
PHYSICAL REVIEW D VOLUME 49, NUMBER 5 1 MARCH 1994

Lattice computation of the decay constants of B and D mesons
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A lattice calculation of the pseudoscalar decay constant of heavy-light mesons is reported. Results are
obtained (in the quenched approximation) from lattices at P=6.3 through a procedure that interpolates
between the static approximation of Eichten and the conventional ("heavy" Wilson fermion) method.
The previously observed discrepancy between these two approaches has been resolved: we find the scal-

ing quantity fv'M to be significantly smaller than previous calculations had indicated (e.g., at /=6. 0);
in addition, we discuss a modification which is required in normalizing the conventional amplitude to
correct for large-am lattice errors. This change guarantees that fv'M will smoothly approach its value

in the static limit. From the numerical interpolation of the static and intermediate-mass results, we find,

in units of MeV, fs =187(10)+34+15, fe =207(9)+34+22, fv =208(9)+35+12, and
s

fv =230(7)+30+18, where the first error is statistical and the second two are estimates of systematics
s

due to (1) fitting and large-am effects and (2) scaling. The ratios are better determined: fp/fv fs/fs,
fs/fv„, and fs /fv are all 0.90 within a total error of less than 0.05. The purely static values are

s s

fs"'=235(20)+21 MeV, fs'" =259(19)+19MeV, and fs'"/fs"'=0. 90(2)+0.02. Finally, using lattices at
s s

P=6.3, P=6.0, and P=5.7 and extrapolating to the limit of zero lattice spacing, we have computed

f„/f =1.08+0.03+0.08 in the quenched approximation, where the first error includes statistical and

fitting errors, and the second is an estimate of the error in extrapolation to the continuum limit,

PACS number(s): 12.38.Gc, 11.15.Ha, 14.40.Lb, 14.40.Nd

I. INTRODUCTION

The calculation of transition amplitudes for heavy-
light mesons has recently been a topic of great interest,
from both a theoretical and a phenomenological stand-
point. Theoretically, the static limit, in which the mass
of the heavy quark is taken a priori to infinity, has been
used to define an effective theory for quantum chromo-
dynamics (QCD) which has additional fiavor and spin
symmetries [1,2]. In continuutn calculations, these sym-
metries have been used to compute relations among vari-
ous heavy-meson form factors. On the lattice, the sym-
metry limit is equally well defined: the heavy quark is re-
placed with a static color source, so only the light quark
degree of freedom is subject to the usual constraint im-
posed by the lattice cutoff, m «1/a, where m denotes
the quark mass and a the grid spacing. This approach,
introduced in [1], provides a method for explicit calcula-
tion of heavy-light amplitudes, such as the static limit of
the pseudoscalar decay constants f«. (We use Q to
denote a heavy quark, such as b or c, and q a light quark,

du, rso)
From the point of view of phenomenology, a great deal

of emphasis has in particular been placed on ftt. Not-
withstanding the physical process through which it is

defined (i.e., the leptonic decay of the 8), which may in
the future be accessible to experiment, ftt already plays
an important role in standard model (SM) physics. As a
characteristic example, consider the usual parametriza-
tion of the 8-8 mixing parameter, x„z ——b,M/I . From
the evaluation of the top-quark-dominated box diagram,
one finds

xb~ h ( rn( )
I ~,g I'ft't 8tt,

where h is a rapidly increasing function of m„ the top
quark mass, V,~ is a Cabibbo-Kobayashi-Maskawa
(CKM) matrix element, and 8tt is the so-called "8 pa-
rameter" relating the full matrix element of the weak in-
teraction Hamiltonian to its value in the vacuum inser-
tion approximation [3]. The measurement of xt,z only
determines the fundamental SM parameter V,z if ftt and

Bz are known.
With respect to lattice @CD, there are essential (tech-

nical) differences which affect the calculation of these two
quantities. Because it is computed as a dimensionless ra-
tio, 8tt is more amenable than ftt to the "conventional"
method (i.e., using one light and one heavy Wilson
quark). These calculations have indicated that vacuum
insertion (i.e., B& ——1) becomes a fairly good approxima-
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tion at moderately heavy quark masses; the extrapolation
of this result to the B meson is then straightforward [4,5].
The large-am normalization effects (see Secs. IID and
IIE} cancel in the ratio that defines B~ .For f~ such
leading-order lattice errors will no longer cancel.
Nonetheless, a similar strategy is possible in principle:
one may simulate moderately heavy mesons where large-
am& lattice errors are presumed to be small and look for
asymptotic behavior in f. Indeed, in the static limit one
has [1]

f&—M :const
M —moo

(1.2)

II. LATTICE DECAY CQNSTANTS

(up to corrections logarithmic in m&, the heavy-quark
mass [2]). This may then provide a guide for extrapolat-
ing to the physical B ineson [4—6].

In early calculations at moderate couplings (i.e.,
P=5.7, 5.9, and 6.0), it became evident that there was a
significant discrepancy between the two approaches:
ft't"', the decay constant computed in the static limit, was
much larger than extrapolations from lighter masses indi-
cated it should be [7—10]. It was difficult to know
whether one or both of the methods suffered from large
systematic errors, and because of this, interpolating be-
tween them, as a way of computing the finite-mass
corrections to the scaling law (1.2), was certainly unreli-
able. In this paper we demonstrate the elimination of this
discrepancy; thus we are able to interpolate smoothly be-
tween the intermediate-mass regime of the conventional
calculation and the infinite-mass limit of the static one in
order to compute physical amplitudes. The discrepancy
has disappeared as a result of two essential differences.
First, as compared to the results mentioned above, we
find a smaller static result for P from our computation at
P=6.3. Second, we find that "large-am&" errors must be
corrected for, even when only "moderately" heavy
quarks are used, in order for the conventional amplitude
to smoothly approach the correct static limit as the
heavy-quark mass m is increased.

This paper is organized as follows. In Sec. II we dis-
cuss some essential details of the calculation, emphasizing
in particular how the correction of large-am& errors in
the conventional method ensures that it (approximately)
match, in the limit m&~ 00, with the static result. The
numerical techniques used throughout the calculation are
described in Sec. III. In Sec. IV, we discuss the details of
the analysis and present results for f~, fthm, fD, fD and

S S

their jackknifed ratios, including estimates for various

systematic errors. We summarize and make concluding
remarks in Sec. V. Some of these results have been re-
ported previously [11].

(Ol ~ „-"'(x)IP(p) &
= if p„e (2.1)

where our normalization is such that f'"i"=132 MeV.
We compute ft through the evaluation of two lattice
correlation functions:

G„(t t,—)=g—(olT/I, (x, t)y (O, t, )lo&, (2.2a)

and

G~(t —t, )=g (OlTy(x, t)yt(o, t, )lo& . (2.2b)

For the conventional calculation, we write A„, the lattice
axial vector current, and y, the pseudoscalar interpolat-
ing operator, as

A„(x ) =q(x )y„y5Q(x),

y(x) =q(x)y5Q(x),

(2.3a)

(2.3b)

XyPg(x, t;0,0; U)] (2.4)

The essential formula for the calculation follows from the
insertion of a complete set of states between the interpo-
lating operators in Eq. (2.2). Excited states are exponen-
tially damped, and thus at large times (with to:0) we ob-—
tain

GA(t)
«I &OIP & &P Ix'Io& uM,/t[-

2Mp
—aM ltl

e (2.5a)

and

& olx IP & (P lxtlo &

B ltl~ ~ 2M'

where the fields q(x) and Q(x) are the "light" and
"heavy" fermionic fields, respectively, defined via the
standard Wilson action with quark hopping parameters

Kq and K& . In this section, we choose y to be the local
operator given above, primarily to simplify the discussion
of various normalization issues which are independent of
the source type. For the actual computations, we have
used both local sources and extended (or "smeared")
sources in a fixed gauge, the latter as a means of improv-
ing the numerical precision of the results. The specific
techniques will be discussed in Sec. III; their actual im-
plementation in the computations, in Sec. IV.

Evaluating the Wick contractions of the quark fields,
Eqs. (2.2) are written as a configuration average of con-
tracted light- and heavy-quark propagators S and S&.
For example,

G„( ( —r(JTr[S= ( r, r; r00U [,
X

A. The conventional method

The decay constant ft, for a pseudoscalar P (with arbi-
trary quark masses m& and m ) is defined as the vacuum
to single-particle matrix element of the axial-vector
current:

—=kae

a
—3/2

From (2.1) and (2.5), ft, is given by
i /2

=ft+Mt =CA
0a

(2.5b)

(2.6}
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C~ is the normalization constant between the continuum
current A„""' and its lattice counterpart A„. Although
we have illustrated the computation of the correlators us-

ing the conventional method [i.e., Eq. (2.4)], Eq. (2.6),
with suitable modifications to the constant C~, holds also
for the static-quark approach. We discuss the details of
the static and conventional normalizations in the follow-
ing sections.

B. The static effective theory

In this section we discuss the implementation of the
static-quark method, emphasizing in particular how the
lattice calculation is normalized to obtain continuum
physics. We begin by writing the discretized effective ac-
tion [12]

lower two components of h vanish, a condition enforced
by the constraint equation [13]

(2.8)

The quark and antiquark are decoupled; we omit the
analogous formulas pertaining to the latter.

Renormalization requires the addition of a mass coun-
terterm a5mhh to the action (2.7},yielding [12]

'= g h (x )S„'(x,y )li (y ),

where

S, '(x,y}=(1+a5m)

1+yo
[h (x)—Uot (x —0)h (x —0)],

(2.7)

where h(x) denotes the static quark (as opposed to anti-
quark) field at site x. In the particle's rest frame the

I

(2.10)

The matrix S& is then inverted for the static-quark
propagator in the background gauge configuration U:

1+a5m
1 +go

[Uo(y, t )Uo(y, t +1)UO(y, t +2) Uo(y, t„—1)]

—1n(1+asm)(t —t ) (o)

1+a5m Si, x,y (2.11)

We denote quantities computed in the static approxima-
tion with a careted version of the notation used in Sec.
IIA. The static-light current A„and the interpolating
operator y are defined via the substitution Q(x) ~h (x) in

Eqs. (2.3), and the construction of the correlation func-
tions Cz and Cs is analogous to Eqs. (2.2). To compute
the correlators, the heavy-quark propagator is simply re-
placed by the static one, as given by (2.11). The calcula-
tion of P then follows according to Eqs. (2.5) and (2.6).

However, since the heavy-quark mass has been formal-
ly removed from the theory the correlation functions G~
and Gii no longer fall exponentially with the meson mass

Mp, as in Eqs. (2.5), but instead with the bare and diver-

gent "binding energy,
" 6"0 Mp 171g. In the Wilson

case, the bare mass, or its equivalent in terms of the hop-
ping parameter, appears in the action, so the mass diver-
gence can be absorbed in the usual way. Here, i.e., in Eq.
(2.7), the bare mass is absent —it has been absorbed in the
definition of the field —and the counterterm must be ex-
plicitly added. In the literature this issue has been ad-
dressed concurrently with the calculation of C~, the nor-
malization constant for the static-light axial current
( & „""'=C;„A„),because that calculation must include in
some way the mass renormalization a5m, which enters
into the overall normalization of the heavy-quark propa-
gator through Eq. (2.11).

Two groups (Boucaud et al. [14] and Eichten and Hill
[15,12]) have calculated the renormalization constant
which matches A„ to the full axial vector current of

QCD to one loop in perturbation theory. We write this
constant as the product 2„C(a,m ), where

C
C(a, m)=1+ [ —,'1n(a m )],

16m
(2.12)

and

g CF2

Z„=l—
2
(J+2),

16m
(2.13)

Again specifying t )0, we obtain

'In practice we always use a smeared interpolating operator
for the static computations. The result of this discussion, how-

ever, is una8'ected by this modification; here we use a point
source for simplicity.

where Cp= —', for the case of SU(3). For reasons which

will be made clear below, we have split off into C(a, m )

the dependence on the heavy quark mass. Before ac-
counting for the effect of mass renormalization, i.e., the
term 1/(1+a5m ) in Eq. (2.11), Eichten and Hill find [12]
J=30.35. (After including mass renormalization, one
gets J=20.38—see below. ) They propose two methods
for the complete matching.

In order to illustrate their approach, let us consider the
point-source correlator'

(2.14)
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6„(t)= QTr[yoS5(x, O}7 st(0, x)y5]
X I UI

5, 0Tr t, 0
X

—Q(O)(t) —aM a5—@, fe e 7

1+yo
St(x, O)

—ln(1+a5m )t

2 ~ '
I UI 1+a5m

(2.15)

which shows explicitly how the linear divergence in (ao is
removed to define the physical binding energy,
8=Co+58 = (ao+5m. But in this case, the residue of
C„ includes a correction to the bare fitted value. In oth-
er words, we should use P„" instead of g„ in the static
analog of Eq. (2.6), where

g(1) g
—as'" (2.16)

—a@p(k+1)
Method 2. Parametrize 0„' ' as P„'e ' so that

(2.15) is instead written as

a(SO+M)(t+—1)t= ge

The physical binding energy emerges as before, and it is
trivial to see that the residue now satisfies the equation

g(2)
g

ea a
g

ea(5' —58) g(()ca@ (2.17)

(Note that g„ is still dined by the fit of method 1.)
Equation (2.17) demonstrates explicitly that the two

methods differ at finite (2. Method 2, chosen in Ref. [12],
appears to us to be an unnatural choice which introduces
0(a) terms in order to accommodate a suggestive form of
the propagator. Method 1, however, simply parallels the
standard procedure for Wilson quarks. This can be seen
as follows. A rescaling of the static field in the action
(2.9), given by

h ~(1+a5rn )
' h, (2.18)

normalizes the diagonal term of (2. 10) to unity, an analo-
gous procedure to the quark field rescaling

—1/2
1

2K
(2.19)

which leads to the standard form of the Wilson action.
In the latter case, quark-mass renormalization is achieved
through tuning the hopping parameter x such that the
correct physical spectrum is reproduced, and a factor
&2» for each quark field is ultimately replaced in physi-
cal amplitudes. If the physical binding energy (a of the
heavy-light state were experimentally measurable, a simi-
lar tuning procedure, instead of a perturbative calcula-

where 0„' '(t) is the "bare" correlator which follows from
the action (2.7), 'P(t, O) stands for the appropriate product
of link matrices, as given in (2.11), and we have defined
a5A'=In(1+(25nt). The two scenarios of Ref. [12] are
the following.

g ~o) ~ —ah'pt
Method 1. Parametrize (i.e., fit) (i„as g„e

Then (2.15) is written as

as@ a(8—0+58))

I

tion, could be used to determine a5m in the static case.
Either with tuning or with perturbation theory, the re-
scaling of the static field(s) in physical amplitudes follow-
ing (2.18) is equivalent to method l.

Therefore, g„and gs will denote the residues comput-
ed from a fit to the bare correlators; we use them in the
static analog of Eq. (2.6). The remaining factor of
e ' @~ =1—a5m/2 is absorbed into the perturbative re-
normalization of the static-light axial vector current.
From [12] we find

C
(25m = — 19.95

16m.

and thus obtain

2q = 1 —
2

22. 38 .g CF

16m.

