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Kramers equation simulation algorithm.
II. Application to the Gross-Neveu model
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We continue the investigation on the applications of the Kramers equation to the numerical
simulation of field theoretic models. In a previous paper we described the theory and proposed
various algorithms. Here, we compare the simplest of them with the hybrid Monte Carlo algorithm
studying the two-dimensional lattice Gross-Neveu model. We used a Symanzik-improved action
with dynamical Wilson fermions. Both the algorithms allow for the determination of the critical
mass. Their performances in the definite phase simulations are comparable with the hybrid Monte
Carlo algorithm. For the two methods, the numerical values of the measured quantities agree within
the errors and are compatible with the theoretical predictions; moreover, the Kramers algorithm is
safer from the point of view of numerical precision.

PACS number(s): 11.15.Ha, 05.50.+q, 11.30.Na, 11.30.Rd

I. INTRODUCTION

In a previous work [1], we used a compact operato-
rial formalism to study the applicability of the Kramers
equation to the numerical simulation of quantum field
theories on the lattice. In the standard Monte Carlo ap-
proach, we must generate ensembles of states distributed
according to a given statistical weight. In [1], our strat-
egy has been to realize a diffusive process involving the
physical degrees of freedom but also auxiliary variables
which drive the diffusion. The Anal equilibrium distribu-
tion approximates the desired one. The resulting schemes
can be made exact by a global accept-reject test and
provide thus generalizations of the usual hybrid Monte
Carlo algorithm [2—4] and of the exact hyperbolic algo-
rithm [5]. For these algorithms, a good behavior with
increasing volume and from the point of view of numeri-
cal precision is expected. Moreover, in [1] we have shown
how the freedom in the auxiliary variables sector may be
used to reduce significantly the autocorrelations in the
free Beld case. In this paper we study the behavior of
the simplest among the proposed schemes. We take the
hybrid Monte Carlo algorithm as a reference point. Our
theoretical laboratory is the two-dimensional N-fermion
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Gross-Neveu model with Wilson fermions [6]. This model
is an asymptotically free purely fermionic model with a
discrete ps symmetry whose dynamical breakdown leads
to mass generation. It has an exact large N solution
and is liX expandable [7] allowing for analytical inves-
tigation of its nonperturbative properties. In our lat-
tice simulation of the model we use the Wilson formula-
tion to avoid the doubling problem and let the fermion
number N be free. However, using Wilson fermions, a
bare mass must be introduced and tuned in order to re-
store the chiral symmetry in the continuum limit. The
restoration of chiral symmetry is a significant test for
new algorithms: previous works [6,8] showed that nonex-
act algorithms (Langevin, pseudofermions) fail to locate
the critical point by means of mixed-phase techniques.
In this work we shall show that the algorithm based on
the Kramers equation does not encounter this problem.
The use of two-dimensional four-fermions models as pro-
totypes for realistic theories such as /CD is somewhat
limited. However, a nontrivial model with a discrete chi-
ral symmetry breaking and many dynamical fermionic
degrees of freedom implies enough problems to be a se-
vere test for our algorithms.

In Sec. II we introduce the Gross-Neveu model. In
Sec. III we describe explicitly the algorithms that we have
used. In Sec. IV we discuss how we compared them. In
Sec. V we review the previous simulation of the Kramers
algorithm and of the Symanzik-improved Gross-Neveu
model. We then describe our explicit numerical simula-
tion and present the results. Finally, Sec. VI is devoted
to a short summary and conclusions.
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II. THE GROSS-NEVEU MODEL

The action of the model in the continuum is

limit; this is reminiscent of the doubling problem since
one has exactly

(2.5)

+my 7p ex=1 . . . N (21)

where g( l is a multiplet of two-dimensional Dirac
fermions.

Rewriting the quartic interaction with a Lagrange mul-

tiplier we obtain

0 + m ~~~ ~~~ + 0
2g r

(2.2)

0~Vs4, (2.3)

As a consequence, the potential of o, related to that of
the composite field gQ, is symmetric under the exchange
0. ~ —~ and possesses two degenerate minima. The chi-
ral symmetry is spontaneously broken. The same holds
on the lattice, but in the Wilson formulation we need an
explicit mass term to control mass renormalization.

