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In earlier pubhcations we have analyzed the strong and radiative decays of heavy hadrons in a formal-

ism which incorporates both heavy-quark and chiral symmetries. In particular, we have derived a
heavy-hadron chiral Lagrangian whose coupling constants are related by the heavy-quark flavor-spin

symmetry arising from the QCD Lagrangian with infinitely massive quarks. In this paper, we reexamine

the structure of the above chiral Lagrangian by including the effects of 1/m& corrections in the heavy-

quark effective theory. The relations among the coupling constants, originally derived in the heavy-

quark limit, are modified by heavy-quark symmetry-breaking interactions in QCD. Some of the implica-

tions are discussed.

PACS number(s): 12.39.Hg, 11.30.Rd, 13.40.Hq

I. INTRODUCTION Z'" =D PD~P' M'PP'—P

In this and a subsequent paper, we would like to exam-
ine various symmetry-breaking corrections to the strong
and electromagnetic decays of heavy hadrons. There are
two different kinds of symmetry-breaking effects on the
chiral dynamics of heavy hadrons: the I /m& corrections
from the heavy quarks and the finite-mass effects from
the light quarks. We will focus on the 1/m& corrections
in this work and leave the discussion on SU(3)-breaking
effects to the forthcoming paper [1].

As is well known, the QCD dynamics in the limit of
infinite quark mass exhibits a new spin-flavor symmetry
which is known as heavy-quark symmetry (HQS) [2,3].
Corrections to this symmetry limit can be systematically
incorporated into the heavy quark effective theory
(HQET) of QCD where symmetry-breaking effects are
summarized by higher-dimensional operators suppressed
by powers of I/m& [4—9]. Such an efFective theory has
been a powerful tool to analyze weak-transition form fac-
tors of heavy hadrons containing one single heavy quark
[10]. We have recently, among others, initiated a study
of strong and radiative decays of heavy hadrons by deriv-

ing a heavy-hadron chiral Lagrangian which obeys con-
straints from the heavy quark symmetry [11—17]. As the
idea of synthesizing the heavy-quark and chiral sym-
metries receives growing attention, there remain impor-
tant issues to be explored. Especially, implications of the
aforementioned 1/m& corrections to the structure of the
heavy-hadron chiral Lagrangian have not been systemati-
cally studied [18]. Since the charmed quark is not partic-
ularly heavy compared to the QCD scale, such correc-
tions can be important in the chiral Lagrangian for
charmed hadrons.

As an example to illustrate the issues involved, consid-
er the heavy-meson chiral Lagrangian given by Eq. (2.16)
of Ref. [17]:

+f+Mt, M, (PA"P„" +P„'A"P )

] PAPVPit t +~2 PittPPAP
2 P'

+ ] (pePvAAPeNtyPezAiLPePvt)
pvA, K 7

where P and P' are the ground-state heavy mesons with
quantum numbers J =0 and 1,respectively, and

P' =D P* —D P*
I ~ I + + I

D„P„"'= d„P," +V„P, le A„(P„'t—a' 6P;t ), —
(1.2a)

(1.2b)

and a similar definition for the covariant derivative

D„P In Eq. (1..1) A„ is the electromagnetic field

whereas V„and A„are, respectively, the chiral vector
and chiral axial fields (see Ref. [17] for more detail). The
prediction from heavy-quark symmetry consists of two
parts. The flavor symmetry implies that the coupling
constants f and g are the same for any heavy fiavor The.
spin symmetry relates the two parameters by

g= ,'f . - (1.3)

Similar predictions have also been obtained for the heavy
baryon chiral Lagrangian. These predictions help reduce
the number of unknowns in the heavy-hadron chiral La-
grangian. For instance, the D*Dm. and D*Dy coupling
constants are related to those of D'D*m and D*D'y, re-
spectively. This is crucial since the latter two couplings
are very dificult to measure in practice. With the
knowledge of the above coupling strengths, the predictive
power of the heavy meson chiral Lagrangian is greatly
enhanced. However, success of such a scheme demands
an assessment of how large the 1/m& corrections are.
The purpose of this paper is to study such type of 1/m&
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corrections which modify the various HQS relations
among the coupling constants. At present, we do not at-
tempt to give a quantitative predictions on the sizes of
various 1/mt' effects. A quantitative analysis will be
presented in a future publication.

