the two zero modes since Px, , bxFx(s, t) = 0. The
longitudinal term also vanishes due to the identity

). Fx(s, t)

t
(46)

[see Eqs. (37) and (44)]. Therefore the effective action
becomes

2

S i = —2— d z A„(x)
~

8" — " ~A„(z)
4m "

q )

This effective action is transverse and thus gauge in-
variant in the two-dimensional sense. Both zero modes
around s = 0 and s = L equally contribute so that a fac-
tor 2 appears in the above result. This is consistent with
the general formula derived in Ref. [6]. The anomalous
chiral Schwinger model cannot be simulated by Kaplan's
(Shamir's) method with the s-independent gauge fields,
since the gauge fields see both of the zero modes so that it
fails to reproduce the parity-odd term, expected to exist
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IV. ANOMALIES IN THE CHIRAL SCHWINGER
MODEL

of various currents in the presence of background gauge
fields. Let us define the fermion number current as

A. Currents and their divergence (48)

From the effective action obtained in the previous sec-
tion, we can calculate the vacuum expectation values

where the index g in the current explicitly shows the
charge of the fermion. From Eq. (45) we obtain

Js(s, z) = i—) ) b Fx(s, t) (e "B„+e"B„)—A (t, x) —2I' e""A„(t,z)
X

g - -,r'„„B„B.l t'
——) 2) Fx(s, t)'

~

6~" — " "
~

A„(t, z) + 2K(s, t) —) Fx(s, t)' A„(t, z)

Jg,odd + Jg,even
P p (49)

where Js' ~s is a parity-odd current (the first two terms)
and Js""' is a parity-even current (the last two terms).
Hereafter all J„should be understood as vacuum ex-
pectation values, though ( ) is suppressed. From
the fermion number current the gauge current for a
fermion with charge g is easily constructed as J„(s,x) =
gJs(s, z).

Divergences of the parity-odd and parity-even currents
become

Rom Eqs. (37,41,44).

C. Gauge anomalies

Ts(s, z) = ) gzC(s, t)To(t, z), (54)

The gauge anomaly for a fermion with a charge g, de-
noted Ts, is defined by Ts = gB„Js' s~, and it becomes

(50)

B„J„(,) = ' —) ) bxFx(, t) —2I' (, t)
X

x e""B„A„(t,z),

where

T (t, x) = i e""B„A„(t,z—)4'
is the gauge anomaly of a two-dimensional theory, and

B„J",„,„(s,z) = —) ) Fx(s, t) —2K(s, t)
X

x B„A„(t,x). (51)

B. Gauge invariance

) ).hxF (s, t) —2I cs(, t)
X

= ) .bx [Fx(t, t) —Fx (t, t) ] = 0, (52)

As mentioned in Sec. II, the action in A3 ——0 gauge
is invariant under 8-independent gauge transformation.
This invariance implies P, B„J„(s,x) = 0. This identity
is satis6ed in our calculation of the effective action, since

C(s, t) = ) hxFx(s, t)'-2rcs(s, t)
X

(56)

g2) D(s, t) —B„A„(t,x),
t

(57)

where D(s, t) = gx Fx(s, t)2 —2K(s, t).
The one-loop integral (39) defining I'cs is too compli-

cated to calculate analytically. For t-independent gauge
fields A„(t,x) = A„(x) there is a considerable simplifica-
tion and we obtain

represents the spread of the gauge anomaly over the third
direction due to the spread of zero modes. This spread
of the anomaly has been observed in a numerical compu-
tation [2]. It is noted that the divergence of the gauge
current J„also contains parity-even contributions, given
by

Ts(s, x) = g C(s)T (x), (58)

) ) Fx(s, t) —2K(s, t)
e

= ) [Ex(t, t) —Fx(t, t)] = 0,
X

where

(53)
and

T (x) = i ""eAB„( )z—0 . 1

4m
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C(s) = ) C(s, t) = 2) bxF~(s, s)
X

'
(I —m, )"—(1 —m, )'('- -'l].(4 — ') for 8&0,

x &

, I(I+m )
' —(1+m ) ( +'+'i] for s(0,

(60)

for Kaplan's method. We plot C(s) as a function of s at
mp = 0.1 and 0.5 in Fig. 2. For Shamir's method, we
obtain

C(s) = 2mo(2 —mo) (1 —mo)
' —(1 —mo)

(61)

and plot this in Fig. 3. It is noted that there is no parity-
even contribution in B„J„since P, D(s, t) = 0 in this
case.

action does not depend on As, and it is difficult to calcu-
late J3 analytically except in the region away from do-
main walls [3]. However, for t-independent gauge fields,
we can obtain the Chem-Simons current everywhere via
the relation BsgJs,&&(s, z) = Ts—, which becomes

Js (s + 2, z) —Js (s —~, z) = g C(s) x T (z). (62)

Taking Js (s + 2, z) = g I(s)T (z), we obtain

D. Chem-Simons current
I(s+ —,') —I(s —

—,') = C(s). (63)

From the three-dimensional point of view, the gauge
anomaly should be canceled in such a way that T~ +
c)sgJs (s, z) = 0 [1,3], where Js is the third component
of the Chem-Simons current for the three-dimensional
vector gauge theory. With our gauge fixing the effective

We have to solve this equation with the boundary con-
dition I(s) ~ —2 as s m +oo [3]. For a finite s space
8 ~ +oo means 1 (( 8 && I .