The 1/N expansion of the model is obtained by inte-
grating out the fermion fields. By introducing the large-
N coupling A = Ng and the field Z = 0 + m, the corre-
sponding "effective" action is

The manifest U(N) symmetry of the model can be en-
larged to O(2N) by writing the fermionic fields in terms
of their Hermitian Majorana components [9]. We refer to
[10] for a discussion of the renormalization properties of
the continuum model in the two formulations with and
without the auxiliary o field. In the chiral limit the model
enjoys the discrete symmetry

where r is the Wilson (or Symanzik) coefficient of the
mass term which solves the doubling. Quantities such as
the asymmetry in the steepness of the potential in the
two minima can be 1/N expanded and computed.

Since we are in two dimensions, Gnite volume ef-

fects are particularly dangerous. Therefore we improved
the lattice Wilson action at the tree-level following the
method of Symanzik [11].The resulting action improved
at order 0(a2) is

2~=) 0 &Pl 38+~ —& ~)

1—
12(& +2~ —& -2~) l

~S+ (4n+2i;——4g~+i- + 6Q —4Qn i- +—g —2i-. )
2

+) g„g„(m + (r„) + —0„' (2.6)

M = ip„p„+Ms(p) + Z, (2.7)

where we have defined

where we have understood the flavor indices. The Fermi
fields have antisymmetric boundary conditions in the
temporal direction. The parameter rs is the Wilson
parameter for the Symanzik action. We have taken
rs = 1/3 remarking that the strong coupling matching
between Wilson and Symanzik actions is at rs = 1/3 r~.
In [6] the interested reader can find a detailed account
of the leading and next-to-leading 1/N expansion of the
model described by Eq. (2.6). In momentum representa-
tion, the fermionic matrix is

M(Z) =/+ E. (2.4)

Ms(p) = rs ) p4, —

P

p& = 2sin—2' (2 g)

In a perturbative expansion in powers of g, the fermions
remain massless in the chiral model. However, already in
the leading order of the 1/N expansion, a nonzero expec-
tation value of the E field is dynamically generated play-
ing the role of a nonperturbative fermion mass. From the
study of the phase diagram of the model we can infer the
existence of a critical point in the weak coupling region.
At this point the chiral symmetry can be recovered (and
dynamically broken) with an appropriate choice of the
bare critical mass. The vacuum expectation value (Z) is
exponentially depressed as A ~ 0 following the leading
renormalization group prediction (Z) = +A exp( —ir/A).
Actually, on a finite lattice at nonzero A one chooses the
perturbative mass in order to have a double-well —shaped
potential for the Z Geld having two degenerate minima.
The E ~ —Z symmetry is recovered only in the chiral

1
pp = sin pp 1 + — p

On a finite I x T lattice, the form Eq. (2.4) of the effective
action together with Eq. (2.7) allows for the computation
of any relevant quantity in the leading 1/N limit.

III. DESCRIPTION OF THE ALGORITHMS

We now describe in a unified scheme the algorithms
that we have used. Vfe give all the details shLowing how
the fermionic fields are dealt with. Because of the par-
ticular structure of M(Z), we may introduce N real aux-
iliary fields y~ l (o( = 1, . . . , N and Dirac indices under-
stood) and conjugate bosonic momenta ir to form the
extended action
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(E —m)2 1

2A 2
sites

+ -~i-l M(Z) M(Z) (3 1)

For each given configuration of E and of the auxiliary
pseudofermionic fields y, we define the following N fields

C i l(Z) = M(Z) M(Z) (3.2)

where the sparse matrix inversion is performed by means
of the conjugate gradient algorithm.

The y fields action is quadratic. Therefore, we can
extract randomly the y fields according to their exact
equilibrium distribution and evolve the other fields be-
tween two successive such refreshments. Note that this
procedure introduces another free parameter, namely, the
frequency of the y fields update.

The single sweep updating is given by the following
algorithm [1].