As is well known, there are two energy scales in the
chiral perturbation theory involving a heavy hadron: the
mass of the heavy hadron MH and the chiral symmetry-
breaking scale A~. In principle, one may expand the
theory in inverse powers of these two scales. However,
because the heavy hadrons have large masses, the deriva-
tives acting on the heavy-hadron fields will produce large
momentum factors. This complicates the power counting
procedure. This difBculty is overcome by a simple obser-
vation. Strong and electromagnetic interactions at low
energies of a heavy hadron with other light hadrons are
governed by the energy scale AQcD which is much small-
er than MH. Consequently, the four-momentum of a
heavy hadron has only fiuctuations of the order of AQcD
throughout its history. Its momentum can, therefore, be
parametrized as

H(x)=e H, (x), (1.5)

d„H (x)=e [ iM—H v„H„(x)+d„H„(x)] . (1.6)

The dependence on the large mass MH is now made expli-
cit: the second term in (1.6) is of order k/Mz relative to
the first one. In terms of H„(x), derivatives acting on the
heavy hadron and Goldstone boson fields are treated on
equal footing, and a consistent 1/MH and 1/Ax expan-
sion can be developed for the heavy-hadron chiral La-
grangian.

The velocity-dependent fields for the 0 and 1 heavy
hadrons of (1.1) are

—iM U.X

P(x) =e P„(x),
—iM UX

P„'(x)=e P„'„(x),

(1.7a)

(1.7b)

where H(x) is the standard field operator for a heavy
hadron. The velocity-dependent field H„(x) carries only
the residual momentum k. It follows from (1.5) that

P =M&u+k, u =1, (1.4)
u P*(u)=0 . (1.7c)

where k is of order AQcD In accordance with the param-
etrization, one introduces a velocity-dependent field

H, (x) by [12,19]

To simplify our notation, we write P(v)=P„(x) and
P„'(u):P,'„(x—) Retain. ing only the leading terms, we
obtain

X'„'zz»= —2iM»P(v)v DP (v)+2iM»P'"(v)u. DP„'t(u)+5M P(u)Pt(u)

+fQMpMr» [P(u)A "P„' (u)+P„' (u)A "Pt(v )]+2iM, ge„,i+'"(v )v "A iP '"t(u) (1.8)

with

AM =M —MP (1.9}

Note that we have neglected terms which are suppressed
by 1/M» comparing with the leading contributions.

Therefore, 2'", is the leading-order heavy-meson
U, PP

chiral Lagrangian in the double expansions of 1/Mr»
and Goldstone-boson momenta. Before proceeding fur-
ther, we should like to make two remarks on the La-
grangian X'" ». First of all, the parameters M~ and

U, PP

Mr» in Eq. (1.8} are taken to be the physical masses of
the heavy rnesons P and P*, respectively. This accounts
for the appearance of AM P(v)P (v) in Eq. (1.8).
Theoretically, we expect

u +u+r/M», -k~k r, —

(u+r/M»)i=1 .

(l.1 la)

(1.11b)

This leads to the conclusion that a reparametrization-
invariant heavy-meson chiral Lagrangian, which we
denote as X „must have the structure [20]

»(P (v), P'"(u), ')U"), (1.12)

structure of the 1/M& expansion must satisfy the
"reparametrization invariance" which is a consequence
of the nonuniqueness of the parametrization (1.4). The
four-velocity u and the residual momentum k can be arbi-
trarily chosen so long as u =1 and k -AQCD «Mz. For
consistency, the heavy-meson chiral theory must be in-
variant under the transformation

A
M g

—MP=O (1.10)
m&

so hM is of order AQcD and it is a simplest 1/MH
correction to the leading terms of X."'

» which we keep.
U, PP

Second, the coupling constants f and g are no longer as-
sumed to satisfy the spin symmetry relation (1.3).

It has been noted by Luke and Manohar [20] that the

where

'lU„= v„+iD„/M, ,

P "(u)=P "(u) u"—
M ~

(1.13a)

(1.13b)

Therefore, to maintain the reparametrization invariance
to order 0 (1/M, ), the Lagrangian is augmented to be
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M—gP(v)(')V —1)P (u)+M, P*"(v)(")V —1)P,*, (v)+6M P(u)P (u)

+fQMpM, [P(u)A"P„* (u)+P„*(u)A"P (u)]+iM,ge„„i,[P*"(u)'tV'A P*'~(u)+P'"(u)A %'"P'" (u)] .