(2.20)

(2.21)

[A rigorous treatment of the ambiguity discussed above
has been given by Boucaud et al. [16], and they show
that method 2 is in fact inconsistent with an 0((t) im-

provement of the light-quark action. Equation (2.21) is in
agreement with their result. ] Including the factor V2»
for the light quark, we thus obtain

0z =+2» 2&C(a, m&) . (2.22)

Cg =Zg +2»g+2»q (2.23)

where Zz is the perturbative renormalization of the lat-
tice axial current [17],

Z~ =1—0. 133g (2.24)

and the factors of &2» undo the initial rescaling of the
Wilson quark fields, indicated by Eq. (2.19}. Since we
wish to interpolate between the static and conventional
methods, it is instructive to consider the latter in the
naive limit m& —+ ao (i.e., »& ~0). In this case the propa-
gator can be approximated by the leading term in the
hopping-parameter expansion:

Sg(x, O) — (2»t) )'5„()0(t)
IC~ 0

1+yo
P(t, O)

—)n(1/2a() )t (())=e S5 x, O (2.25)

Using (2.25) to compute the bare (unnormalized) heavy-
light correlation function, we obtain identically the bare

C. The naive large-mass limit

The conventional normalization for the light meson de-
cay constants is given by
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static-light result, but with a heavy-quark rest mass con-
tributing to the inverse correlation length:

and

—(aMp ]t
A Ae

—(aMp )t
Gs —se

(2.268)

(2.26b)

1
aM& — ln

xg ~0 2Kg
(2.27)

, e [1+O(a,)],
ag ~0

(2.28)

—aMp/2 .
where the factor of e just comes from the +2~&
in (2.23}. Thus, when ir& is pushed to absurdly small

-amp' .
values, a pure lattice artifact [the factor e in

(2.28)] will dominate in the heavy-light amplitude.

Therefore, using (2.23) and (2.22), one finds the limiting
expression

interactions, and in the following section we examine the
large-am lattice errors in the next-to-leading terms of the
quark propagator in this limit.

A full one-loop correction to (2.29) for arbitrary am
has not been computed. However, in lattice perturbation
theory, the primary contribution to a variety of short-
distance-dominated quantities is produced by tadpole
graphs. Lepage and Mackenzie have demonstrated that a
mean-field approach can be used to improve the match-
ing between lattice operators and their continuum coun-
terparts; in a rough sense, this technique sums tadpole
contributions to all orders in a, [21]. (The sense is rough
because "summing the tadpoles" is not a gauge-invariant
procedure beyond leading order, but the mean field ap-
proach of [21] is gauge invariant. ) The "tadpole correc-
tion" is easily made to the free-theory equation (2.29) be-
cause it is independent of the quark momentum. In the
mean-field language, one substitutes the link matrices in
the Wilson action with the mean value up. Computation-
ally, the theory is then equivalent to the free one with a
hopping parameter shifted by

D. The leading-order large-am correction K~00K . (2.32)

Equation (2.28) demonstrates that the systematic lat-
tice error when am »1 can be removed in the static
limit by a trivial redefinition of the normalization con-
stant Cz. This modification can be formulated in terms
of a large-am corrected normalization for the Wilson
quark. In order to derive it, let us first consider the free
theory. Computing the spatially summed propagator
both from the Wilson action (with U= 1) and in the con-
tinuum, one finds the normalization equation

2«' & &01&(~)g(0)I0&""=f d3X«lq(~}q(0)I0&""',

(2.29)

where

(0)am =ln 1+
2K'

(2.30)

Based on this relation, or on equivalent arguments, a
change in the tree-level Wilson quark normalization fac-
tor of

(2.31)

has been suggested [18—20]. Note that Eq. (2.29) is valid

for arbitrary am, but that it is a zero-momentum (or stat-
ic) relation. In the regime where am «1, the zero-
momentum projection is irrelevant, because the usual fac-

tor of &2v is recovered. Conversely, since a typical
simulation of light hadrons requires that a »A&co,
the condition am ~ 1 implies that m& &&A&co, and there-
fore that the heavy-quark dynamics in this regime are
nonrelativistic. Within the context of a nonrelativistic
expansion of the heavy-quark propagator, we thus refer
to the factor e' in (2.31) as the large-am correction for
the leading-order term. It guarantees a smooth transition
between the light- and static-quark regimes. In the
remaining part of this section, we discuss the inclusion of

Thus tadpole improvement of the leading-order correc-
tion "e' " is given by am ~am, where, from (2.30},

1
am =ln —3

2QpK
(2.33)

Several defining relations for the quantity up are possible;
all give similar results, either when computed nonpertur-
batively or to one loop in perturbation theory using a
boosted coupling [21]. We use the definition

K
QO

K, 8K,
(2.34)

where K, is the critical hopping parameter, as determined

by the extrapolation to zero pion mass.
Now let us return to C„, the normalization constant

for the axial current. The tadpole-improved large-am
correction requires the substitution for the quark-line

normalization factor, /2a~+2uo«' . However, if
used in Eq. (2.23) as it stands, this will double count the
leading tadpole perturbative correction, which already
contributes to Z&. Let us write the perturbative renor-
malization in the form

Z~ =Z, Z~a Z2

where Z, is the vertex correction, Z2, is the wave-
function renormalization from the continuumlike self-
energy graph, and Z2b is the wave-function renorrnaliza-
tion from the tadpole. It is easily verified that to one loop
in perturbation theory, up, the tadpole contribution to
1/SK„ is the inverse of Z2&, when computed in Feynman
gauge. Thus, in C„, one may either define a new con-
stant Z„' by removing the factor of Zzb, or else eliminate
the uo which accompanies the leading factors of &2~.
We use the latter definition so that in the light-quark lim-

it, where e™~1,the traditional normalization constant
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is recovered. Since we evaluate Z„using a boosted cou-
pling, there is numerically little difFerence between the
two approaches.

The lattice-continuum normalizations are then given
explicitly by

C„(~v)=P„C(a,mg))/ 2ae . ' (static), (2.36)

where amg are given by (2.33) with ~=~g . With these
definitions, the limiting expression (2.28) becomes

— yi, [1+O(a, )] .
0

(2.37)

Finally, let us consider this limit in detail in order to
evaluate the extent of the mismatch at O(a, ). In C„we
can associate with each quark line a factor of

Z
—

& /2+2„e ~a
2

where Z2 =—Z2, Z2b. As a simplification, we use the per-
turbative relation uo=1/Z2b, despite the fact that in
practice we evaluate up nonperturbatively. We then find

1/2

Z ' 2x' e a=Z ' gu 2a2 Q 2a 0 Q
QpKg

Z —1/2
20

a'g ~0

—3

In the limit ~g ~0, there is a full cancellation of tadpole
corrections, leaving only the continuumlike wave func-
tion renormalization.

In the static-light renormalization 2„, the same "tad-
pole cancellation" already exists between the mass renor-
rnalization term discussed in Sec. II 8 and the wave func-
tion renormalization: i.e.,

(b)a 5m
2b

(the label "b" again denotes the tadpole contribution).
This relation can be verified explicitly from the calcula-
tions in [12]. The remaining mismatch thus results pure-
ly from nontadpole perturbative corrections —both the
wave function of the heavy (static) quark and the vertex
graph for both theories. Although the nontadpole
coefficients are small in the conventional calculation, they
are not particularly so in the static one. At P=6.3 for
example, using a '=3 GeV, m&-—5 GeV and g =1.6,
we find

g2+
C'„/C„(kg~0)=1 — 11.2 = 0.85 .

16m

Since we do not approach the limit K&~0 in practice, we
expect that the 15% difference seen here is an overesti-
mate of the actual error incurred when interpolating be-
tween moderately heavy Wilson quarks (i.e., amg —1)
and the static limit. The systematic error from this effect

am& am
Cg(leg, Kq )=Zg 2Kge 2zqe ' (conventional),

(2.35)

is estimated concurrently with large-am errors in Sec.
IV F.

E. Large-am errors at next-to-leading order

By interpolating between moderately heavy mesons
and the static limit, we would like to compute the devia-
tion from the scaling law (1.2) in the mass range of the D
and 8 mesons. To do this, we adopt the phenomenologi-
cal parametrization

r

C1 C2 1
Pp=co 1+ + +0

Mp Mp Mp
(2.38)

and analyze the lattice results (both conventional heavy-
light and static) in the form P vs 1/M~. If the agreement
between the two methods is good, we should find co=/;
c, will characterize the finite-mass correction. [We dis-

cuss the logarithmic correction to (2.38) in the following
section. ]

However, the removal of large-am lattice errors de-
scribed in the previous section has only been made to
leading order for a nonrelativistic Wilson quark (i.e., for
the static component). It is possible to demonstrate ex-
plicitly, again by taking the infinite-mass limit, that the
conventional calculation will not behave according to
(2.38) because lattice efi'ects distort the dynamics of the
heavy quark. In the hopping parameter expansion,
corrections to the leading behavior (2.25) are of order
2s.g, thus, using (2.27), one finds that the limiting expres-
sion on the lattice will be

Pp(1+Ce ) .
0

At very large quark mass, the 1/M~ terms which should
be present in the conventional amplitude will thus be ex-
ponentially suppressed by lattice artifacts.

In the nonrelativistic limit, the Wilson action can be
rewritten by separating the quark and antiquark corn-
ponents through a Foldy-Wouthuysen transformation.
After including the correct leading-order normalization
for the field g, the action for quarks is expanded, in terms
of a two-component spinor P, in a discretized version of
the form [20,19,18]

Sii =P m+D + D + o8+1

2m2 4m,

(2.39)

In the limit that am && 1, the mass parameters in this ex-
pansion will all be approximately equal, and continuum
physics will be well approximated at sufticiently weak
couplings. However, (2.39) is obtained without placing
any restriction on am, and when am &&1, ratios of the
masses am, am2, and am3 diverge exponentially. We
refer to this effect as the large-am error at next-to-leading
order.

In the free theory, or in the mean-field approximation,
the masses am2 and am3 can be easily calculated. The
kinetic mass am 2 results from the dispersion relation
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k 2

E(k)=m+ +
2m 2

which is obtained from the calculation of the free Wilson
quark propagator in the nonrelativistic limit. We find

factors —e.g., the overall size of the deviations from the
asymptotic limit (1.2) and the extent to which am 3 differs

from am2 in the mass region where the conventional
method is used. We estimate this error from the numeri-
cal results in Sec. IV F.

e' sinham
aPl2 =

sinham+1
(2.40) F. Logarithmic corrections

The mean-field substitution am —+am in (2.40) defines

am2, the tadpole-improved kinetic mass. The coefficient
of the o"B term can be obtained by splitting I/2m&, the
coeScient of the D term, into two pieces, one which is
contributed by the naive lattice action and one which is
contributed by the Wilson term. The former is
equivalent to 1/2m3, because the Wilson term adds no
o"B piece to the action. The result is [19]

am 3 =am&(sinham + 1), (2.41)

and tadpole corrections are again included via the mean-
field method to define am 3.

The nonrelativistic limit of the Wilson action (2.39) is
similar in form to the nonrelativistic QCD (NRQCD) ac-
tion proposed recently by Lepage and Thacker for the
study of heavy-quark bound states [22]. In NRQCD, the
action is discretized a priori in this form; the coefficients
of the higher-dimensional operators are free to be tuned
in order to match the effective theory to full QCD. Al-

though the standard Wilson action does not afford this
freedom, it is, under certain conditions, suitable for the
simulation of nonrelativistic quarks even when am &&1

[20]. For example, in the case of quarkonium (i.e., a
heavy-heavy meson), the o"B interactions are suppressed
by a factor of the velocity squared and thus can be
neglected in the lowest-order calculation. This fact fol-
lows from the nonrelativistic nature of the bound state.
Furthermore, the rest mass m only contributes an overall
constant to the action; it is irrelevant in the calculation of
transition amplitudes. (In NRQCD, m is typically re-
moved from the theory from the beginning. ) Thus, if one
computes an arbitrary heavy-heavy amplitude as a func-
tion of the meson pole mass, say A(M), then to lowest
order, M sees the rest mass m, whereas A sees the kinetic
mass m2. This error can be approximately corrected by
adjusting the meson mass:

Finite logarithms in the matrix element of the full-

QCD axial current become the source of an additional ul-

traviolet divergence in the static limit [2]. This fact re-
sults in an explicit logarithmic dependence on the heavy
quark mass in the static-light axial renormalization con-
stant, which we have written as the factor C(a, m ) given

by Eq. (2.12). If sufficiently fine lattices could be con-
structed, so that am& « 1 even as the scaling region (1.2)

were approached, then the logarithmic corrections would
be entirely contained in the lattice matrix element of the
conventional calculation. In the opposite extreme, where

x ~0 and am& ))1, the logarithmic dependence is lost
entirely, as part of the "nontadpole" O(a, ) corrections
which have not been included.

Anticipating improved computations, where the form-
er of these two limits may be approached, we analyze the
numerical data assuming the presence of the full leading
logarithmic correction. To do this, we eliminate the fac-
tor C(a, m&) from the renormalization constant of the
static-light axial current given by Eq. (2.36) (P is thus
well defined at I/M&=0) and divide it, in the form

C(a, M&), from the conventional amplitude. In this
form, P is fit to a quadratic in 1/Mp, as implied by Eq.
(2.38). To compute a physical result, e.g. , P~, we interpo-
late the fit to the appropriate mass and then multiply by
the logarithmic correction, e.g., C(a, M& ). Insofar as the

logarithmic dependence on the quark mass may be absent
from the lattice results in the region where am& is large,
this procedure too will involve some systematic error.
This error is akin to the mismatch in the constant terms
of the leading perturbative correction discussed at the
end of Sec. II D but is considerably smaller. At P=6.3,
for example, C(a, M~ ) itself is a correction of only a few

percent. The procedure described in Sec. IV F is an esti-
mate of the cumulative effect of all such systematic effects
which alter Pp in the region of large am&.

aM ~aM' =aM+ (am 2
—am ) . (2.42) III. NUMERICAL TECHNIQUES

Then A(M') gives the correct functional dependence,
within additional O(a, ) corrections which are not includ-
ed by the tadpole approximation.