Refresh the auxiliary y~ ~ according to

gil=M (K)gi l

(3 3)

Here, g~ ~ and g are vectors of Gaussian random numbers
with zero mean and unit variance. This step must be
done only every k sweeps.

Update the momenta 7t according to

vr = e ~'sr+ gl —e (3 4)

where ( is a Gaussian random number with zero mean
and unit variance. The parameters p, ~ are positive real
numbers.

Integrate the equations of motion associated with the
force

(n is a site index) using NMD iterations of the leap-frog
scheme,

7r(t + e/2) = x(t) + s/2 F(Z(t)),
E(t + e) = E(t) + svr(t + e/2),
7r(t + e) = s (t + e/2) + s/2 F(K(t + e)),

(3 6)

(3.7)
(3.8)

or its dual form in which the roles of E and vr are inter-
changed.

Perform a Metropolis test between the states before
and after the integration of the equations of motion.
If the test fails, reject the proposal for the Z field and
negate all the momenta:

~ ~ ~old o (3 9)

otherwise accept the proposal for both Z and vr.

F„(Z) = ——(E„—m) + —C'i ' [MT(Z)M(Z)]C' l

n

(3.5)

We have four free parameters: k, %MD, ~, and p. De-
tailed balance is exactly satisfied for each set of values
they take .The algorithm under study (which we shall
call "Kramers algorithm") is obtained with NMD ——1

and arbitrary values of k, p, and e. The usual hybrid
Monte Carlo algorithm corresponds to k = 1, g ~ cx;

and arbitrary values of N p, ~. Of course, in the hybrid
Monte Carlo case, there is no mixing between the old and
new momenta and it is unnecessary to negate them on

rejection.
We remark that from a physical point of view, the

Kramers algorithm possesses two distinct time steps:
e;„=ep drives the "irreversible" motion, whereas e„
~ drives the "reversible" one. Apart from eKects com-

ing from the negation of momenta, we expect that the
Kramers and the hybrid Monte Carlo algorithms to be-
have similarly when e;„, 1/NMD with e„

IV. COMPARISON

In [1] we argued that the Kramers algorithm should
behave better than the hybrid Monte Carlo algorithm
for large volumes. The argument is rather naive and
must be confirmed numerically. Consider a lattice model
satisfying L )) (, where L is the lattice size and ( the
correlation length. On general grounds, the acceptance
rate of the hybrid Monte Carlo algorithm is known to
be [3)

P „-erfc(cNMDe v V). (4 1)

Optimal tuning is expected to require NMD 1/e giv-

ing a sweep-sweep correlation 7 1/e. If the volume is

varied, we have to scale e V / in order to keep the
acceptance probability constant. The advantage of the
Kramers algorithm is that %MD ——1. If we neglect the
influence of the momenta negation on the acceptance,
then the scaling relation is modified to e V / . If,
moreover, the optimal autocorrelations stay —1/c then
it follows that on large volumes the hybrid Monte Carlo
algorithm behaves worse than Kramers algorithm.

Empirically the maximum acceptable value for ~ in the
Kramers algorithm was rather greater than the one of
the hybrid Monte Carlo algorithm. This is reasonable
because, at fixed e, as %MD is increased the acceptance
rate decreases before reaching a plateau.

Another advantage of the Kramers algorithm is related
to the numerical precision, the opportunity of having
%MD ——1 without penalty is surely welcome; for instance,
in QCD, as the volume (I ) grows or the quark mass (m)
is decreased we must have NMD L/m ~ and some pro-
tection seems necessary to protect irreversibility against
the accumulation of numerical errors.