For Kaplan's method we obtain

1.5

C(s) for Kaplan's method
L=100

1.5

C(s) for Shamir's method
L=100

1.0
m0 = 0.1

------ m = 0.50 1.0
m, =0.1

------ m —0 50

0.5- 0.5

0.0 ~i---
(0 0.00

-1.0

-1.5
-100 -50 0

S
50 100

-1.5
0 50

S
100

FIG. 2. The coefficient of the anomaly C(s) for Kaplan's
method as a function of s at mp ——0.1 and 0.5 for L = 100.

FIG. 3. The coefficient of the anomaly C(s) for Shamir's
method as a function of s at vnp = 0.1 and 0.5 for I = 100.
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2(L,—8)2+ mo
[(1 —mp )2 +(1—mp)

2
1

2(L+8)

I(s —
2

=
2 mp [(1+mp 2. + (1+mp)

2

p(s&L)

L&s&0.
(64)

hair s m

28 1 m )2(L—a+1)]—-') = 2[(1 —mp)2'+ (1 —mp

ll satis es eThis so u io ica fi the other boundary

means 1 « —s « L for a e
as a functus. on oof s at mo ——0.1 an
S

'
ethod we obtain

$ will be seenof Imp] s ouh ld be equal for aall fermions, as w
below.

a U 1 symmetry [9] correspondingeth y ()
t hase rotations o t eeto indepen en p

correspon
'

ding currents are

JgsJ = g Js'+g2Js'+gsJg,

which is plotted in Fig. 5.

(65)
g2JR Jg1

P

= Jg&+J ~ +J ~

(66)

model andan chiral Schwinger my go
I
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Bp J„(s,z) = (g2gi —gig2) ) C(8, t)T (t, z) = 0. (68)

The third current, which corresponds to the fermion
number of the theory, is anomalous, since

or„J„(s,z) = (gi + g2 —gs) ) C(s, t)T (t, z). (69)

Kaplan's method as well as Shamir's successfully gives
a nonzero divergence for the fermion number current,
though the coefFicient C(s, t) has a finite width. For t-
independent gauge fields, this anomaly becomes

(gi y gg g3)C(s)T (z), (70)

where C(s) is almost localized at s = 0 and at s = I
as seen in Figs. 2 and 3. Since the fermion number
is conserved in the three-dimensional theory, the third
component of the fermion number current should satisfy
Os Js + (gi + gQ g3)C(s)T (z) = 0 [9]. Therefore we
obtain

3 (,*) = (gi + g2 gs)I(s)T (z). (71)

V. CONCLUSIONS

In this paper we have formulated a lattice pertur-
bative expansion for Kaplan's chiral fermion theories,
extending the suggestion by Narayanan and Neuberger
[5]. Applying our perturbative technique to the chiral
Schwinger model formulated via Kaplan's or Shamir's
method, we have calculated the fermion one-loop eifec-
tive action for gauge fields. The efFective action con-
tains parity-odd terms and longitudinal terms, both of
which break two-dimensional gauge invariance, and the
anomaly of the gauge current is obtained from the ef-

fective action. The gauge anomaly is calculable in Ka-
plan's (Shamir's) method if the perturbative expansion is
carefully formulated. For the anomaly-free Pythagorean
chiral Schwinger model, the fermion number current is
anomalous. To obtain this anomaly the fermion number
current should not be summed over 8, in contrast to the
case of the continuum calculation [7], where the anomaly
comes from an infinite summation over s.

The main conclusions drawn from the results are as
follows.

(1) Anomaly of the fermion number current is shown
to be nonzero in this method, though the current flows off
walls into the extra dimension. Since the current is exter-
nal we feel that this does not affect the dynamics of the
model and therefore does not spoil the two-dimensional
nature of the chiral zero mode. The three-dimensional

nature of Kaplan's (Shamir's) formulation manifests it-
self only in the nonconservation of the fermion number,
which is expected to occur in nature.

(2) Two-dimensional gauge invariance at low energy
cannot be assured by Kaplan's (Shamir's) method, ex-
cept for 8-independent gauge fields, even for anomaly-
free cases. This is similar to the situation with lattice
chiral gauge theories formulated with the ordinary Wil-
son mass term [ll]. In this point Kaplan's (Shamir's)
method does not seem better than the conventional ap-
proaches. At this moment it is not clear whether this
violation of gauge invariance spoils the whole program of
this method. In particular the efFect of the longitudinal
component of gauge fields has to be analyzed further. It
may be better to use s-independent gauge fields instead
of 8-dependent ones since the problematic longitudinal
term automatically disappears in this case.

(3) If the theory is anomaly free and gauge fields
are s independent [5], the gauge invariance as a two-

dimensional theory can be maintained. However, the
gauge fields feel both of the zero modes even in the
L m oo limit, and the fermion loop contribution to the ef-

fective action is twice as large as the one expected from a
single chiral fermion. Therefore we have to take a square
root of the fermion determinant to obtain the correct
contribution. For fermion quantities such as the fermion
number current, however, it seems possible to separate
the contribution of the chiral zero mode at 8 = 0 from
that of the antichiral zero mode at s = L, as seen in the
previous section. Finally it should be mentioned that the
antichiral mode at 8 = L is a consequence of the finite-
ness of the extra dimension. If L is strictly infinite from
the beginning [5], only a chiral zero mode exists; hence,
the theory becomes ch,iral. Therefore, it is interesting to
study this model in detail.

Perturbative calculations performed in this paper can
be extended to (4+1)-dimensional theories. Of course
actual calculations become much more complicated and
diKcult because of severe ultraviolet divergences in 4+1
dimensions than in 2+1 dimensions. Work in this direc-
tion is in progress.

Note added. After finishing this work, a new paper
by Narayanan and Neuberger [13] appeared. In their
paper the gauge anomaly for the chiral Schwinger model
was calculated semianalytically via the overlap formula
of Ref. [6].
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