In the current heavy-light analysis, we make the shift
(2.42) in the pole mass Mp and fit to the functional form
Eq. (2.38). This is our best attempt to remove large-am
errors at next-to-leading order. However, because the
light quark is relativistic, the cr.B term is no longer
suppressed relative to the kinetic one. Since am3&am2,
the mass shift is insufficient to completely correct for the
large-am error in the same sense as described above;
there will be some additional systematic error in the fitted
coefficient c&. The error induced by this effect in the cal-
culation of fs and fD will depend on a number of

A. Smeared sources

The basic techniques and advantages of using nonlocal,
or smeared" sources in a fixed gauge have been well es-
tablished in the recent literature [23]. In this section we
discuss briefly our use of Coulomb-gauge, "wall-source"
(WS) propagators [24], which we use to compute our best
results from the conventional method at P= 6.3. We also
use, for the static limit, a method of smearing which uti-
lizes standard point-source propagators, which we will

refer to as "cube" smearing for reasons which will be-
come obvious in the following section. For the conven-
tional method, at all couplings other than P=6.3, we use
a standard point-source construction of the eorrelators,
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which was given explicitly in Sec. II A.
The wall-source propagator S is defined by

S(x,r;r„U)= g—(g(x, r )g(y, tp) ) U,
V

»d

(+)—S
I+

2

(3.5)

and is computed from the Wilson action 4'x,=fS
through the solution of the equation

g(++)— 1+yo 1+@0
S

Note that Gs +(t, tp} has just two spins at both source

and sink —as usual, Gs *(t, tp ) must be "diagonal" (same

source and sink) so that the overlap of the interpolating
field with the lowest state can be determined. For
tp tpL we use the source y+ so that both of the correla-
tion functions need only the upper two source spins of
the propagators; they are analyzed for forward propaga-
tion t) tp. Similarly, for tp=tpx we use the source y
These correlators need only the lower two spins and are
analyzed for backward propagation t & tp. So the amount
of computing required in terms of propagator generation
is the same as for the standard single-source approach:
we have doubled the number of source times and halved
the number of spins.

This scheme has been chosen in anticipation of the B
parameter calculation, where the matrix element is com-
puted from a lattice "figure-eight" graph containing a lo-
cal four-fermion operator at its intersection point and
meson interpolating operators at either edge. We have
altered our usual convention for propagator generation,
i.e., placing the source at the center of the lattice, because
in this case the local operator of interest must be con-
structed using the sink point of the wall-source propaga-
tors. They must therefore originate from either side of
the lattice center. For the decay constant calculation,
however, this scheme has provided two sets of propaga-
tors for each configuration, S '+ '(x, t; tpI, U) and
S i i(x t're' U).

Since our wall sources at tpL and tpx are widely

separated, we expect that the forward-backward pairs for
a given configuration will not be strongly correlated. In
using covariant fits as we have done, it is advantageous to
be able to treat these correlators as independent, since the
total number of time slices that can be included in the fit
is limited by the number of independent correlators. To
test for independence on our 20 configurations at P=6.3,
we have compared, for four diff'erent quantities at
~=0.150, the results of covariant fits performed two
ways: (I) treating forward and backward correlators as
independent, and (2} using time reversal symmetry as in
Ref. [3] to average the forward-backward pairs on each
configuration before fitting. The results for the pion
mass, pion decay constant, static-light mass, and static-
light decay constant, each computed using several
difFerent 6tting intervals, are consistent within our statis-
tics with the independence of the forward and backward
pairs. In particular, the central values of the two
methods agree within errors; the difFerence between the
errors varies by typically 10—30%; and the sign of the
difFerence varies in an apparently random way. This is
consistent with what one would expect for 40 uncorrelat-
ed data points.

gS '(x;z;U)S(z;tp , U')= 5—, , g(5, y),
z 'y (3.2)

where V represents the spatial volume of the lattice, and
we have suppressed color and spin indices. The tech-
nique is trivially implemented by the replacement of the
usual single-site 5 function with the sum of 5 functions in

the matrix inversion program.
One must then construct a smeared interpolating

operator y so that the correlation functions analogous to
those defined by (2.2} reduce to contractions involving

only wall-source propalmators. Since the gauge-dependent
overlap function (O~y ~P) is removed from the final

physical amplitude, the extraction of the decay constant
and the normalization issues discussed in the previous
section remain unafi'ected. For reasons which we explain
shortly, we construct a pair of operators, denoted by the
two signs in the definition

1 — 1+xo
y& (t)=, QQ(x, t)

y „„2 (3.3)}' e(y t) .

They are used as follows. We compute WS propaga-
tors from a "left" source tpr (i.e., near the edge defined as
t=0) for the upper two source spin components only.
Similarly, we compute propagators from a "right" source

tpx (near the opposite edge) for the lower two source
spins. Note that we have used Dirichlet, not periodic,
boundary conditions in the time direction. We then ob-
tain the wall-source correlators by replacing y, as defined

by (2.3b), with the smeared version (3.3) in Eqs. (2.2).
Thus we compute

G„x(rr, ) (XTr,[S,' =' (xr;r;U), ,

xyP~i*'(x, r;r„.U)] (3.4a)

and

XQS& '(y t;r„U)
y

i I UI

(3.4b)

where we used the abbreviated notation

G, x(r, r, )= ITr XS,'* '(xr;r;U)— , ,
X
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B. Smearing techniques for static quarks

It has been observed in previous static computations
that point-source correlation functions, such as that
defined by (2.14), fail to show ground-state dominance at
suSciently early times and at large times are saturated
with noise. This problem has prompted the use of
smeared sources which, it is hoped, may be tuned to have
the best possible overlap with the ground state, so that it
dominates sufficiently in the early time slices. Qualita-
tively, at least, this program has been successful
[25,7—10,26]. Nevertheless, it is interesting to note the
source of the problem in terms of a simple analysis of the
Euclidean correlators.

Lepage has outlined a method for estimating signal-to-
noise in discussing the proton on the lattice [27]. First,
consider G (t), a single-configuration contraction of two

light-quark propagators. The computed estimate of the
"pion" correlation function is defined by the average over
N configurations which at large times falls exponentially:—a t
(G„(t))—Ze . The expectation for the noise is

given by the formula o G=(1/N)((G„) —(G )2). Since
both (G„) and (G ) overlap with a two-pion state, the
signal-to-noise ratio (SNR) is a constant at large times:

lim -VN (pion) .(G)
f~oO 0 G

the use of smeared sources may optimize the ground-state
signal in the earlier time slices, but it will not change the
behavior described by Eq. (3.6).

We have used two types of sources for the static com-
putations. The first is a wall source (used only at P=6.3)
and is a straightforward adaptation of the technique out-
lined in the previous section. The heavy Wilson quark
field Q(x) in the interpolating operator (3.3) is replaced
with the static field h(x) (or, for backward movers, the
analogous antiquark field); the sums necessary to con-

struct the correlation functions (i z
—and (iz * are easily

computed due to the trivial nature of the static-quark
propagator.

The second type of smeared operator is introduced in

order to accommodate point-source, rather than wall-

source, light-quark propagators. We refer to it as a
"cube" and define it by

1
['I-

g„+(x,t)= 3 g h(x+z, t)y~q(x, t),
71

(3.7)

where [ V„] denotes the sites of the cube centered around

x. We have written only the static quark form of the
operator; the antiquark construction is analogous. As be-

fore, we compute the forward-moving correlators from

y„+ and the backward-moving correlators from y„
They are given by

In contrast, consider a similar analysis of the static-light
correlator [28,20,29]. In this case, the signal falls ex-

ponentially with the (divergent) mass parameter abo:—
abbot(G) -Ze '. The noise, however, is dominated in the

large-time region by (G ), which has a nonzero overlap
with a single pion, as depicted in Fig. 1. The static lines—aM t
effectively cancel, and OG-e . The SNR is thus

given by

(G) M„
lim —&N exp —a 80— t
)~co 0 G 2

(static-light) . (3.6)

and

G„(r,r, )=-, QTr[S,'~ "(z, r;O, r, ; U)
n

XP+—(z, r, t, ; U)]

G~+ (r, t, )=,-QTr[S,' '(z+z', r;O, r, ;U)
n

XP~(z', t, r„U)]

(3.8a)

Typically, the binding energy abo is much larger than

half the pion mass. For example, at P=6.0 with
a =0.155, we find a vo-—0.6, whereas the corresponding

pion mass is aM =0.3. An essential point to note is that

(3.8b)

where we have included the Dirac structure (1+yo)/2
[(1—yo)/2] of the static quark (antiquark) propagator
through the notation (3.5) applied to the light-quark
propagator.

C. Fitting and jackknife analysis

FIG. 1. "Noise correlator" for the static-light channel.

We compute statistical errors using the jackknife tech-
nique. Our discussion here will be limited to a brief
description of (1) the inclusion of correlations in the nu-

merical data, i.e., the use of "covariant" fits, and (2) the
specific parametrization (i.e., fitting function) for the
correlation functions. To facilitate this, let us define any
jackknifed quantity Q with the notation Q—:[Q,Q;j,
where Q results from an analysis of the full average of N
configurations, and Q,. from an analysis of the ith "subset
average" of configurations, where one or more has been
removed.

The (estimated) covariance matrix used in the
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minimization fitting routine is then defined through a
straightforward generalization of the standard formula
[30]. For an m-elimination jackknifed quantity Q(k),
where k denotes some external parameter dependence, we
write it as

C(2(k„k2)= ——1
N

X([Q;(k, )—Q(k, )][Q;(k2)—Q(k2)]) .

(3.9)

By definition, correlation functions are computed by
averaging over individual configurations. In this case,
and for m =1, Eq. (3.9) reduces identically to the stan-
dard covariance formula of Ref. [30]. This, of course, is
not the case for a quantity which is computed from an
average, such as a fitted mass.

In fitting a quantity Q(k) to some theoretically expect-
ed functional form, F(k, A) ( A is the set of parameters
to be fit), the fit is jackknifed, but the fits to Q and the Q;
use the same inverse covariance matrix C& '. Each level
of fits [e.g., correlation functions, f(ttq) vs 1/a', etc.]
takes into account correlations in the numerical data and
produces a meaningful y /ND„(y per degree of free-
dom). This method thus gives an indication of how
different systematic errors affect the calculation at each
stage, and, as a practical matter, clearly requires many
fewer configurations than would the inclusion of all
correlations simultaneously.

Our fits to the correlators G„and Gz are "coupled, "
i.e., made simultaneously and with identical mass param-
eters. Thus at the stage of a single lattice meson we com-
pute all correlations, including those between the two
channels Gz and Gz. To denote this, we assign a dummy
index a to the time coordinate. It takes on the values
a=(AB)—ie., we define G(t")=—G(t") and

G(t )=Gtt(t ). The—meaning of the covariance matrix

Co(tf, tz) is then immediately apparent. Depending on
the type of correlator, we compute one of two types of fits
(the choice is specified in Sec. IV). We denote them
loosely as the "single-state" fit

(3.10)

and the "two-state" fit

+2 [G(ta) (g aMt +g& aM—'t )]—
(3.11)

where the quantities on the right denote jackknife fit pa-
rameters.

We invert the covariance matrix using the lower-upper
(LU) algorithm and improve the solution, to correct for
accumulated roundoff error, using the iterated improve-
ment algorithm of Ref. [31]. Roundoff errors are further
reduced by always fitting to the log of the data —this
avoids a covariance matrix whose elements span several
orders of magnitude. As the total number of time slices
included in a single fit nears the numbers of
configurations, the estimated covariance matrix will be-

come singular. However, we use covariant fits only
where our statistical sample is large enough to avoid this
problem. [Recall that the number of configurations is
effectively doubled by treating forward and backward
movers independently. In the most extreme case, the
two-state fit at P=6.3, we typically used
(N „+N s)=25 —33, whereas 2N„„„=40.] We did not

find it necessary or even advantageous to further increase
the number of time slices included in the fits, and this in-

version method was generally satisfactory.
Nevertheless, it appears to us that there remain errors

associated with the computed estimate of the covariance
matrix, Eq. (3.9), which are not necessarily refiected by
the jackknife, although we do not have a large enough
statistical sample to verify this assertion. In this regard,
our 6ndings are qualitatively similar to those of other
groups which have made more systematic studies on co-
variant fitting techniques (see, for example, Ref. [32]).
We attempt to include such variations as part of the sys-
tematic error estimate described below.

D. Fitting errors

We categorize fitting errors as those arising from the
following sources: (1) "finite-time" contamination of the
correlation functions from higher states or the boundary,
(2) the computation of the covariance matrix, and (3) ex-
trapolations to the chiral or strange limits. To estimate a
combined fitting error for a given result, we compile a
sample of alternate ones, each computed from a modified
analysis. This set of results is subject to a cut of
y /ND„&2, pertaining to the last relevant fit which pro-
duced it. We then compute the standard deviation of the
alternates from what we have chosen as the central value.
The alternate analyses are modified in one or more of the
following ways.

Extrapolations. The central value of a quantity which
is obtained from an extrapolation to the physical pion or
kaon is computed using a fit to the data from the three
lightest quark masses. Alternates are computed by fitting
to the lightest two masses, and at P=6.0 the heavier two
were also used.

Type of ftts. For the wall-source, heavy-light correla-
tors at P=6.3, we use the two-state fit for central values
(Secs. IV C and IV D). In this case alternates are comput-
ed from single-state fits over later time intervals to sam-
ple finite-time effects.

Covariance matrix. Central values are computed using
the single-elimination jackknife. Two- and sometimes
four-elimination jackknifes are sampled in order to vary
the computation of the covariance matrix. In addition,
we compare the time-reversed "folded" and "unfolded"
analyses in cases where the number of time slices vs
configurations permits.

Fit intervals. Time slice intervals for central value fits
were chosen based on an examination of the plateau in
the effective mass and, in the case of covariant fits, the
g /ND„. Alternates are computed by changing the size
and location of these intervals. Naively, the variation in
results that this produces is indicative of finite-time sys-
ternaties; however, we believe it again to be a re6ection of
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the error in the covariance matrix. When noncovariant
fits are used, the shifts typically have a negligible effect in
comparison to the jackknife error.

IV. ANALYSIS AND RESULTS

We now discuss the details of the computations,
present qualitative and quantitative results, and estimate
bounds for various systematic errors. We begin by pro-
viding the essential parameters pertaining to the gauge
configuration and propagator generation, and then
present the analysis in various stages: light mesons (i.e.,
the pion and kaon), conventional heavy-light states,
static-light, the combined analysis for I /Mt, corrections
to the asymptotic scaling law (1.2) and the calculation of
physical amplitudes, and finally bounds for large-am and
scale errors. In practice, the calculation was split up in
this fashion, but in such a way so that results passed from
one stage to the next (e.g., a ', tt„etc.) could be included
in the jackknifed analysis for statistical errors.

In the sections pertaining to the fits to the correlation
functions, we refer extensively to the effective mass as a
way of determining the point of ground-state saturation.
For a correlator G(t), the basic definition of the eff'ective

mass 1s

aM(t) =ln G(t)
G t+1 (4.1)

Where a single state dominates G(t), aM(t) has a plateau.
[We actually use single-exponential, uncorrelated fits over
three time slices, i.e., centered at t, to which we associate
the fitted mass parameter M(t) In prac. tice, there is very
little difference between the results of this method and
the discrete logarithmic derivative given above. ]

A. Simulation parameters

1. p=6. 3

We have generated twenty 24 Coulomb-gauge lattices
at P=6.3, one set of five with the pseudo-heat-bath algo-
rithm (6 K passes to thermalize, 2 K passes separation),
and three sets of five with a combination "3—6 overre-
laxed + 1 pseudo-heat-bath" algorithm (4 K total passes
to thermalize, 2 —2.2 K total passes separation). Two sets
had hot starts, and two had cold starts. From these lat-
tices we have generated both wall-source and point-
source propagators after extending the gauge
configurations in the time direction using the periodicity.
In all propagator generation, we have employed spatially
periodic and fixed time boundary conditions. In three of
the sets, relative temporal shifts were introduced to fur-
ther randomize the sample. Wall-source propagators
were made at 24 XSS for two source locations, S'+'
from toL =13 and S ' ' from toti =41 [sites labeled
t=(0, 54) and using the notation of Sec. III]. Point-
source propagators were made at 24 X61 with a central
source (to=30). In both cases, the time boundary condi-
tion was Dirichlet.