To compare quantitatively the performances of the two
algorithms we must determine which is the computer
time needed to have a given statistical error. If we denote
with T~ the integrated autocorrelation of the observable
0, then the computational cost of an algorithm measur-
ing 0 is proportional to 27~ which is the reduction fac-
tor which determines the actual number of independent
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measures. This factor must be multiplied by the number
of conjugate gradient inversions needed to make a sin-
gle sweep. Indeed, in a model with dynamical fermions
it is reasonable to neglect the time expended during all
the other steps of the algorithm. In our scheme we have
blocks each made of NMD molecular dynamics steps fol-
lowed by a Metropolis test and we refresh the pseu-
dofermionic Gelds g only at the end of k such blocks.
Let us call LF~ and LF2 the two dual second order leap-
frog schemes (see [1] for a compact review of symplectic
integrators) which we sketch as

LFi . rr(tp) m Z(t+e/2) m rr(t+e),

LF2 . Z(tp) w m. (t + e/2) m Z(t + e).
(4.2)

Keeping y Gxed, a new conjugate gradient inversion is
needed only when the Z field configuration or the g fields
change. The advantage of the LFi scheme is that it com-
putes the old and new action at the same evolution times
at which the force itself must be evaluated. The quantity
determining the computational cost is the number of in-
versions per sweep computed between two refreshments
ofy:

C(k~ +MD)LFg = +MD + 1/k~

(4.3)
C(k, %MD) LF, = %MD + 1 + 1/k,

and the actual performance is just this (0-independent)
factor corrected by the (0-dependent) autocorrelation.
From Eq. (4.3) we see that LF2 must certainly be ruled
out at small %MD. For what concerns k, in the hybrid
Monte Carlo case the 1/k term is usually not very im-
portant because NMD &) 1. However, with the Kramers
algorithm, a large k is twice better than k = 1. Moreover
k ) 1 may allow for a more eKcient exploration of the
phase space.

We remark that our conclusions hold provided that
LFq and LF2 have the same behavior concerning auto-
correlations.

In this scheme the variation of the fermionic contribution
to the action is expanded to the lowest order in the Z field

variation hZ:

(Z m)' $Z+ —bZ' —N TrM '(Z) bZ.
2A 2A

(5 1)

The fermionic matrix inversion was performed computing

{5.2)

as a Monte Carlo average in the presence of the quadratic
action S~ = ytM iy. The systematic error to be kept
under control has two contributions. It gets an easily
controllable statistical contribution from the inversion
and a difFicult contribution due to the truncation of the
fermionic term at small but nonzero bZ. An extrapo-
lation as ((hZ) ) -+ 0 must be performed. Using the
mixed-phase technique, the critical bare mass m, was
determined at different values of the parameters and of
the step ((bZ)2). The extrapolation did not agree with
the theoretical prediction in the case of (Z) and was ex-
plained as a wrong determination of m, . Moreover, devi-
ations from the Schwinger-Dyson equations of the model
did not show the expected linear dependence on ((bZ)2).
These problems were absent, for (Z2) which is expected
to have a milder dependence on m, .

In [8], the same kind of measurements were done us-

ing two difFerent algorithms: the Langevin one with bi-
linear noise and the hybrid Monte Carlo algorithm. In
both cases, the inversion of the fermionic matrix was
performed by the conjugate gradient algorithm. The
Langevin algorithm is not exact; given a step e the up-
date of the bosonic Geld is computed as

S
Z(x, t+ e) = Z(x, t) —e + Qe rl(x, t)

Z x, t

(5.3)

V. SIMULATION AND NUMERICAL RESULTS

A. Review of previous results

where rl and gf are Gaussian fields normalized as

(g(x, t)g(x', t')) = 2b, b~i . (5.4)

Previous study of the Kramers atgorithm

In [5], the Kramers algorithm was applied to the sim-
ulation of quenched compact @ED on a 8 lattice in the
disordered phase. Measures of the average plaquette and
of the average 2 x 2 Wilson loop were made using also
the hybrid Monte Carlo algorithm as a reference method.
The performances of the two algorithms turned out to be
comparable.

An extrapolation as e ~ 0 is needed. The Langevin al-
gorithm was found to be completely unable to determine
the critical mass since the critical point was so unstable
that difFerent seeds of the random number generator gave
difFerent results. Using the theoretical value for the crit-
ical mass the simulation in the definite phase was stable
only for the smallest values of e. On the other hand, the
hybrid Monte Carlo simulations turned out to be per-
fectly stable in both the mixed and definite phase simu-
lations. The results (including the stable Langevin runs)
were consistent with the theoretical predictions.

g. Previous study of the improved Gross ¹veu mo-del B. Our results

In [6], the Symanzik improved Gross-Neveu model was
studied on the lattice using the pseudofermion algorithm.