(1.14)

The prescription (1.13) uniquely determines the terms of
order 1/M + necessary to ensure the reparametrization

invariance of X"' +. These 1/M, corrections are
u, PP

essentially kinematic in nature. They are important, but
they can be retrieved by following the prescription (1.13).
However, there are other 1/M + contributions which are

reparametrization invariant by themselves, but at least
contain two derivatives. It should be pointed out that the
original Lagrangian (1.1) is reparametrization invariant.
Equation (1.14) follows simply from Eq. (1.1) by keeping
the first two leading orders in the I/M& expansion using
Eq. (1.7) [in particular, Eq. (1.7c) should hold to order
1/MH]. The requirement of reparametrization invari-
ance will become more useful as the I/M~ expansion is
carried out to higher orders, or when we deal with new
situations [21].

There is another type of 1/M + corrections which will

be the focus of the present work. In contrast with the
previous corrections, these are dynamical in nature and
they arise from taking into account the 1/m& terms in

HQET. It is well known that the following two operators
in HQET break the heavy-quark spin-flavor symmetry at
the order of 1/I & [7,8]:

X=h„iv Dh, +X, , (1.15a)

/1=0, +Oi,

0, = h, (iD) h„,1

2mg

1 — 10= h ——ger 6"' h2 2 U 2 s IMv U
f72 g

(1.15b)

(1.15c)

(1.15d)

Specifically, the operator 0& breaks the Aavor symmetry,
and the operator 02 breaks both the flavor and spin sym-
metries. To the first order in the Goldstone-boson
momentum, the only effects of 0& and 02 are to make
1/m& corrections to the coupling constants f and g
which appear in Eq. (1.14). To order 1/m&, we may
write

f =fo+f, A

2mg

A
g =go+gg 2' g

(1.16a)

(1.16b)

where go =
—,
' fo, and A is an arbitrary mass scale.

Presumably, the value for A should be chosen in such a
way that f, =f0 and g, =gu. Under this requirement, it
has recently been argued that the parameter A is of order
Ar rather than AQcD [22]. However, we will take no po-
sition on this point as it is still not widely accepted.

We observe that the two types of llMH (1/m&)

corrections discussed above have distinct characteristics.
The 1/MH correction demanded by reparametrization in-

variance introduces new structures which modify the
leading-order Lagrangian. The other, dynamical correc-
tions of order 1/m& produce heavy-quark symmetry-
breaking contributions to the coupling constants in the
leading-order Lagrangian but they do not alter the struc-
ture of the Lagrangian. The two effects together provide
the complete 1/MH (1/m&) corrections to heavy-quark
symmetry. Since

1/MH =1/mg+0(1/mg),
there is no need to keep the difFerence between 1/MH and

1/m at this order.
So far, we have used the heavy-meson dynamics as an

example to discuss the various issues in the
1/MH(1/m& ) corrections to the heavy-quark symmetry.
Clearly, we can carry out a similar discussion for heavy
baryons on reparametrization invariance and dynamical
corrections to the coupling constants.

With the issues in the 1/MH ( I/m& ) corrections clear-
ly defined, we will concentrate our attention in what fol-
lows on interactions between the heavy hadrons and the
Goldstone bosons with a single derivative. Section II is
devoted to a study of the 0 (1/m& ) correction to the cou-
pling constants for both strong and electromagnetic in-
teractions in the heavy meson sector. A similar study for
heavy baryons is carried out in Sec. III. We will employ
the method of interpolating fields extensively utilized in
Ref. [17]. We find that all the heavy-quark spin symme-
try relations among the coupling constants (both strong
and electromagnetic) are completely broken by 1/m&
corrections.

Finally, in Sec. IV we make some concluding remarks
and we shall comment on the work done by Randall and
Sather [23] concerning the SU(3)-violating corrections to
the heavy-meson hyperfine splitting, which is a typical
0 ( I /m& ) phenomenon. As we shall point out, the calcu-
lation performed in Ref. [23] is incomplete; namely, it
does not include all the corrections of order 1/m&.