In order to measure the overlap functions of the wall-
source correlators, the source must be placed sufficiently

far from the lattice edge in order to avoid any distortion
from the boundary. Checks to determine a sum[cient dis-
placernent were made as follows. Two propagators, sizes
24 X55 and 24 X45, were computed at ~=0.150 from
the same configuration, with the wall source in each case
at the same trial position tpL as measured from the "left"
edge of the lattice. From these propagators, degenerate

W+
correlators G~ —were computed; call them G» and G45.
From each we computed the local masses M(t), using
(4.1), and the local amplitude, g(t)=G(t)exp[tM(t)],
where t labels the distance from the source. The corre-
sponding residues g»(t) and (4s(t) were compared as t

was increased until the point t = t where the difference ex-
ceeded 1%. The number of slices between and including
that labeled by t and the "right" edge of the shorter lat-
tice was taken as the necessary source displacement T.
We found T=13 and thus used tpz =13 and Spy =41 fof
the 24 X55 propagators. Since mass fluctuations are
amplified exponentially in the correlator residues, this
test is far more stringent than the analogous comparison
of the local masses themselves.

2. P=6.0

3. p=5. 7

At P= 5.7 a single analysis was made on the combined
data set of 32 configurations described in the following
table:

Configurations

16 PHB
4 pHB
12 PHB

Gauge

16'X24
16'X24
16'X 32

Quark

16'x25
16'x 33
16'X 33

Propagators were generated with a central point source
for light quark masses only. The analysis is limited by
the smaller time dimension, so we refer to them as
16 XZS. In each case the configurations were separated
by 1 K passes.

B. Light mesons

An analysis of the light pseudoscalars was done on
each of the data sets listed above in order to compute

At p=6.0 we have constructed and analyzed two in-

dependent data sets. The first consists of nineteen
configurations of gauge size 16 X40. Eight of the nine-
teen were generated using the pseudo-heat-bath (PHB) al-

gorithm, 2 K to thermalize, 1 K separation. The remain-

ing eleven configurations were generated using an
overrelaxed-metropolis (OM) algorithm with a 600-sweep
separation. Point-source propagators for light-quark
masses only were generated at 16 X39 with a central
source.

The second set consists of eight configurations of gauge
size 24 X 40. These have 2 K OM sweeps for thermaliza-
tion and 1 K sweeps for subsequent separations. Point-
source propagators were generated for heavy and light
quark masses at 24 X 39 with a central source.
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fx/f and to obtain the (jackknifed) parameters needed

for the heavy-light computations. In this section, we dis-
cuss several aspects of this analysis. First, we focus on
the quality of the data at P=6.3, discuss some details of
the fits to the correlation functions, and compare wall
sources with point sources. (We have used wall sources
only at P=6.3.) Second, we discuss the extrapolation of
the raw numbers obtained from the correlator fits to
physical values of the quark mass. Lastly, we present re-
sults for fxif and estimate its scaling error at P=6.3.
The numerical results are provided in Tables I—V. In
each case we provide the breakdown af =Cz Xaf' ',

where C„ includes factors of &2~ and is given explicitly
by Eq. (2.35), so that the bare lattice results and their er-
rors can be obtained trivially.

The covariant single state fit (3.10) was used to com-
pute the ground state masses and decay amplitudes in the
chiral regime. Statistical errors were obtained from the
single elimination jackknife, treating the forward- and
backward-moving correlators as separate configurations.
We show the effective masses and best fit for the
»=0. 150, wall-source pion at P=6.3 in Fig. 2. The mass
of the wall-point correlator (G„)appears to be asymptot-
ic after a displacement of approximately t = 12; however,
it contains fluctuations which make an assessment of sys-
tematic finite-time effects difficult. We found that the
most satisfactory fits in terms of minimum y /ND„were
obtained from intervals displaced further from the
source; for final results we chose t;„=15.Note also that
the wall-wall correlator (G~ ) is much noisier than the
wall point. This is due to the extra summation in Eq.
(3.4b). It produces a relative increase in the number of
contractions between quark propagators whose spatial
separation at the source and sink is much larger than the
size of the state, and the correlation function is thus sub-
ject to large unphysical fluctuations in the gauge links on
a given time slice. This feature has previously been found

to be true also of Wuppertal sources [32].
Because of the differences in the construction of our

wall- and point-source propagators it is difficult to make
a clear comparison between the two methods, Qualita-
tively, as seen in Fig. 3, the point-source effective masses
approach ground-state saturation more slowly. However,
because the central placement of the point source results
in a smaller temporal length, we have used a similar fit in-
terval as for the wall-source analysis in order to remain
sufficiently far from the boundary. Clearly, however, the
plateaus in the point-source case are not very convincing,
and a large systematic error would result if we were
forced to rely on these data alone. Results extracted us-

ing t=(15,21) are given in Table II and may be com-
pared to the wall-source results [from fits over
t=(15,24)] in Table I. The two methods produce con-
sistent results within errors. Because of the better quality
of the effective-mass plateaus, we use the wall sources for
our final results. In addition, the errors in af from the
wall-source analysis are smaller, which results in a better
scale determination.

The analysis of the light mesons proceeds according to
a standard extrapolation scheme, motivated by the lead-
ing order predictions of chiral perturbation theory.
Define the lattice quark mass as amo(») =1/2» —I/2s„
and denote the fitted masses and decay constants of the
degenerate mesons as aM(») and af(»). We fit (aM)
linearly in the quark mass, i.e., linearly in 1/», and extra-
polate the fit to aM =0 where we extract the critical hop-
ping parameter a, . Similarly, we fit af linearly in I/»
and extrapolate to 1/» = I /a. , to compute af„. The scale
is determined from af '=132 MeV/(af ). The above

procedure can be iterated, extrapolating instead to the
physical pion mass in order to determine», . Although
we in fact do this, the resulting shift in», and a is in
all cases smaller than the statistical error.

TABLE I. Light meson results at P=6.3 (wall source). Fits were covariant, single-state, over t =(15,24) for both correlators. The
statistical error is from the jackknife of the fit; the systematic (fitting) error is estimated as described in Sec. III D.

0.149
0.150
0.1507

Kc

X'i&DF

2.0
2.8
2.8

0.316(2)+0.003
0.247(3)+0.003
0.188(4)+0.004

aXm'

0.250
0.245
0.242

af (0)

0.263
0.234
0.203

af X10

0.658(16)+0.017
0.573(15)+0.014
0.491(13)+0.013
0.411(12)+0.022

Ki

0.149

0.150

0.1507
Ks

K2

0.150
0.1507

Kc

0.1507
Kc

Kc

X'i&DF

2.4
2.9

3.1

0.283(2)+0.003
0.258(3)+0.003
0.222(2)+0.005
0.218(3)+0.004
0.176(2)+0.003
0.139(2)+0.004

aXmz '

0.247
0.246

0.243

af (0)

0.249
0.234

0.218

af X 10

0.615(15)+0.018
0.574(15)+0.015
0.535(14)+0.024
0.531(14)+0.011
0.491(13)+0.017
0.450(12)+0.018
0.466(15)+0.021"

'K, =0.15158(5)+.00007.
a ' =3.21(9)+0.17 GeV.

'K, =0.15043{7)+0.00013.
df» If = 1.134(6)+0.015.
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TABLE II. Light meson results at P=6.3 (point source). Fits were covariant, single-state, over
t =(15,21) for both correlators.

0.149
0.150
0.1507

Ki

0.149

0.150

0.1507
Kq

X'/'&OF

1.9
1.6
1.6

Kp

0.150
0.1507

Kc

0.1507
Kc

Kc

Kc

1.8
1.6

1.4

0.316(2)+0.002
0.247(2)+0.002
0.192(2)+0.002

aXm

0.283(2)+0.002
0.258(2)+0.002
0.220(2) +0.003
0.221(2)+0.002
0.178(1)+0.002
0.143(2)+0.003

a Xmz'

0.250
0.245
0.242

0.248
0.246

0.244

af (0)

0.279
0.243
0.219

af (0)

0.263
0.245

0.228

af X10

0.696(25)+0.022
0.596(28)+0.026
0.529(31)+0.019
0.438(38)+0.025

af X lo

0.651(26)+0.019
0.604(28)+0.022
0.559(31)+0.024
0.556(30)+0.022
0.505(33)+0.018
0.487(35)+0.024
0.500(45)+0.028"

'~, =0.15163(3)+0.00004.
a ' =3.01(26)+0.18 GeV.

'v, =0.15029(28)+0.00016.
f» /f „=1.142(13)+0.034.

An additional level of fits and extrapolations is re-
quired in order to determine ~„ the strange quark hop-
ping parameter, and to compute fz. For each combina-
tion of light quarks (vi, a2) we compute (aM), „and
af, , We fit both quantities linearly in I/)r2 and extra-

polate to I/Ir2=1/)c, . We then fit (aM), , linearly in
1' c

I /~, and interpolate to the physical kaon mass in order
to determine», Finally, we compute afz by fitting
af, „ linearly in I/z) and interpolating to I/v) = I/v, .

The four quantities aM„, aMz, af„, and afz are thus
used to determine three parameters ~„~„and a ' and
make one prediction, fz.

Our fitting technique (Sec. III C) would in principle al-
low us to include the inter-~ correlations and thus quote a
meaningful y /ND„ in the chiral fits described above. In
fact we have not done so, because we find that the corre-
lated fits of (aM) and af in many cases do not converge
to a sensible result and often give a large y /ND„. The
most likely cause of this is that the jackknife procedure
underestimates the errors since it does not include sys-
tematic effects (e.g. , finite volume and finite time errors)
which may affect the results at different quark masses in a
nonuniform way. Assuming this to be the case, we turn
off the correlations to obtain the best approximation to
the leading chiral behavior which the linear fit functions

TABLE III. Light meson results at P=6.0, 24'X39 (point source). Fits were noncovariant, single-
state, over t =(9,14) for both correlators.

0.152
0.154
0.155

Kc

0.489(9)+0.001
0,374(10)+0.001
0.311(9)+0.002

a Xm„'

0.263
0.254
0.249

af (0)

0.424
0.354
0.315

af X10

1.11(6)+0.01
0.90(5)+0.00
0.79(6)+0.01
0.58(9)+0.02b

KI

0.152

0.154

0.155
Ks

K2

0.154
0.155

Kc

0.155

c

Kc

Kc

0.434(9)+0.001
0.405(10)+0.000
0.339(8)+0.004
0.343(9)+0.001
0.268(7)+0.003
0.230(5)+0.002

a Xmz'

0.258
0.256

0.251

af (0)

0.388
0.366

0.334

af X10

1.00(5)+0.01
0.94(5)+0.00
0.82(6)+0.02
0.84(6)+0.01
0.74(7)+0.01
0.69(8)+0.01

0.68(11)+0.02

'~, =0. 1570( 1 )+0.0002.
ba ' =2.3(4)+0.1 GeV.
']c, =0.1553(8)+0.0002.
f» /f „=1.18(2)+0.01.
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TABLE IV. Light meson results at P=6.0, 16'X39 (point source). Fits were covariant, single-state, over t=(9, 14) for both corre-

lators.

0.152
0.154
0.155

Kc

Kl K2

1.0
1.2
1.2

X'i&DF

0.497(3)+0.002
0.380(3)+0.005
0.311(3)+0.010

a Xm„'

aM

0.263
0.254
0.249

&f(0)

0.406
0.384
0.343

&f(0)

of X10

1.07(4)+0.02
0.97(5)+0.03
0.86(6)+0.03
0.63(8)+0.11

af X10

0.152

0.154

0.155
Ks

0.154
0.155

Kc

0.155

Kc

Kc

Kc

0.9
1.1

1.2

0.443(3)+0.002
0.412(3)+0.004
0.346(5)+0.006
0.346(3)+0.008
0.270(3)+0.007
0.227(2)+0.005

a Xmz'

0.258
0.256

0.251

0.389
0.382

0.368

1.00(5)+0.02
0.98(5)+0.03
0.92(6)+0.05
0.92(5)+0.03
0.83(7)+0.05
0.72(7)+0.05

0.75(11)+0.10

'~, =0.1570(1)+0.0002.
a '=2. 1(3)+0.3 GeV.

']c, =0. 1548(7)+0.0008.
fg/f =1.20(3)+0.05.

are intended to model. Typical chiral extrapolations (for
the heavy-light case} are shown in Figs. 4 and 5. Note
that the fits to straight lines look excellent to the eye; yet
correlated fits (when they converge at all) would still give
a large g /ND„. For example, for the degenerate light-
light case, correlated fits at P=6.3 give y /ND„=7 for
M„vs I/a and g /NDF=20 for f vs I/a', yet go
through the error bars of all the points. Recent work by
Seibert [33] discusses potential problems with covariant
fits of which this may be an example.

We continue to jackknife the entire fitting procedure
and typically obtain statistical errors in the extrapolated
results which are similar in size to the errors on the indi-
vidual masses or amplitudes used in the fit. The sys-
tematic fitting error which we compute numerically (Sec.

IIIC) roughly compensates for this underestimate —its
largest contribution comes from analyses where we omit
the heaviest meson and extrapolate from only the lightest
two. Of course we cannot rule out the possibility that the
problem plaguing this stage of the analysis stems from
real physics —i.e., that the numerical data exhibit small
violations of the leading-order chiral behavior, either be-
cause of the large values of the quark mass being used or
because of problems with the quenched approximation it-
self [34]. A careful study of this issue will require larger
lattices (allowing lighter quarks), and better statistics.

The results for fx/f„are plotted versus the lattice
spacing in Fig. 6. Here the statistical and fitting errors
have been added in quadrature. Note that we study the
dimensionless ratio fx/f (rather than fz itself) as a

TABLE V. Light meson results at ()3=5.7, 16' X25 (point source). Fits were covariant, single-state,
over t =(6,9) for both correlators.

0.160
0.164
0.166

Src

X'i&DF

2.5
1.3
0.8

K2

aM

0.690(5)+0.011
0.510(5)+0.006
0.407(7)+0.006

aXm '

X'i&DF

C

0.289
0.272
0.263

&f(0)

0.634
0.556
0.515

&f(0)

af X10

1.83(10)+0.04
1.51(9)+0.05
1.35(9)+0.04

1.12(10)+0.07

af X10

0.160

0.164
0.166

0.164
0.166

SCc

Kc

Kc

Kc

1.9
1.6

0.606(5)+0.007
0.562(5)+0.006
0.489(4)+0.007
0.366(4)+0.006
0.306(5)+0.003

a Xmz'

0.281
0.277

0.595
0.573

1.67(9)+0.04
1.59(9)+0.04
1.47(9)+0.04
1.33(9)+0.05
1.25(9)+0.06

1.38(14)+0.08

'v, =0.1690(1)+0.0001.
a '=1.2(1)+0.1 GeV.