In this work, we have repeated the measures of [6,8) us-
ing our favored algorithm. Moreover we have studied the
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variation of the performance as the tuning is varied, in-
formation which is very important from a practical point
of view.

The numerical simulation has been done on the APE
supercomputer [12]. The model operating at Pisa is the
so called "tube" machine, a 128 processor parallel com-
puter with a peak performance of 6 GigaFlops. All the
code has been written in the high-level APESE language
[13].

We have used the conjugate gradient algorithm (see
[14,15] for a discussion oriented to the Dirac lattice oper-
ator) to obtain iteratively the inverse of the sparse sym-
metric matrix A = M (0)M(0). We did not use any
kind of preconditioning, the improved Symanzik action
has next-to-neighbors interactions and an efBcient incom-

plete factorization is not trivial. Moreover, the condition
number of A becomes larger when E m 0, but at A = 2.0
on the 40 lattice, the average E (which is the fermion

mass) and its Huctuations provide a good rate of cori-

vergence and the inversion problem was not critical. We
tried also to invert directly the matrix M using the bi-

conjugate gradient algorithm [16] but we did not see any
advantage. The stopping condition in the conjugate gra-
dient algorithm is usually chosen to be a bound such as

II&II «cG]]b~
/

(5.5)

r is the residual vector: in the following we shall denote
with r„ the recursive residual computed on fly by the al-

gorithm and we shall denote with r„ the residual defined

by

(5.6)

We stress an important fact: let x* be the exact solu-

tion, the conjugate gradient algorithm guarantees that

]
~z„—z*]

~

monotonically decreases. On the other hand
and llr„ll may show relatively larg~ fluctuations.

Hence a decreasing trend must be checked on the suc-

cession of residuals to keep under control this efI'ect. Let
us now address the problem of numerical precision. In
the absence of rounding errors there would be no differ-

ence at all between the two residuals r„and r„as can

be checked inductively using the explicit form of the al-

gorithm. The effect of rounding errors associated to a
finite precision machine can be easily studied on simple

model problems (such as harmonic problems on regular

lattices). The result is that, given the exact solution z*,
the recursive residual r„ tends to zero, while the true
error has a positive in6mum

ration of ]/z„—z*]fj][z*[/ and ]]r„]f happens roughly at
the same time. In a realistic problem x* is not known

and one can study the behavior of r„and r„. The depar-
ture of r„ from r„ is typically very slow until the machine

precision is reached and saturation sets up. Our stopping
condition has been

(5.9)

and we checked on configurations taken randomly during
the runs that the saturation of ~]r„~] was reached.

We used a 40 lattice with N = 10 flavors. In the
framework of the 1/X expansion one can study the width

of the scaling window, which is roughly measured by
looking at the value of E in the crossover region where

the weak and strong coupling expressions for the per-
turbative mass are equal. A detailed discussion of the
scaling properties of the model including next-to-leading

1/1V corrections and finite size effects can be found in [6].
We have chosen A = 2.0 at which the correlation length
is about three lattice spacings and we are in the scal-

ing window. The volume factor in favor of the improved

Symanzik action is about 15, and at L = 40 we expect
from the finite lattice 1/X prediction to have very small

finite size efI'ects.

We determined the critical Wilson mass at which a first

order transition takes place using mixed-phase runs and

measured in the two definite phases (E) and the compos-
ite (E ), which provides informations on the steepness of
the vacua. For these quantities the next-to-leading 1/X
corrections [6] can be computed and compared with the
numerical simulation.

On the 40 lattice the theoretical predictions are m, =
—0.974 and

(E ) = —0293,

(Z, ) = 0.311,

(E ), =- 0.190,

(Z+), = 0.146.