II. 1/m& CORRECTIONS TO THE DYNAMICS
OF HEAVY MKSONS

In this section we shall study the 1/m& corrections to
the coupling constants of the heavy-meson chiral La-
grangian given by Eqs. (2.16) and (2.19) of Ref. [17].
First of all, we shall rewrite the chiral Lagrangians X'"»

and Lpp+ in terms of velocity-dependent fields and retain

only the leading terms in the I/MH expansion. The
velocity-dependent version of X"'„ is given by Eq. (1.8),
which we recall here for convenience:
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with

,= —2iM gP(v)v DP (v)+2iM gP "(v)v DP„' (v)+LCM P(v)P (v)

+f+M~M, [P(u)A"P„'t(u)+P„'(ujA "P (u)]+2iM, ge„„i+'"(u)u "A P'"t(u), (2.1)

hM =M g
—Mp.P (2.2)

Substituting Eqs. (1.7a) and (1.7b) into X[ '+ which describes the radiative transitions, we obtain (see Ref. [17]for nota-

tion}

,= QMpM ge„„pu P*~(u)[ ,'d (—gtaf+gagt)+d'6']F&'Pt(u}+H. c.

+id "M,F„„P'"(u)[y6' [(gt——g+ gagt) ]P'"t(u), (2.3)

where 6' is the heavy-quark charge and 6 denotes the
charge matrix of the light quarks:

2 O and

f=fo+f, A

2' g
(2.5}

6= 0 —
—,
' 0 (2.4) A

g =go+gc
2'
2m&

(2.6)

Note that, contrary to Eq. (2.19) of Ref. [17), we do not
need to subtract from X[ ', the normal magnetic mo-

v, PP
ment term of P„ induced by the minimum substitution.
This is because such contributions are not among the
leading terms kept in (2.3).

As indicated in Eqs. (1.16a) and (1.16b), every coupling
constant in X"', and X[ ', can be expanded in powers

U, PP U, PP
of 1/m&. In particular, we have written there the expan-
sion for coupling constants f and g:

The zeroth-order contributions fo and go are related by
HQS [11]:namely,

go= 2fo . (2.7)

To compute thel/m& corrections to fo and go, we insert

operators Oi and Oz, defined in Eqs. (1.15c}and (1.15d),

into the relevant decay amplitudes:

&M:bM[P'(u, s—)~P(v)+n'(q)]
1 0" P( )iT Jxd x [ (0( )x+ 0( )x[x(()0P"( , )), xx

hM': bM [P*—(u, e ) +P*(u, s'-)+ mo(q) ]
1 0" P"(U, x') iT J d x [0,(x)+O~(x)]A„'(0) P"(v, x)) .

(2.8)

(2.9)

To determine the general Lorentz structure of Eqs. (2.8}
and (2.9), we recall that the interpolating fields for pseu-
doscalar and vector mesons are given by [24]

plitudes must be of the form

i)[M[ = +M~M, (s q)u (P')' —. u (P), (2.11a)

P;(u) =qy&h„'QMP,

P,'(v, e) =qdh„'QM, .

(2.10a)

(2.10b) hM', = — M u (P~ }'—u (P"}is„„i~"e'"v E",
g

Since we will keep only leading terms in the 1/M& ex-
pansion, we can simply neglect the 1/M~ corrections
needed for reparametrization invariance. For the same
reason, we can also neglect residual momenta k and k' in
Eqs. (2.8)—(2.10). Furthermore, we shall treat contribu-
tions from 0& and Oz separately. Since 0& preserves
heavy-quark spin symmetry, its contributions to both am-

(2.11b)

where u (P'), u (P), and u (P") are isospin wave func-
tions of the heavy mesons and a is a constant independent
of heavy-quark masses.

The contributions from 02 are given by
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p
EM2= — P(v) iT f d x h„o ~G eh„(x)A„'(0) P'(v, e)

4m'
P

bM,'= — ' P*(v, E') iTf d x h„, o ~G &h„, (x)A„'(0) P*(v, E)
4m'

To evaluate b,Mz and b,Mz, we make use of Eqs. (2.10a) and (2.10b) to obtain

g, q"QM, M,
0 it f d~x q, g h, h„cr''~G, ph„(x)A~(0)h, aq„o))4m'

g q™~* 1+ 1+'
tr g' o'i' to iT d'x G ~&' 0

(2.12a)

(2.12b)

(2.13b)

g, q"QM +M +

AM& = — 0 iT f d x q„li'h„h, o ~G ~h, (x)A'„(0)h,dq, 0
4m'

, 1+g ., 1+a
tr d' o ~ KOiTfdxq„G~+„'q, 0 (2. 13b)

Both Eqs. (2.13a) and (2.13b) contain a matrix element which describes the dynamics of light constituents:

M „= OiT xq„G „'q„0

=u(P")* u(P—)[e &„,(bv "+cy"+dy"8)+e&yso' yves+'ezys(g &ye gpqy )]
2

(2.14)

Xu (P)(b —c+d +2ez),

gM~ a

AM2 =— 4iu (P ' )'—u (P'* )
4m' f 2

X(b —c+d)e„„g"e'"v 2 .