']c, =0.1623( 12)+0.0008.
f» If = 1.23(3)+0.02.
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FIG. 2. The effective mass of the wall-source pion for
«=0. 150 at P=6.3. The solid lines indicate the mass from the
single-state fit, (3.10). So that both 6& and Gz masses may be
shown simultaneously, the 6& mass is displaced upward by 0.1.

FIG. 4. Fits and extrapolations of the heavy-light masses for
states with M& ) 1 GeV. The results have been offset by various
amounts to improve the readability of the graph; the constants
are vg =0.145, +0.130; ~g =0.140, 0; ]cg =0.135, —0. 135;

zg =0.130, —0.275; vg =0.125, —0.425; vg =0.117, —0.700.
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P=6.3 Wall Source
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0 0.4—
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0
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/cq=. 130

/cq=. 135
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+hklk 0.05
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0 10 20 30

FIG. 3. The effective mass of the point-source pion for
«=0. 150 at P=6.3. The solid lines indicate the mass from the
single-state fit, (3.10).

FIG. 5. Fits and extrapolations of the heavy-light decay con-
stants for states with Mp & 1 GeV. The results have been offset

by various amounts to improve the readability of the graph; the
constants are ~g =0.145, 0; ~g =0.140, +0.01; Kg =0.135,
+0.02; ]cg =0.130, +0.03; xg =0.125, +0.04; vg =0.117,
+0.05.
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FIG. 6. Scaling study of (quenched) fz If .
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40
matter of convenience. There is no reduction in the sta-
tistical error since in dimensionful quantities we multiply
the scale, which we determine from f, within the jack-
knife procedure. (That is to say, all of the decay constant
computations are efFectively made using a jackknifed
"f/f "method. } From the linear fit shown in Fig. 6 we

find the slope 0.19+0.07 GeV ' and the intercept
fx/f (a=0)=1.08&0.03+0.08. The first error is a
measure of statistical and fitting errors; the second, sys-
tematic errors in the a~0 extrapolation. We estimate
the latter by repeating the fit using a quadratic, rather
than linear, parametrization, and then symmetrizing the
difFerence. This quenched result is 1.6o less than the ex-
perimental value (1.22}. It is interesting to note that the
sign of the disagreement is in accord with sign of the
difference between the chir al logs in the full and
quenched theories [35].

C. Conventional heavy-light mesons

We focus here on the results at P= 6.3. The three light
quarks sL =0.149, 0.150, and 0.1507 are paired with the
following "heavy" quarks: for wall sources it&=0. 148,
0.145, 0.140, 0.135, 0.130, 0.125, and 0.117; for point
sources ~H=0. 148, 0.145, 0.125, 0.110, and 0.100. As
compared to the light mesons, the correlation functions,
both wall and point, approach ground-state saturation
more slowly. However, we found that the wall-source
data were well approximated by the two-state function
(3.11). These fits were made over a larger number of time
slices which began much closer to the source. For quoted
results we chose the interval it —toi=(3, 18) on each
eorrelator, providing a total of 32 points in the fit. A
sample of this method is shown in Fig. 7 for AH =0.130.
The effective mass curve, computed from the logarithmic
derivative of the fit function, provides the usual compar-
ison of the fit to the data. In the alternate analyses from
which we estimate fitting errors, we shift the intervals in
either direction and also use single state fits at much
larger time displacements. Results are reported in Tables

FIG. 7. The effective mass of the heavy-light wa11-source

correlators at @=6.3, ~&=0.130, and ate=0. 150. The solid
lines are the effective mass computed from the logarithmic
derivative of the fitted function. The fitted inter va1 was

it —t, i =(3,18).

VI-VIII. Note that we report the shifted mass aM',
defined by Eq. (2.42), as well as the shift itself,
km& =—am2 —am, so that the bare lattice mass is easily
obtained.

The analysis of the point-source heavy-light correlators
was again worrisome due to the finite-time restriction, as
can be seen from the efFective mass plot, Fig. 8. Here the
two-state function did not work well, and we have com-
puted the single-state fits to these data as a check on the
wall-source results. We cannot expect a priori that this
analysis will produce a reasonable outcome, because we
are forced to fit very close to the region where there are
obvious, large boundary effects. In this respect, the
agreement between the two methods (which is within the
combined statistical and fitting errors estimated from the
wall-source analysis) may be somewhat fortuitous. Note
also that the statistical errors on the bare fitted ampli-
tudes of the point-source analysis are actually smaller
than the corresponding results from the wall sources for
the heavy light states (cf. a-~=0. 125 for the two cases).
In the final analysis of physical quantities, however, we
still obtain smaller statistical errors from the wall
sources, primarily because of the smaller statistical error
in the scale determination.

For each heavy quark ~H, we extrapolate the correla-
tor masses and decay constants linearly in 1/~L to the
chiral and strange limits of the light quark. From the ex-
trapolated values we recompute the amplitude Pi, which
we analyze in conjunction with the static results for phe-
nomenological predictions. The linear fit off rather than

P is motivated by the results obtained [36] from the appli-
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cation of chiral perturbation theory to mesons containing
a single heavy quark [37,38]. In practice, however, the
curvature is slight and it makes little difference which is
used. The extrapolation points 1/a, and 1/~„computed
in the light-meson analysis, are included in the jackknife.
Since we neglect the inter-~ correlations in these fits, we
again estimate a fitting error which includes analyses
where extrapolations are made from the lightest two
quarks. The fits and extrapolations of the heavy-light
masses and decay constants are shown in Figs. 4 and 5,
respectively.

D. Static results

For the static calculation, the use of smeared sources is
necessary in order to obtain ground state dominance at
sufficiently early times, and one would thus like to optim-
ize the overlap of the source with the ground-state wave
function of the heavy-light meson. In our simulations,
however, the cube sources (Sec. III A) allow only a crude
volume adjustment, and it is not clear a priori that any
particular cube will sufficiently eliminate the contribu-

tions of higher states in both correlators. A search for an
early plateau in the effective masses M„(t) and Ms(t) or
in the ratio of correlation functions G„/Gz can lead to
some judgment of the best smearing volume to use. How-
ever, for several reasons, this technique may not be en-

tirely trustworthy and in practice difficult to implement.
First, the effective mass of the smeared-point correlator,
M~ (t), need not be monotonic; this presents the possibili-

ty of short-range false plateaus, which are difficult to
detect because the SNR is falling exponentially. Second,
the location of the true plateaus in Mz (t) and Mtt (t) need
not coincide; thus the ratio Gz lG& is difficult to inter-

pret unambiguously. Finally, as based on some "best pla-
teau" criterion, there is a noticeable variation in the op-
timum smearing volume as the light-quark mass is adjust-
ed. Unless the source tuning procedure is sufficiently pre-
cise, different amounts of higher-state contamination at
various light-quark masses will complicate the extrapola-
tions to ~, .

In this section we discuss the static-light analysis and
present the results, first at P= 6.3 and then at P= 6.0. At

TABLE VI. Heavy-light, wall-source results at P=6.3. Fits were covariant, two-state, over t =(3, 18) for both correlators. aM' is

the shifted mass defined by Eq. (2.42) and hmo —=am &
—am is the value of the mass shift.

KH

0.148

0.145

0.140

0.135

0.130

0.125

0.117

KL

0.149
0.150
0.1507
Ks

Kc

0.149
0.150
0.1507

Kc

0.149
0.150
0.1507

0.149
0.150
0.1507

Kc

0.149
0.150
0.1507
Ks

Kc

0.149
0.150
0.1507

Kc

0.149
0.150
0.1507
Ks

X'/&DF

0.8
0.9
1.2

0.8
0.9
1.1

1.0
1.0
1.2

1.2
1.2
1 ' 3

1.4
1.3
1.5

1.6
1.S
1.6

1.8
1.7
1.9

0.000492

0.00277

0.0131

0.0343

0.0683

0.117

0.230

aM'

0.345(1)+0.002
0.314(1)+0.002
0.290(1)+0.002
0.300(2}+0.003
0.263(2)+0.003
0.433(1)+0.002
0.405(1}+0.002
0.384(1)+0.001
0.392(2)+0.003
0.360(1)+0.002
0.572(1}+0.002
0.546(1).+0.002
0.528(1)+0.002
0.535(2)+0.003
0.507(1}+0.002
0.712(1)+0.002
0.688(1}+0.002
0.671(1)+0.002
0.678(2)+0.003
0.651(2)+0.002
0.859(2)+0.002
0.836(1)+0.002
0.820(1}+0.002
0.826{2)+0.003
0.801(2)+0.002
1.017(2)+0.003
0.994{1}+0.002
0.980{1)+0.003
0.985(2}+0.003
0.960(2)+0.002
1.298(2)+0.003
1.276(2)+0.002
1.263(2}+0.003
1.268(2)+0.003
1.245{2}+0.003

0.252
0.250
0.248

0.259
0.257
0.255

0.270
0.268
0.266

0.281
0.278
0.276

0.291
0.288
0.286

0.301
0.298
0.296

0.316
0.313
0.311

a 3/2y(0)

0.160
0.143
0.129

0.191
0.174
0.159

0.223
0.204
0.189

0.245
0.224
0.208

0.260
0.237
0.221

0.272
0.246
0.231

0.284
0.257
0.244

a'~ PX10

0.403(5)+0.009
0.357(5)+0.008
0.320(4)+0.006
0.334(6)+0.008
0.283(4)+0.009
0.495(8)+0.011
0.445(7)+0.011
0.404(6)+0.009
0.420(8)+0.011
0.362(7)+0.012

0.602(15)+0.012
0.546{14)+0.013
0.502(13)+0.013
0,519(14)+0.013
0.455(14)+0.015
0.688(22)+0.015
0.623(20)+0.015
0.574(18}+0.016
O.593(2O)+O.O15

0.519(19)+0.019
0.756(31)+0.020
0.683(25)+0.016
0.632(22)+0.018
0.652(25)+0.017
0.571{23)+0.021
0.818{35)+0.026
0.734(31}+0.017
0.684(26)+0.021
0.704(29)+0.020
0.617{27)+0.023
0.898(42)+0.034
0.805{36)+0.023
0.758{35)+0.028
0.777(36)+0.026
0.685(36)~0.027
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TABLE VII. Heavy-light point-source results at P=6.3. Fits were covariant, sing1e-state, over G„(17,23) and Gs(18,23). See

caption to Table VI.

0.148

0.140

0.125

0.110

0.100

KL

0.149
0.150
0.1507
Ks

Kc

0.149
0.150
0.1507
Ks

Kc

0.149
0.150
0.1507
Ks

0.149
0.150
0.1507
Ks

'c

0.149
0.150
0.1507
Ks

X'~&DF

1.1
1.3
1.5

0.8
0.8
0.9

1.4
1.6
1.7

2.6
2.4
2.2

2.7
2.6
2.5

bmoc

0.000514

0.0133

0.117

0.371

0.652

aM'

0.351(2)+0.003
0.320(2)+0.003
0.296(2)+0.002
0.310(9)+0.007
0.267(2)+0.004
0.578(2)+0.001
0.553(2)+0.001
0.534(2)+0.001
0.545(7)+0.005
0.511(3)+0.002
1.026(2)+0.002
1.004(2)+0.002
0.987(3)+0.001
0.997(7)+0.003
0.966(4)+0.003

1.588(12)+0.010
1.572(4)+0.005
1.557(5)+0.004
1.566(7)+0.004
1.539(8)+0.006
2.077(8)+0.009
2.058(5)+0.008
2.045(7)*0.006
2.053(8)+0.005
2.028(9)+0.006

0.252
0.250
0.248

0.270
0.268
0.266

0.301
0.298
0.296

0.329
0.326
0.324

0.347
0.343
0.341

& 3/2y(0)

0.175
0.160
0.147

0.236
0.216
0.203

0.287
0.265
0.249

0.314
0.283
0.265

0.316
0.288
0.276

a' PX 10

0.442(20) +0.016
0.401(20)+0.015
0.365(19)+0.016
0.385(28)+0.020
0.327(21)+0.023
0.639(20)+0.015
0.580(21)+0.013
0.540(21)+0.014
0.563(29)+0.021
0.488(23)+0.016
0.864(22)+0.014
0.791(23)+0.014
0.737(24)+0.014
0.768(33)+0.024
0.672(27}&0.021
1.033(33)+0.030
0.925(31)+0.017
0.860(35)+0.017
0.899(46)+0.021
0.765(43)+0.022
1.097(41)+0.032
0.991(45)+0.037
0.942(55)+0.027
0.973(58)+0.026
0.849(64)+0.037

p=6. 3 we have better statistics, and the smearing tech-
niques are more effective because the lattice is finer. We
have used both wall and cube sources, the latter comput-
ed using a range of smearing volumes V, . We choose our
best results by demanding consistency among the
different sources (and analysis methods) in order to mini-
mize systematic errors from possible higher-state contam-
ination as best we can. Our results at P=6.0, from cube
sources only, are presented in comparison to other static
results which have been published in the literature. At
this lattice spacing, and with our statistics, we find that
the finite time restriction (imposed by the exponentially
falling SNR) and the limited efFectiveness of the cube
smearing together prevent us from making a convincing
determination of the amplitude P [28]. Our results are
smaller than previously reported [10), but there is still a
strong dependence on how one chooses to analyze the
data.

There is some similarity of our results at p=6.0 here
with the results of Ref. [39] for difference size sources at
a fixed fitting interval, but a crucial difference is that we
do not believe there are any intrinsic problems with the
cube-smearing technique. In principle, all sources must
agree at large enough times. The issue, however, is that
with limited statistics, a rapidly falling SNR, and only a
few source sizes to choose from on this fairly coarse lat-
tice, it can be difBcult to go to large enough times. The
data are then ambiguous, and guesswork will be involved
in deciding the "optimal" available source and time inter-
val to analyze the data.

1. p=6.3

We consider first a given smearing volume, e.g. ,
V, =13 . The basic analysis procedure is analogous to
that for the conventional method: we make a single-
state, covariant fit to the two correlation functions over
some range of time slices. The fitted parameters are the
unrenormalized binding energy a@ and the amplitudes
g„and gii which enter into Eq. (2.6). This is repeated for
several values of the light quark hopping parameter; we
then make a linear fit of P vs I/tt and extrapolate to I/it,
and 1/it„using the (jackknifed) parameters computed in
the light-quark analysis. As in the previous cases, we
neglect the inter-it correlations. The effective masses for
V, =13,plotted against the mass obtained from a fit over
the range t =(9,16), are shown in Fig. 9.

Whereas the size of the cube source can be set to
roughly match the size of the ground-state wave function,
the size of the wall source is certainly too large. Thus
higher-state contamination is expected to increase [28].
However, the wall has an advantage in terms of statistics
(sources for both light and heavy quarks at every point on
a time slice}, and ultimately its performance must be eval-
uated empirically. Although there is a large admixture of
excited states in the two-point functions (judging from
the effective mass plots), we again obtain good fits for
wall sources by using the two-state function over an early
range of time slices. We use this method to extract the
ground-state parameters needed to compute the static
amplitude. The effective masses of the wall source,
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static-light state, with K =0.150, are shown in Fig. 10
(see also Table IX). They are plotted against the curve
computed from the logarithmic derivative of the fit func-
tion using the best-fit parameters as input.