(5.10)

(5.11)

We started taking k = 1. After a very rough tuning of p
and c using definite phase runs with the 1/X theoretical
mass, we choose p = 5.0 and e = 0.06 for the mixed-

phase runs. Setting half of the lattice to the positive
vacuum and the other half to the negative one, after a
short therrnalization, a kink configuration appears which

is very long lived when the bare mass is at its critical
value. From inspection of the leading effective potential
one checks that bare masses smaller than the critical one
favors the negative vacuum and vice versa. In Fig. 1 we

show the time evolution of (Z) for 16 different values of
the bare mass starting from m = —0.958 separated by
Am, = 0.002. The result is

(5 7)
m, = —0.969 + 0.002 . (5.12)

of the order of the machine precision. The small number

c may be further reduced if all the scalar products in the
algorithm are implemented as binary sums. The same
saturation phenomena occurs to the residual r: namely,

(5.8)

Here c' is a number which depends on the machine word

length, but also on the norm of A. Typically the satu-

In this part of the simulation we did not insist on a heavy
tuning of p, e, and k because we were mainly interested
in the exact determination of m . We then turned to a
detailed tuning of p and e using definite phase runs at the
critical point. During these runs A; was set to the unopti-
mized value 6. In Table I we report measures of autocor-
relations obtained in the two phases of the model with
different values of p and the common choice r = 0.09.
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0.4

0.3—

0.2

0.1

-0.1

FIG. 1. Time evolution of
(Z) for 16 difFerent values of the
bare mass.
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TABLE I. Horowitz e = 0.09, k = 6.

(~0 ~)
(—,o.2)
(—,o.5)
(—,1.o)
(—,2.0)
(—,5.o)
(+, 0.2)
(+, o.5)
(+, 1.0)
(+, 2.o)
(+, 5.o)

53(7)
49(5)
44(4)
58(7)
64(8)
43(5)
38(3)
44(5)
41(4)
66(9)

7 g2

42(6)
4o(4)
37(3)
46(5)
47(5)
35(4)
29(3)
31(3)
29(2)
41(5)

P „was about 70—
75%%up and greater values e did show a

sharp decrease in P „.We did not find any systematic
dependence of p for the two measured expectation values
of (Z) and (Z'), .

All autocorrelations are computed with the automatic
windowing algorithm [17]by varying the e constant in the
range 4.0—8.0, cross-checking the result with the statisti-
cal inefficiency [18] and using consistently at least 1500'
sweeps.

In the mixed-phase, unoptimized hybrid Monte Carlo
runs gave the same value for the critical mass. We did
not compare the performances because optimization in
mixed-phase runs was too time consuming. In the def-

inite phase runs we have taken e = 0.06 and %MD = 8
corresponding to a ratio of C factors between the two al-

gorithms of about 7.7. The related rescaled autocorrela-
tions are shown in Table II. The resulting expectation val-

ues were always consistent with the Kramers algorithm
and the 1/N predictions.

Best estimates for the average values extracted only
from the runs with the Kramers algorithm at different p
are

TABLE II. Hybrid (rescaled by C) s = 0.06, NMn = 8.

Zp

44(3)
26(2)

7+2
32(2)
19(1)

(Z ) = —0.27960.002, (Z ), = 0.189+0.001,

(5.13)

(~+) = o.316 + 0.002, (&+), = 0.145 + 0.001,

(5.14)

and are compatible with both the theoretical predictions
and the hybrid Monte Carlo results.

From the data obtained we see that in the negative
phase p = 1.0 is the optimal value for both the opera-
tors. The same happens in the positive phase but with a
smaller optimal value p+ ——0.5. We can see that in the
negative phase the performances of the two algorithms
are comparable, whereas in the positive one the Kramers
algorithm is about 1.5 times slower.

The existence of an optimal range for the parameter p
at fixed e is easily understood as follows. In the p ~ oo
the hybrid Monte Carlo with %MD = 1 is recovered and
it is well known that this is far &om being an optimized
regime. In the opposite limit, p -+ 0, we obtain the
classical equations of motion in the background y Geld
between two refreshments. Of course molecular dynamics
without noise is highly self-correlated and again a large
v. results. In the Gross-Neveu model the p ~ 0 limit
is particularly dangerous. We can study the N = oo
model taking for m, the theoretical prediction including
the next-to-leading 1/N correction on the 402 lattice at
A = 2.0. One finds that the Z efFective potential is so
unbalanced that one of the two minima disappears. In
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other words, if the quantum (noise) dynamics is switched
off keeping all the parameters fixed, the behavior of the
system changes dramatically.