(2.15a)

(2.15b)

Since hM and hM' can also be computed through the
chira1 Lagrangian by expanding

where b, c, d, e„and ez are constants independent of
heavy quark masses. Note that we have suppressed the
q-dependent terms since they correspond to higher-
dimensional terms in chiral expansion. The right-hand
side of Eq. (2.14) is the most general expression consistent
with the symmetry properties of its left-hand side. Sub-
stituting Eq. (2.14) into Eq. (2.13) yields

g, +MpM ~ a

b,M = — (e q)4u (P')'—
4m' f 2

It is clear that g, W ,' f„in gener—al.

We note that the same combination b —c +d appears
in both f, and g, . It means that the corrections f, and

g, are characterized by three parameters a, b —c +d, and

e2. %e will now show that ez is zero, so actually there
are only two unknowns to describe the two coupling con-
stants f, and g, . The two processes P' +P+m and—
I' ~P*+m are related by charge conjugation, and the ap-
propriate coupling constants are f and f ', respectively.
In Eqs. (1.1) and (1.8), it is implicitly assumed that f is
real; this can always be accomplished with a judicious
choice of phases for the field operators of the heavy
mesons. %e will assume that this is done. Let us denote

bM"= bM [P(v)~P'(v, e)—+m'(q)], (2.18)

which can be computed by the same procedure for com-
puting hM. %e 6nd that hM" also depends on M &„
given by (2.14). Indeed, we obtain

1 1 + e ~ ~ ~

f " 2
(2.16)

g, +MpM g 0
hM" = —— (F..q)4u (P*)'—

4m' f 2

hence, the b M and hM' given by (2.11) and (2.15) imply

2sf, = [a —(b —c+d +2ez)] which gives

X u (P)(b —c +d —2e~ ), (2.19)

and
2gsf,*= [a (b —c+d —2e2)] .— (2.20)

Rs
g, =—[a+(b —c+d)] . (2.17b) We now demand that f, =f,*. A comparison of (2.17)

and (2.20) yields e2 =0. Finally,
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2gs
f, = (o —b') (2.2la)

and

gg
g, =—(a+I'), (2.21b)

J„' =h„.y„h„— h„.(8y„—y„g)h„
2mg

= h„.y„h„— h„.(gy„+y„8)h„
2mg

where b'=b —c +d.
To discuss I/m& corrections to the coupling constants

in X' ' „we shall treat the heavy-quark and light-quark
U, PP

electromagnetic currents separately. In the case of the
heavy-quark electromagnetic current, the relevant
coefficients d' and d "y are both of order I /m& because
they arise from the magnetic moment of the heavy quark.
As pointed out by us [17] and by others [15,16], these
couplings are rigorously determined by the heavy-quark
effective theory. For completeness, we shall reproduce
the results here. First of all, the heavy-quark electromag-
netic current in the efFective theory to order I/m& can be
written as [9]

There is another source of 1/m& corrections which arises
when one evaluates the time-ordered products of
—,'h„(v'+v)„h„with the symmetry-breaking operators 0,
and 02. However, these contributions vanish at v =v'
since the normalization of the vector current is already
fixed at the leading order. Consequently, to order 1/m&,
the parameters d' and d"y are solely induced by the
second term on the right-hand side (RHS) of Eq. (2.26):

Fg= P* v', c' ' „.o„„P'v, c
2mg

V =V

Fg= P v' ",.cr„„P*v, e.
2mg

U =U

(2.28a)

(2.28b)

The evaluation of F~ and F~ is straightforward with theP IJ

aid of Eqs. (2.10a) and (2.10b). Taking F„as an example,
we convert the matrix element in Eq. (2.28a) into

F~= "
k M .(O~q„,e'h„,h„,~ „h„h„aq,~O) ~„,.

2m@

2mg

+ 8"(h,.y„yg„) .
2mg

(2.22) Xtr d' cr„, d(O~q„q, 10, I„-„, 1+if 1+if
2 " 2

(2.29)

Using the identity

~p'Vv=gi v «I v ~

the Gordon decomposition

h„.y„h„=—,'h„(v'+u)„h„+ ,'ih„.o „„(—v' v)'h„, —

(2.23) where [2]

(Oiq„q, iO) i„,=g'(v u'= l)=1 .