A qualitative examination of the effective mass plots
from the cube sources indicates that the optimum smear-
ing volume is V, —13 —15 . Nevertheless, due to the
caveats discussed above, our preference is to obtain con-
sistent results over a range of V, . In Fig. 11 we show the
results of the raw decay amplitude (i.e., without perturba-
tive renormalization constants) for several cube sizes.
For each size, we show the dependence of the amplitude
on the fitted time interval of the correlator G~, while that
for Gs has been held fixed at i =(10,16). We mark the
fits which satisfy y /NnF (1 with "X." The early-time
fits clearly show systematic differences, but as the fit in-

terval is moved further from the source, the results in the
range V, —13 —17 are in good agreement (both central
values and size of errors) and are consistent with the

wall-source results extracted from the two-state analysis
[28]. If we instead use an early fit interval for G~, fitting
where the effective mass first appears to plateau, we find
that these results are altered by at most 3%. (At / =6.0,
a similar change in the fit interval of the smeared-
smeared correlator reveals a much larger discrepancy; see
the discussion below. ) We use the single-state fit over the
later-time with the source V, = 15 (presented in Table X)
for our combined analysis from which we compute the B-
and D-meson decay constants (Sec. IV E). The remaining
systematic uncertainty associated with the source-type
and fit interval is accounted for in the fitting error.

2. P=6.0

At P=6.0 we have poorer statistics and our results are
less conclusive. Nevertheless, it is informative to com-
pare them with those that have recently appeared in the

TABLE VIII. Heavy-light results at /=6. 0, 24'X39. Fits were noncovariant, single-state, over

t =(10,15) for both correlators. See caption to Table VI.

0.152

0.148

0.142

0.13S

0.118

0.103

0.088

0.152
0.154
0.155
Ks

Kc

0.152
0.154
0.155

0.152
0.154
0.155

Kc

0.152
0.154
0.155
Ks

Kc

0.152
0.154
0.155
Ks

0.152
0.154
0.155

Kc

0.152
0.154
0.155

0.00116

0.00602

0.0240

0.0656

0.286

1.31

aM'

0.488(8)+0.001
0.434(9)+0.001
0.406(9)+0.001

0.399(19)+0.004
0.354(8)+0.005
0.596(8)+0.001
0.546(9)+0.001

0.521(10)+0.001
0.515{17)+0.004
0.474(10}+0.004
0.757(8)+0.001

0.712(10)+0.001
0.689{11}+0.001
0.683(14}+0.004
0.646(12)+0.003
0.954(8)+0.001

0.912(10)+0.002
O.891(12}+0.002
0.885(13)+0.004
0.850(13)+0.003

1.527(8}+0.003
1.488(11)+0.003
1.467(13)+0.004
1.462(12)+0.004
1.429(16)+0.003
2.209(9}+0.004

2.171{12)+0.004
2.150(15)+0.005
2.145(14)+0.004
2.113(20)+0.004
3.154(12)+0.005
3.116(16)+0.006
3.095(20)+0.006
3.090(18)+0.005
3.058(26}+O.OOS

0.263
0.258
0.256

0.272
0.267
0.265

0.285
0.280
0.277

0.299
0.294
0.291

0.332
0.326
0.323

0.358
0.352
0.348

0.382
0.376
0.372

& 3/2y(0)

0.291
0.254
0.233

0.353
0.311
0.288

0.421
0.373
0.346

0.47S
0.422
0.392

0.558
0.494
0.457

0.610
0.538
0.496

0.657
0.577
0.530

' '$X10

0.77(4)+0.01
0.66(4)+0.00
0.60{4}+0.00
0.58(7)+0.01
0.50(4)+0.01
0.96(5)+0.01
0.83(4)+0.01
0.76(4)+0.01
0.75(7)+0.01
0.64(4)+0.01
1.20(6)+0.01
1.04(6)+0.01
0.96(5)+0.01
0.94(7)+0.01
0.82(5)+0.01
1.42(7)+0.01
1.24{7)+0.01
1.14(6)+0.01
1.12(8)+0.02
0.97(6)+0.01
1.85(9)+0.02
1.61(9)+0.02
1.48(9)+0.02
1.45(9}+0.03

1.25(10)+0.02
2.18(12)+0.02
1.89(13)+0.03
1.73(14)+0.03
1.70(12)+0.04
1.45(16)+0.03
2.51(17}+0.03
2.17(20)+0.03
1.97(21)$0.04
1.93(18}+0.04
1.64(25)+0.04



LA I I'ICE COMPUTATION OF THE DECAY CONSTANTS OF B.. . 2555

1.00

P=6.3 Point Source

I I I I I I I I I I I I I I I

P=&.3 Static, L =.150 (V,=13 )

0.8

0.95—

K

0
O.9O-

+ C3--
U

()()CP &W & g ()

—&)

0.85—

0.80
10

Icy=. 125, Ic =.150

& GA const=o

&& G~, const=. 04

20
t —to)

30

Zl0.4— & G„(cube point), const=
o Gs (cube cube), const=
— tit lt-gaol = (9, 1~)

I I I I I I I I I I

5 10 15

I I I I

m ITI IT) ffl % [) —— r ~
Z ~ LJ

[)
L3 L-—

20

FIG. 8. The efFective mass of the heavy-light point-source
correlators at p=6.3, tt&=0. 125, and tt~=0. 150. The solid
lines indicate the fitted mass from the function (3.10) and the
time intervals that were used.

literature [7,8, 10,26]. Our aim here is to examine only
the numerical aspects of the static calculation, indepen-
dent of any questions of perturbative renorrnalization or
choice of scale. To this end, we compile in Table XI re-
sults for the bare lattice quantity Pa ~ =~2m/'0'a ~2,

where
' 1/2

0 (0) 3/2 A

In general we choose the light-quark hopping parameters
K =0.154 and « =0. 155; the European Lattice Collabora-
tion (ELC) [8] used slightly different values; however, in
each case we extrapolate the results linearly in I/tt to the
chiral limit (which we choose to be «, =0.157) so that a
reliable comparison can be made. (We emphasize that all
extrapolations to K, are ours, using our values for K„
a ', and the perturbative corrections to get ft't'". ) As a
rough guide, the statistical error assigned to the extrapo-
lated result has been taken from the lightest quark used
in each case. To compute a physical value of ftt from the
static calculation, the ELC [8] and Wuppertal [7] groups
have used the perturbative renormalization 2A =0.8 and
scale estimates of a '=2.0 and 2.3 GeV, respectively.
In Ref. [10], we left open the choice of 2A and used

FIG. 9. The effective mass of the static correlators at p=6. 3,
V, =13'.

a ' = 1.75 GeV. These differences have been removed in
computing P. From this "bare" result, we compute

f&s™=PAC(a, M—tt) —=C(a, M2t)
+M2t +Ms

with a ' =2.3 GeV, M~ =5.28 GeV, and
2AC(a, M2t)=0. 70; the latter obtained using g2=1.77
(Sec. IV G).

I I I I I I I I I I I I I I I I

P —6 3 Static, c=.150 (wall source)

0.8—

O G„(WP), const. =0, fit (3,12)
o.6—

Gs (WW), const=. 2, fit (5, 13)

0.4—

2Eichten et al. [40,9) have also reported results using smeared
interpolating operators in the static limit. We do not include
them here because the bare coupling was not the same (they
used P=6. 1, P=5.9, and P=5.7), and this makes an unambigu-
ous comparison difBcult. In addition, preliminary results from
UKQCD were discussed in Ref. [41].

I I I I I I I I I I I I I I I I

5 10 15 20

FIG. 10. Effective mass of the wall-source static correlators
at P=6.3.
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TABLE IX. Static-light, wall-source results at P=6.3. Fits were covariant, two-state, over G„(3,12)
and G~(5, 14).

0.148
0.149
0.150
0.1507

Kc

X /NDF

0.8
0.8
0.7
0.7

a @(0)

0.537(3)+0.004
0.518(4)+0.004
0.499(4)+0.004
0.487(6)+0.006
0.491(5)+0.006
0.470(6)%0.007

C„/C{a,m )

0.395
0.392
0.388
0.385

a 3/2y lo)

0.290
0.268
0.246
0.231

a (()X 10

1.15(7)+0.09
1.05(6)+0.08
0.96(6)+0.08
0.89(8)+0.13
0.92(7)+0.09
0.81(7)+0.11

The Wuppertal Collaboration has used gauge-
covariant exponential wave functions as the smeared in-

terpolating operators. In Table XI we denote their two-
point functions which are analogous to our point-
smeared ( G z ) and smeared-smeared ( Gtt ) by using our
notation in quotes. In each of rows 1-3, the fitting tech-
nique is somewhat different, although in all cases an early
interval has been used and the statistical errors are rela-
tively small. Comparing the chiral extrapolations, the
ELC and Wuppertal results agree at roughly the 10%
level. The authors of Ref. [7] attribute the slightly lower
ELC result to finite volume effects. There is a larger
discrepancy ( —30%) between our preliminary results in
Ref. [10] (row 3) and those of the ELC group. ELC used
the same smearing technique; however, they used a cube
size V, =7, whereas we chose V, =5 .3 3

A sample of our updated results is presented in the
lower two sections of Table XI. First, we recompute the
amplitude at V, = 5 (row 4) to check the e5'ect of changes
in the analysis procedure —the difference is roughly

P=6.3 tc=. 150

v'Pter (2(x/&s) '/

V,=9

—0. 1

17'
WALI.—

5 5 5 5 5 1

min

F1G. 11. The static-light amplitude at P=6.3, computed us-

ing different smearing sizes and 6tting intervals. For each
smearing function, the fit interval for 6& is held constant
[t={10,16) for the cube sources, t =(5, 14) for the wall] and the
interval for 6„ is shifted in successive data points by one time
slice, as indicated by the horizontal axis [t =(t,„,t,„+T),
where T=4 for the cube sources, and T=9 for the wall source].
Fits which passed the criterion X /N» & 1 are marked with X.

within the statistical error (cf. rows 3 and 4). Next, at
V, =7, our central values are in very good agreement
with those of the ELC calculation (cf. rows 1 and 5).
Since the lattice sizes are different, this indicates that
finite-volume errors are probably negligible at this level of
precision. Continuing to V, =9, however, we find that
the amplitude again decreases —by approximately 20%
when a similar (early) fitting interval is used. From our
analysis, it is diScult to determine which of these is the
"best" result based on some objective criterion such as
the lowest y /Nn„of the fit.

To illustrate the source of these differences, we show a
sequence of effective mass plots in Fig. 12, using the light
quark ~=0.155. In each plot the local masses of the
smeared-smeared and smeared-point correlators, as we11

as the single mass from the coupled fit, are shown. (Be-
cause the number of lattices is small, we were not able to
include the effects of correlations, and the values of
y /ED„which the fits produce are deceptively small. ) As
the smearing volume is increased from V, =5 to 9, the
effective masses appear to plateau earlier in the smeared-
smeared correlator and later in the smeared point. This
illustrates a problem with the cube source which was
pointed out above; because of this we avoid using the ra-
tio G „/Gs in the analysis. In addition, there is some evi-

dence that long-range (i.e., highly correlated in t) fiuctua-
tions are causing a misleading signal at V, =9: the
effective mass of Gz, a monotonically decreasing quanti-

ty, appears to rise slightly at the earliest time slices. The
final analysis of these data thus requires a significant
amount of judgment. We consider two approaches, both
which seem fairly reasonable.

First, we repeat the procedure that was used at p=6. 3.
We use a later fit interval on the smeared-smeared corre-
lator Gz and study the dependence of the amplitude on

V, and on the fit interval for G~. These results, comput-
ed for the four values of the light quark hopping parame-
ter, are shown in Fig. 13. At values of V, where the am-

plitude is independent of t;„, a plateau exists in the
effective mass of the correlator Gz. By comparing the
four plots, notice that using this particular "plateau cri-
terion" will result in a different optimal smearing size for
different light-quark masses —ranging from 5 at
K =0.152 to 9 at ~ =0.156. Nevertheless, we again
find (albeit within large statistical errors) that at large
time displacements the results computed using different
smearing volumes are in good agreement. As at P=6.3,
we choose our best result from a later fit interval with a
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TABLE X. Static-light, cube-source results {V, =15') at P=6.3. Fits were covariant, single-state,
over t =(10,16) for both correlators.

0.149
0.150
0.1507

Ks

Kc

X'i&DF

0.7
0.7
0.6

0.525(10)+0.008
0.510(11)+0.009
0.499(11)+0.009
0.503(11)+0.009
0.486(12)+0.010

C„/C(a, m )

0.392
0.388
0.385

a 3/2y (0)

0.294
0.275
0.259

a 3/2y X 10

1.15(6)+0.06
1.07(6)+0.06
1.00(6)+0.05
1.02(6)+0.06
0.92(6)+0.06

)))(K )/p(a; ) =0.900(16)+0.018

large smearing function (V, =9 ). An example of the
outcome is provided in the final section of Table XI (i.e.,
row 7); we provide complete results in Table XII. Notice
that at ~=0.154 this result is in good agreement with the
corresponding one from V, =7 (row 5, an earlier fitting
interval): there is a plateau for the particular combina-
tion V, =7 and a =0.154. However, for a =0.155 (a
lighter quark}, V, =7 appears to be less optimal, and the
difference between rows 5 and 7 becomes more pro-
nounced. Because of this, there is an increase in the slope
of the chiral extrapolation, which causes systematic
differences to be magnified in fzs™.This effect produces a
significant amount of the difference between the result
fz"'=237 MeV in row 7 and, say, the ELC result
fii'"= 323 MeV in row 1.

Alternatively, let us consider a different approach to
the analysis, based on the efFective-mass plot, Fig. 12(d).
We assume that the early-time plateau in the smeared-
smeared correlator (which is optimal for V, =9 } reflects
the least contaminated projection onto the ground state
and that the smeared-point correlator contains higher-
state contributions which become small only at large
times. Thus we fit t=(2, 9) for Gii and t=(10, 14) for
G„. Now, the fitted mass is primarily constrained by the
smeared-smeared correlator and is significantly larger
than that found in the first analysis described above [cf.
Figs. 12(c) and 12(d)]. It does not appear to agree very

well with the local masses of the smeared-point correla-
tor, but our premise was that this channel contains sub-
stantial higher-state contributions and that, because of
fluctuations and the overall signal loss, its effective-mass
plateau is misleading. Thus, we compute the result given
in the last row of Table XI, fz"'=364 MeV.

From all of this, the first conclusion is that the bare lat-
tice results coming from difFerent simulations are in rath-
er good agreement. As a final example of this point, note
that the choice of fitting used to produce the latter (and
larger) of the two results above is a similar approach as
that used by the Wuppertal Collaboration, and the results
agree well. The largest source of disagreement comes
from the choice of analysis procedure. The fact that the
disagreement exists implies that our data at p=6.0, and
perhaps those of the other groups, are not very good.
For the reasons discussed above, we have chosen the first
of the two analyses as our best result. However, we can-
not rule out a systematic error which is roughly given by
the difference between the two. For the remainder of this
paper, we will focus primarily on our results at p=6. 3,
which we find to be much less ambiguous.