VI. SUMMARY AND CONCLUSIONS

This work is a first numerical application of a previous
investigation on the Kramers equation approach to the
lattice simulations of Beld theoretical models. We pro-
posed many schemes, among which the simplest (intro-
duced in [5]) is studied here. The situation which we have

chosen should be one of the worst possible cases, namely
a model without bosonic degrees of freedom and with a
dynamical symmetry-breaking mechanism which needs a
peculiar determination of the critical point. The main

point of our simulation is that a not so critical tuning of
its parameters gives a performance comparable to that of
the hybrid Monte Carlo algorithm. This is quite impor-
tant with an eye on realistic models, like @CD, where a

precise tuning is too expensive to be done. Moreover, the
numerical precision argument makes us confident that
the present algorithm can be valuable as an independent
check for eventual biases of the hybrid Monte Carlo algo-
rithm. Simple scaling arguments (possibly naive because
of the peculiar negation of momenta) indicate that the

proposed algorithm should improve its performances with

greater volumes or smaller fermion masses.

ACKNOVTLEDC MENTS

We thank Professor Paolo Rossi for a careful reading of
the manuscript and many useful discussions. We thank
Professor Raffaele Tripiccione for continuous help in de-

veloping the codes for the APE machine. We also ac-

knowledge the support of many people from the Rome
APE group, particularly Simone Cabasino and Gian
Marco Todesco.

[1] M. Beccaria snd G. Curci (unpublished).

[2] S. Duane, A. D. Kennedy, B. J. Pendleton, snd D.
Rowan, Phys. Lett. B 195, 216 (1987).

[3] M. Creutz, Phys. Rev. D 38, 1228 (1988); R. Gupts, G.
W. Kilcup, and S. R. Shsrpe, ibid. 38, 1278 (1988); S.
Gupta, A. Irback, F. Karsch, and B. Petersson, Phys.
Lett. B 242, 437 (1990).

[4] A. M. Horowitz, Phys. Lett. 156B, 89 (1985); A. M.

Horowitz, Nucl. Phys. B280, 510 (1987).
[5] A. M. Horowitz, Phys. Lett. B 268, 247 (1991).
[6] M. Csmpostrini, G. Curci, snd P. Rossi, Nucl. Phys.

B314, 467 (1989).
[7] J. F. Schonfeld, Nucl. Phys. B95, 148 (1975); R. G. Root,

Phys. Rev. D ll, 831 (1975).
[8] M. Csmpostrini snd P. Rossi, Nucl. Phys. B329, 753

(1990).
[9] B. Rosenstein, B. J. Warr, snd S. H. Park, Phys. Rep.

205, 59 (1991).

[10] C. Luperini snd P. Rossi, Ann. Phys. (N.Y.) 212, 371

(1991).
[11] K. Symsnzik, in Mathematical Problems in Theoretical

Physics, edited by R. Schrader et a/. , Lecture Notes in

Physics Vol. 153 (Springer, Berlin, 1983).
[12] A. Bsrtolini et al. , Int. J. Mod. Phys. C 4, 969 (1993).
[13] A. Bartoloni et al. , Int. J. Mod. Phys. C 4, 955 (1993).
[14] M. Hestenes and E. Stiefel, Natl. Bur. Stand. J. Res. 49,

409 (1952).
[15] P. Rossi, C. T. H. Davies, and G. P. Lepage, Nucl. Phys.

B297, 287 (1988).
[16] W. H. Press and S. A. Teukolsky, Comput. Phys. 6 (4),

400 (1992).
[17] A. Soksl, in Cours de Troisieme Cycle de ls Physique

en Suisse Romsnde (unpublished); N. Madras snd A. D.
Soksl, J. Stat. Phys. 50, 109 (1988).

[18] R. Friedberg snd J.E. Cameron, J. Chem. Phys. 52, 6049
(1970)