E. Combined heavy-light analysis

In the final stage of the analysis, we combine the static
and (large-am corrected) conventional results and analyze

TABLE XI. A comparison of static results at P= 6.0. The results at specific )r values are taken directly from the papers, but all ex-
trapolations to a, are ours, using our values for )r„a ', and the perturbative corrections to get fg". We take the results from [7],
rather than [26], since both a=0. 154 and «=0. 155 are included in the former. The results at a=0. 154 in [26] are completely con-
sistent with those in [7].

Group
(lattice)

Smearing Fitting ya 3/2 —3/2~y )0) 3/2

K=O. 154 K=O. 155 Slope
Extrapolation in 1/K

P(K )a fz'" (MeV)

ELC [8]
10 X20X36

Wuppertal [7]
12'X 36

Lattice '90 [10)
24 X39

This work
24 X39

Coul. gauge,
cube, V, ='7'

Gauge cov. ,
exp. WF

Landau gauge,
cube, V, =5

Landau gauge,
cube, V, =5'

V, =7
V, =9
V, =9
V, =9

G~(4, 9);
GA /Gg(4, 9)
"Gq" (t & 2);
"G„"(t)5)

Gg(5, 10),
GA (5, 10)

Coupled fit,
t =(5, 10)
t=(4, 9)
t =(5, 10)
t =(8, 13)
G~(2, 9),

GA (10,14)

(K=0.153)
0.3S6(2S )

0.371(20)

0.427(20)

0.419( 18)

0.337(10)
0.282( 11)
0.315(36)
0.387(23)

(K=0. 1545)
0.337(24)
0.359(20)

0.416(20)

0.402( 18)

0.324( 10)
0.268( 12)
0.284(35)
0.372(23 )

0.31

0.30

0.26

0.41

0.31
0.33
0.74
0.36

0.304(24)

0.334(20)

0.394(20)

0.369(18)

0.299( 10)
0.241( 12)
0.223(35 )

0.343(23 )

323(26)

355(21)

419(21)

392(19)

318(11)
256(13)
237(37)
364(24)
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FIG. 12. Static-light e8'ective masses at
p= 6.0, 24' X 39, Ir, =0.155, for different

smearing volumes. Diamonds: G& {cube-
cube), const = +0.4; squares: G~ (cube
point), const = 0. The solid lines indicate the
mass from a coupled single-state fit. In plots
(a)—(c) the fit interval on both correlators is
t=(5, 10). In (d), the result for V, =9' is re-

peated, showing the fitted mass from the
ranges G&(2,9) and G&(10,14).
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TABLE XII. Static-light, cube-source ( V, =9'} results at )=6.0. Fits were noncovariant, single-
state, over t =(8, 13) for both correlators.

0.152
0.154
0.155

Kc

a @(0)

0.68(2)+0.02
0.63(2)+0.01
0.61(2)+0.01
0.60{3)+0.01
0.57(3)+0.01

C„/C(a, m }

0.390
0.384
0.380

a 3/2y (0)

0.666
0.566
0.509

a PX10

2.6(3)%0.2
2.2(2)+0.1

1.9(2)+0.1

1.9{2)%0.1
1.5(2)+0.1

thein using the parametrization (2.38}. The following is a
summary of the essential steps leading to and including
this stage of the analysis.

(1) Compute the static result ((} for Ks =K and K, . The
normalization C„ is given by (2.36) with the factor
C(a, m ) removed. The light-quark extrapolations are de-
scribed in See. IV D.

(2} Compute pF(K& ) and MF'(K& ), again for chiral and
strange light quarks. C„ is given by (2.35) and MF' is
computed from the pole mass MF according to (2.42).
The light-quark extrapolations are described in Sec. IV C.

(3) Divide out the logarithmic factor C(a, MF) from
the amplitude (tIF computed in step (2).

(4) Fit the amplitudes to a quadratic in 1/MF. These
fits are made using the jackknife estimation of the covari-
ance matrix so that correlations among the heavy (and
static) quarks are included and a meaningful y /ND„ is
obtained (Sec. III C).

(5) Interpolate the fit to physical masses (e.g. ,
1/MF =1/M~) and multiply the logarithmic correction
[e.g., C(a, M& )] to obtain the physical amplitude.

In Fig. 14 we show the result from step (4) at /=6. 3,

F=co(l+ci/M+ci/M2) .

We find

c&=0.52(4) GeV ~

ci = —1.14(15) GeV,

y /ND„=1. 9/3 (chiral light quark),

and

co =0.58(3) GeV

ci = —1.08(13) GeV,

g /NDF =3.4/3 (strange light quark) .

(4.2)

where the light quark has been extrapolated to the chiral
limit. The static point in all cases is taken from the
source V, =15, and the conventional points are from the
wall-source results. From this analysis we find a smooth
interpolation between the heavy lattice mesons and the
static limit, as judged by a goodness-of-fit criterion:
y /ND„=1. 9/3 (heavy-chiral) and y /ND„=3. 4/3
(heavy-strange). As the fit and extrapolation parameters
are varied to estimate the fitting errors (Sec. III C), we
generally find that the quality of the final fit is not severe-
ly altered.

We obtain the deviations from the large-mass scaling
behavior by extracting the first two coefficients of the fit
function

0.5

Q

0.4

6- 0.3—

0.2 B

Interpolating these fits, using the experimentally mea-
sured masses, and taking Ms =Mii +(MD —MD ), we ob-

S S

tain the decay constants

fs = 187(10)+12 MeV,

fa =208(9)+11 MeV,

fg =207(9)+10 MeV,
S

f~ =230(7)+10 MeV .
S

0.0 0.5
1/Mp (Gev )

FIG. 14. The combined (conventional and static) analysis at
P=6.3. The conventional points are from the wall-source re-
sults with the large-am corrections applied. The static point is
from the cube source, V, =15 . The light quark has been extra-
polated to the chiral limit. The (covariant) 6t is quadratic in
1/~p with y /+DF 1 ~ 9/3.

The first error is statistical, obtained by a full jackknife of
the procedure outlined above (Sec. III C); the second is
the systematic fitting error, computed as described in Sec.
III D.

F. Large-am errors

%'e consider now the systematic error associated with
the large-am corrections introduced in Secs. IID and
IIE. In Fig. 15 we plot the heavy-strange results, both
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FIG. 15. The heavy-light amplitude, with Kq K The circles
are the results with large-am corrections included. The squares
are the corresponding results with those corrections removed.
The At to the latter is an attempt to smoothly interpolate be-

tween the static limit and the conventional results in a region
where O(am ) errors might, a priori, have been negligible. {See
text, Sec. IV F).

corrected and uncorrected [the latter are computed by re-
moving the factors of e™in Eqs. (2.35) and (2.36), and el-

iminating the mass shift (2.42)j. Using the uncorrected
results, we make the following two analyses. First, we fit

the set of points corresponding to the same values of K&

that were used in the analysis above, including the static.
Noting that in this case II) fiattens out at a value well

below the static result, we would not expect a good fit.
Indeed, we find y /NDF =28/3 (heavy-chiral) and

g /."II'D„=32/3 (heavy-strange). However, given that

aM~ is —1 for the heaviest mesons used, it is more legiti-
mate to argue that when excluding the corrections one
should throw out the largest masses and attempt to inter-
polate between the static limit and an intermediate-mass
regime where lattice errors might, a priori, be small
enough. This has been the traditional approach; an ex-

ample of it is shown in Fig. 15, where we eliminate from
the fit uncorrected points with am &0.3. Note that we
still find a discrepancy between the static and convention-
al results which is characterized by poor fits: we find

y /XD„= 16/2 (heavy-chiral) and g /XD„= 16/2
(heavy-strange). Either 0(am ) errors are still too large,
or else the conventional points are too far from the
heavy-quark scaling regime to model the data using
(2.38). As discussed further in the following section, we
are unable to obtain good fits, even after allowing changes
in the analysis parameters to accommodate fitting and
scale systematics. Furthermore, we emphasize here the
importance of using the covariant fit in arriving at the
above conclusions: since the conventional points are
highly correlated, the trend in the data is significant, arid
only the covariant fits are able to take this into account.
By contrast, we show in Fig. 16 the corresponding un-

0.5 1.0
1/Mp (GeV )

FIG. 16. The heavy-light amplitude, again with Kq K and
without including the large-am corrections. Here we show the
effect of using an uncorrelated At to the data, to be compared
with the corresponding result in Fig. 15.

0.0

+kin +cr .B1+ + +0
2m~ 2m2 m 2

(4.3)

Our lattice result is given instead by

correlated fit, where the discrepancy between the two
methods appears to be much less pronounced. Thus,
without the large-am corrections applied to the Wilson
quark, there remains a significant discrepancy between
the static and conventional methods —even at P=6.3, us-
ing results where lattice errors should be the smallest.

We now attempt to characterize the systematic errors
associated with large am. Since the factor e' acts at
leading order, its full e8'ect is, in principle, an overesti-
mate of the systematic error which remains in the
corrected amplitude when the heavy quark is nonrela-
tivistic. A better approach is to consider the correction
at O(1/Mz ) directly. We discuss three methods below.

The first approach is to reanalyze the data with the
leading-order correction in place, but without making the
shift in M~, given by (2.42). The difference between a
quantity computed from this analysis and that from the
fully corrected one gives some idea of the size of the sub-
leading large-am corrections. Although the mass shift is
significant at the largest masses, in both analyses the fit is
constrained by the static point and by the lighter mesons,
upon which the shift has a small effect. Consequently,
the error estimates turn out to be quite small —for the
amplitudes f~, fs, f~, and fD they range between

2 —3 fo. (With or without the mass shift we obtain good
fits, i.e., y /XrIF-—1.)

A second approach is to try to examine explicitly the
error caused by the suppression of the o.-B term. The
shift in Mp adjusts the heavy-quark mass to the kinetic
value mz(a&). Using this as the definition of the quark
mass, let us write the true amplitude as
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Xk;„X .~1+ + +0, (4.4)
2m2 2m3

where the difference between m2 and m3 is discussed in
Sec. IIE. In principle, we could fit the lattice data to the
form (4.4), determine the parameters P, Xk;„, and X .z,
and reconstruct the true amplitude from (4.3). A more
stable approach, numerically, would be to choose three
heavy mass points (including, perhaps, the static point}
and solve for the three unknown parameters. The in-
herent systematic errors could then be estimated by vary-
ing the choice of the three points. Unfortunately, when
we apply this analysis here, we find that the current data
are just not precise enough: Estimates of the difFerence
between (()&,«and P„„,at the 8 meson mass vary between
approximately 5% and 40%, depending on the three
points chosen and on whether the masses m2 and m3 are
adjusted to take into account the difFerence between the
heavy quark mass and heavy-light meson mass (which
should be a higher-order effect).

It is easy to understand why the above method fails
with the current data. From Fig. 14, one sees that the
dependence of P~ on I/M~ is quite linear for the heavier
masses which lead up to the static point. It will therefore
be hard to pull out the coefBcient X .z, which is responsi-
ble for nonlinearities in (4.4) and for the difference be-
tween (4.4) and (4.3).

Since the first method is rather ad hoc, and since the
second may be giving indications of considerably larger
errors, we have implemented a third approach. This ap-
proach, while indirect, has the advantage that it estimates
the combined systematic errors due to all identified prob-
lems that affect the large-am points: the perturbative
mismatch with the static computation (Sec. IID), the
procedure for treating the logarithmic corrections (Sec.
IIF), as well as the difference between rn2 and m3. The
idea is to eliminate all heavy quark points with am & 0. 17
(i.e., all but our lightest three heavy quarks —this corre-
sponds to eliminating all mesons with mass aM )0.36 for
a chiral light quark) and to fit the remaining points in
conjunction with the static value. We take the difference
between the results of these fits and the previously dis-
cussed central values as our estimate of the large-am sys-
tematic error. From Fig. 15 one sees that the fit to the
large-am corrected points comes quite close even to the
light-mass points that were not included in the fit. Thus,
it should be no surprise that we get quite small error esti-
mates if we use the same fitting form (4.2) on the light-
mass points alone. However, one may argue that,
without the heavy-mass points, we have no direct evi-
dence for the basically linear behavior of Pz vs 1/Mz in
the region of the 8. We therefore chose, as a possible
smooth interpolation between the light-mass points and
the static limit, a quartic fit in 1/M~ with the coefBcient
of the linear term set equal to 0. (Since there are four
remaining parameters and only four points to fit, we actu-
ally just solve for the parameters. } The result is shown in
Fig. 17. This gives a considerably larger deviation from
the central values, and we take this deviation as a conser-
vative estimate of the combined large-am error. The re-
sults of this analysis are given in Table XIV.

0.6 —
I

Heavy —Light, P=6.3 (s =rc, )

0.2—

0.0 0.5 1.0
1/Mp (GeV )

1.5

FIG. 17. The heavy-light amplitude, with Kq K fit as de-
scribed in the text in order to estimate a bound on various sys-
tematic errors.

G. Scale errors and other systematics

3The analysis procedure at p=6.0, 24'X 39 (8 configurations),
was analogous to that at p=6. 3, with the following exceptions:
No fits were covariant, and individual configurations were
time-reversal averaged before jackknifing. In addition, for the
scaling comparisons depicted in Figs. 18 and 19, we have not (at
P=6.0) included the scale a& in the jackknife analysis. This

results in a smaller statistical error —the one that is typically re-
ported in lattice simulations.

To study scale errors, one can in principle consider two
approaches. The first and preferable way is to repeat the
calculation at a variety of different lattice spacings, there-
by computing "physical" results as a function of a [e.g.,
f(a)]. Let us refer to any deviation from scaling
behavior [f(a)=const] as a "pure" scale violation; we
computed this error to be =6% for f» at p=6. 3 (Sec.
IVB). Alternatively, at a given lattice spacing, one can
simply use several different methods to determine a
and compare the results. The scale error computed this
way is less informative because it includes other sys-
tematic effects (such as quenching) in an unknown way.
In either case, there are two issues which we wish to con-
sider: (1) the connection between scale errors and large-
am effects, and (2) the estimation of a systematic error in
physical amplitudes.

Combining results at P=6.3 and P=6.0, we first ex-
amine the scaling behavior of the heavy-light amplitude
both with the large-am corrections (Fig. 18) and without
them (Fig. 19). Assuming that the corrections remove
most of the large-am systematics, there may be some evi-
dence for scaling violations in Fig. 18, but the differences
between P=6.0 and P=6.3 are not much larger than the
statistical errors. In the uncorrected case the difference
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I I I ( I I i 1 I } I I

Scaling, large —am corrected, x =x,

P=63, 24 x55

a P=6.0, 24 x39

c 0.4—
C3--

between the results at the two couplings is smaller in gen-
eral. Note, however, that there is a difference between
the trends of the two simulations at the highest masses.
At P=6.0, the onset of the downward slope in the un-

corrected amplitude is evident, presumably due to the—aMp /2„"e " behavior discussed in Sec. IIC. At P=6.3,
the heavy-mass data are still rising, but with decreasing
slope —presumably a smaller-am manifestation of the
same effect. Our conclusion is that the high-mass P=6.0
data suffer from additional suppression relative to the
P=6.3 data, and that the apparent agreement between
the two couplings is accidental, indicating a cancellation
between the large-am errors and true scaling violations.
However, other interpretations are clearly possible. Be-
cause of the limitations of our method and the quality of
the data, it is difficult to disentangle specific effects such

I I t I I i I I i I i I I

Scaling, uncorrected, x =I(.,

o P=6.3, 24 x55

Cl P=6,0, 24 x39

a. 0.4—

CL

iffy p

B D
I .I I I . I I I I I I I I I

0.0 0.5 1.0 1.5
I/M, (Gev ')

FIG. 19. Scaling comparison (p=6. 3 and p=6.0) of the
heavy-light amplitude, computed without large-am corrections.

D
I . I i 1 1 I l I I I

0.0 0.5 1.0 1.5
1/Mp (Gev ')

FIG. 18. Scaling comparison (P=6.3 and P=6.0) of the
heavy-light amplitude, computed with the large-am corrections.

as this in an unambiguous way. Thus, the scaling
behavior between P=6.3 and P=6.0 cannot be used to
choose between the corrected and uncorrected conven-
tional method in the regime am & 1; nor can a quantita-
tive estimate of pure scaling violations be made for these
data.

Let us use the results at P= 6.3 and consider the scale
error in terms of an uncertainty in a '. If we choose fx
to set the scale, the outcome can be more or less predict-
ed from Fig. 6. The difference between the ratio
fx If (P=6.3) and fx If (phys) is about 7%; this essen-
tially translates directly to other quantities, although
there are additional effects in this case since we fit Pi, vs

1/Mz in physical dimensions. Recomputing the full

analysis using a (fx ), we find a systematic shift of
-8% in the decay constants of the D and B mesons.

Of course, we may consider a variety of other ways to
choose the scale —the string tension, the nucleon mass,
the rho mass, etc. In principle, the most conservative
bound will be obtained using aM, since here the

P

discrepancy with af is typically quite large. In this

simulation we have not computed the vector mesons;
however, high-statistics studies of the string tension [42]
and the quenched hadron spectrum [43] allow us to make
an estimate of the difference in these scales at P=6.3. To
do this, we first interpolate the string tension results of
[42] to p=6. 17. We choose this coupling because it is
the weakest one used in the spectrum calculation of [43],
from which we obtain aM . Using v'o =440 MeV and
the physical value of M, we compute the relative scale
error (aM —a )/a =0.08. This we expect to bound

the corresponding error at P=6.3. Therefore, we inter-
polate the string tension results to p=6. 3 and make the
scale assignment aM' =1.08a '. (At P=6.3 we find

a, ' =3.18 GeV, similar to the scale we obtain from f,
and thus a~ ' =3.44 GeV. ) Note that the scale error ob-

tained this way is slightly larger than the one determined
from fx, we choose the larger value in order to make a
conservative error estimate.

%e show the results of the analysis using this scale in
Table XIII. From the top half of the table (large-am
corrected) we compute the systematic scale error quoted
with our final results. All other aspects of this analysis
were unchanged from that which produced our central
values. The lower half of the table contains the results
computed without the large-am corrections and restrict-
ed to am ~ 0.3, as described in the previous section. The
point here is that despite the change to the scale a~',
there still remains a discrepancy between the convention-
al and static methods, which is indicated by the large
value of g /XD„ for the fit.

Since we use f to set the scale for our central values,
any uncertainty in the choice of coupling used in the per-
turbative renormalization constants Z„and P„will have
only a small effect in the final resu1ts for the heavy-light
decay constants. That is to say, in the conventional am-
plitude f&M, a change in g will have no effect since a
jackknifed f lf method is used —the factors of Z„can-
ce1. There wi11 be residual effects due to the change in the
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TABLE XIII. Interpolations from p vs I /M with shifted scales (p=6.3).

Large am

Corrected

Uncorrected

a-' (OeV)

3.44

3.44

Kq

Kc

Ks

Kc

Ks

X /NDF

1.9/3
3.5/3
18/2
17/2

f,~ (MeV)

220(7)
248(6)
204(5)
224(4)

fb (MeV)

202(8)
229(8)
168(6)
189(6)

6.0,

6.3,

1.77;
1.62 .

By repeating the analysis using the bare coupling
(g =6/p), we find changes in the heavy-light decay can-
stants of & 3%. However, based on the studies presented
in [21], the bare coupling is, in any case, a poor choice of
expansion parameter; we expect this to be an overesti-
mate of the uncertainty in the final results. Since there
exists reasonable motivation for using the boosted cou-
pling, and since the residual effect of changes in the cou-
pling is so small, we consider this uncertainty to be sub-
sumed in our general estimate of scale errors and do not
include it as a separate source of systematic error.

We expect finite-volume errors to be negligible com-
pared to the other errors, even though our 24 lattice has
a volume of only -(1.5 fm) . This is because we work
only with pseudoscalar meson states at zero three-
momentum, which are quite insensitive to volumes of this
size. For example, in the calculation [44] of Bx with

staggered fermions, no significant difference was found
between the results for 16 and 24 lattices at p=6.0; the
16 lattice has almost the identical physical volume as
our p=6. 3 lattice. Similarly, Tables III and IV show no
difference, at the level of our statistics, for fx/f or a
between our 16 and 24 lattices at p=6.0. Note that
finite size effects on the heavy-light pseudoscalar states
should be even less than for light-light states, since the
former are somewhat smaller in size. Of course, the size
of the finite-volume effects should be checked explicitly
for the current computation; that work is in progress.

Our results for the decay constants and bounds for
various systematic errors are summarized in Table XIV.

ratio 2„/Z„and the scale which normalizes the masses

Mz to be used in the final fit of |)) vs 1/Mi, . Our central
values are obtained using the "boosted" coupling gi, (q )

derived from the heavy-quark potential; the momentum q
is defined as the average ln(q ) of the tadpole graph,
q =2.58/a [21]. This produces the values

P=5.7, gi -—1.95;

In Table XV we present the jackknifed ratios and similar
estimates of systematics. For final results, we add the
fitting and/or extrapolation and large am errors in quad-
rature. These two errors are estimated through similar
numerical procedures which are essentially independent
of each other. We list the scale error separately. Thus,
we find

fn =187(10)+34+15MeV,

fn =208(9 )+35+12 MeV,

fz =207(9)+34%22 MeV,

fn =230(7)+30+18 MeV,
where the first error (in parentheses) is statistical, and the
second two are systematic, representing respectively the
large-am plus fitting errors, and the scale errors.

We now briefly recall the experimental status regarding
the measurement of these quantities. For fn there only
exists an upper bound at present, fn &290 MeV (90%
C.L.) [45]. Recently an important first step in the experi-
mental determination of fn was made, yielding

S

fn =232+45+20+48 MeV [46]. For now the errors in
S

this measurement are too large for it to have an impact
on lattice calculations of fn, improved measurements are

S

eagerly awaited. Once a precise experimental determina-
tion of fn or fD —or for that matter any one of the four

S

heavy-light decay constants —becomes available, then
lattice results on the ratios of the f's (see Table XV)
could prove useful in pinning down the values of the oth-
ers, since the errors on the ratios are rather small
( &5%).

U. CONCLUSION

We have computed the heavy-light decay constants fz,
fz, fD, and fn in the quenched approximation at

S S

p=6. 3. The results have been summarized above; in ad-
dition we present the results for the jackknifed ratios in
Table XV. Included in these calculations, we have com-
puted the ratio fx /f, extrapolated to the limit of zero

TABLE XIV. Decay constants and systematic error esti-
mates.

TABLE XV. Jackknifed ratios.

B
B,
D
D,

187(10)
207(9)
208(9)
230(7)

Meson f (MeV) Fitting and
extrapolation

+12
+10
+11
+10

Scale
(aM

p

+15
+22
+12
%18

Large am

R32
+32
+33
+28

Ratios

fs /fD
fs, /fs,
fs/fa,
fa/fD

Central

0.90(3)
0.90(2)
0.90(2)
0.90(2)

Fitting and
extrapolation

+0.02
+0.02

+0.03

+0.02

Scale
(a~')

p

+0.02
+0.02

+0.02

+0.02

Large am

+0.01
+0.02

+0.02

+0.03
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lattice spacing. Here we find, for the quenched theory,
fzlf =1.08+0.03+0.08. There are several important
aspects of this work which warrant some additional con-
cluding remarks.

First, the reliability of the static method must be con-
sidered independently of any comparison to the conven-
tional calculation (and, preferably, independently of is-
sues of scale and renormalization). Early results for f~"
were significantly larger than those reported here, as em-
phasized in Sec. IVD. The most likely source of such
discrepancy is that various computational techniques
(i.e., sources, fitting, etc. ) are sensitive to different
amounts of higher-state contamination in the correlation
functions. Unlike the pion correlator, the static-light
channel suffers from an exponentially falling SNR. To
boost the ground-state signal in early time slices, various
smearing techniques have been used, both in this work
and elsewhere. However, higher-state errors remain a
difficult issue, because the fundamental problem of noise
at large times is not eliminated by the smearing. To mini-
mize the error, we have studied the dependence of the
amplitude on the size of the cube source and on the range
of fitted time slices. Physical results must of course be in-

dependent of the source, which is only used as a tool for
the lattice calculation. And, while it is not guaranteed
that more than one cube size will be satisfactory, it is
equally possible that none will be: a cube is a poor ap-
proximation to the ground-state wave function to begin
with, and excited-state contamination may never be
sufficiently reduced. Consistency of the results over some
range of sources provides a reliable check that this is in
fact not the case.

At /=6. 3, we see agreement between the static results
from different smearing volumes, around some size which
is presumably characteristic of the ground-state wave
function, and from the wall source, where a different
(two-state) fit was used over an early range of time slices.
The "best" cube size, based on the earliest plateau in the
effective masses, depends on the light-quark mass. For
our final results, we have used larger smearing volumes
(which in this sense are optimal for the lightest quarks)
and later fitting intervals, where the overall dependence
on cube size is minimized. However, the results from
earlier fitting intervals are not very different, and we in-
cluded the variations in our estimate of the systematic er-
ror from fitting. We report our final results from this
simulation.

At P= 6.0, our sample is smaller and the cube sources
cannot be adjusted as precisely. Apparently for these
reasons, the P=6.0 static results are considerably more
ambiguous. The results from a range of different smear-
ing volumes only agree when we use a later fitting inter-
val. {The "best" cube size depends strongly on the light
quark mass. ) We therefore tend to prefer such later
fitting intervals, and this preference results in a
significantly smaller value of fg" (237 MeV) than has
previously been reported at /=6. 0. Nevertheless, we
find it dificult to rule out alternate analyses, in which the
correlation functions are fit at considerably earlier times.
Such analyses of our data can produce a value for fz'" as
large as 364 MeV.

At f3=6 3., we use an interpolation between the static
and conventional heavy-light results in order to estimate
the corrections to the asymptotic scaling law (1.2). We
find large coefficients [e.g. , c, = —1.14(15) GeV], and
thus the correction to the amplitude Pz is significant for
the 8 meson ( =20%) and large for the D ( =45%). In
fact, the D meson is much better simulated by using the
conventional lattice method, as long as suitable adjust-
ments are made for Wilson fermions at quark masses near
the scale of the inverse lattice spacing (i.e., am 1). This
statement is justified, not by a comparison of our results
to experiment (the errors in the experimental measure-
ment of fD [46] are still too large to help us inuch in this

S

regard), but rather by the observation that only when
large-am corrections are included in the calculation do
we find that the large-mass extrapolation of the heavy-
light amplitude agrees with the static calculation. In
practical terms, we characterize this agreement (or lack
thereof, if the leading order correction is omitted) by the

y IEDF of the correlated fit to the combined set of re-
sults.

The systematic error which remains uncorrected in the
conventional calculation, and the extent to which it
affects the interpolation to the physical amplitudes, is un-
fortunately difficult to estimate. We have argued that, in
terms of a nonrelativistic expansion, the leading-order
correction is essential but that the next-to-leading one is
difficult, but perhaps not impossible, with good data, to
include in a systematic way, because the kinetic and 0 8
interactions are, for large am, incorrectly normalized
with respect to each other in the standard Wilson action.
In Sec. IV F we used three methods to estimate the error
incurred in the decay constants, and the results were
rather dissimilar. The first method simply demonstrates
that the large-am correction based on the kinetic term of
the nonrelativistic expansion (i.e., the shift in Mp) has a
small effect on the final correlated fit. The second is an
attempt to address directly the unwanted lattice
artifact —the suppression of the cr.B interaction. Unfor-
tunately, the present data are just not precise enough to
support this type of analysis. The third approach esti-
mates this large-am error [and, concurrently, the errors
induced by the perturbative mismatch with the static
computation (Sec. IID) and the procedure for treating
the logarithmic corrections (Sec. IIF)] by dropping all
quark masses with am )0. 17 and reanalyzing the
remaining points under conservative assumptions. The
results are reported in Table XIV under "large am. "

Finally, let us return to the conventional results at
heavy masses and the issue of the leading-order correc-
tion, the factor of e' in the %'ilson quark normalization.
We note that in the literature, results exist [47] which are
in contrast to what we have found here —namely, that
this correction must be included in order to eliminate the
large discrepancy between the static and conventional de-
cay constants. The difference between our results and
those of Ref. [47], where similar methods were used, ap-
pears not to be in the static point (both calculations were
at weaker couplings, P=6.2 —P=6.4, and the static re-
sults are in better agreement than at P=6.0) but rather in
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the conventional amplitude. In short, they see the elim-
ination of the old discrepancy at these weaker couplings
without the e' corrections, but we do not. However, as
opposed to the analysis of Ref. [47], we have consistently
used covariant 6ts throughout so that the effect of corre-
lations in the data are not missed when attempting to
study numerically the interpolation between the static
and heavy-quark regimes. A conclusive resolution of this
discrepancy will clearly require improved source tech-
niques (and longer lattices) so that any question of the in-

tegrity of the raw lattice measurements is 6rst addressed.
Questions such as this, however, only pertain to the

calculation of a precise result with the conventional
method; the result thereby obtained is not necessarily an
accurate one, as we have already emphasized. To remove
the ambiguity in the decay constant at 0(1/M) requires
an improved action (so that the normalization of cr".B rel-
ative to the kinetic energy term is corrected) or better
data in the large mass region (so that the difference be-
tween 1/mz and 1/m 3 can be extracted cleanly), or both.
Control of these effects, in turn, would facilitate the study
of other key systematics, such as scale violations. Work
along these lines is in progress.

Noted added. After this paper was submitted for publi-
cation, a new experimental measurement of fn was an-

S

nounced by the CLEO Collaboration: fD =344+37+52
S

+42 MeV [48]. Although the central value of this result
is noticeably high compared to our results (and those of
other lattice groups), it is premature to draw any con-
clusions due to the size of the errors.
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