(2.24) Working out the trace, we obtain

(2.30)

and the identity

(Hf(u') la„(h„,rh. ) IH;(v) )

=i A( v' —u)„(Hf (u')
~ h„ I'h„~H;( v) ),

with Hf and H; being generic hadronic states and
A =MH —mg =MB —mg, we finally arrive atf

ie O'QMpM~ ~
v a P

GJM v~pk 6 V e

ea'M ~

(e e'.k —e's k) .
m

Similarly, we have

(2.31a)

(2.31b)

J„' ='
—,'h„.(u'+v)„h, —

2mg
k "h„.o „P„+0„""

where k"=—MH(v' —v)', and

Comparing Eq. (2.31) with Eq. (2.3), we obtain
(2.26)

e „ed =, d
2mg

'
mg

(2.32)

0„"'= — h„.D„h„— (v' u)"h„y„yP, . —(2.27)

In Eq. (2.26), we have used the notation =' to remind the
reader that such a relation holds only after taking the
matrix element. The contribution due to 0„'" is negligi-
ble since it cannot change the normalization of J„' at
v =v', and its contribution to the anomalous magnetic
coupling is necessarily of order 1/m&. The first term in
Eq. (2.26) corresponds to the convection current of the
heavy quark, which has already been taken into account
in L'

@pe The second term, which is of order 1/m&, will
U, PP

contribute to the coefBcients d' and d"y in L'
ppV, PP

To determine d and d", we need to consider the form
factors induced by the light-quark electromagnetic
current. To order 1/m&, we have

do+a A'
2m&

(2.33a)

d =d +d A
2m Q

(2.33b)

As discussed in Ref. [17],one can apply the heavy-quark
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spin symmetry to obtain

d
1

0 2 0 (2.34)

To see whether d, and d,
"

obey the same relation, we
evaluate the following magnetic form factors induced by
the light quark electromagnetic current j„':—eqQy„q:

F„= P'( u,
e') iTf d x [0,(x)+Oz(x)]j„' (0) P "(u, e) (2.35a)

(2.36a)

F = P(u) iT fd x[0,(x)+O, (x)]j„' (0) P'( ,xx)) (2.35b)

where the subscript m indicates the fact that we keep only the magnetic interactions. To evaluate F„and F„,we again
employ the technique of interpolating fields [24] to obtain

F„= 0 iT x q„'h„O& x +02 x j„' 0 h„q„O

and

F„= 0 iT xqUysh, O& x+02x j„' 0 „q, 0 (2.36b)

2Q )gqF„'= M, (e„s' k —e„'s k)
m

(2.37a)

For convenience, we shall treat contributions by O, (x)
and 02(x) separately. Their contributions are denoted by
F„' (F„') and F& (F„), respectively As .O&(x) preserves
the heavy-quark spin symmetry, F„' is related to F„' in
such a way that

2lQ )g~F„'= QMj.M ee&, &k "u s~,
mg

(2.37b)

with a, being a constant independent of the heavy-quark
mass. For simplicity, we have set the charge matrix
Q= I and suppressed the fiavor quantum numbers while
obtaining Eqs. (2.35) and (2.37). To compute F„and F„,
we apply Eqs. (2.10a) and (2.10b) to obtain

F2=
P

g,M ~
0 iTf d x q, ijj'h, h, o ~G &h, (x)j„' (0)h, dq, 0

4m'

g, M g
ag g 0 T d4 G em — 0

m& 7?l

F =—2=
p

?

g, +MpM e

4m'
0 iTf d x q„y&h„h„a ~G &h, (x)j„' (0)h, jjjq, 0

m

g, MjM e
tr y v~ EO iTfd xq G j' q„0

4m'

(2.38a)

(2.38b)

The nonperturbative dynamics of the light constituents
can be parametrized as

~'p„= 0 iT d x q, o pj„' q„o

(2.39) then represents the most general Lorentz structure
for M'&„which is consistent with gauge invariance, pari-
ty conservation, and the constraint M'&„= —M& „.Sub-
stituting Eq. (2.39) into Eqs. (2.38a) and (2.38b), we ob-
tain

= —ib)(g „kp—gp„k ),
where k is the outgoing photon momentum and b, is a
constant independent of the heavy-quark mass. In Eq.
(2.39), we kept only structures linear in k relevant to
magnetic interactions. With this to be understood, Eq.

—g, M ~
b[(E„e' k —c,„'e.k ),

m

ig, +MpM,F2- 6 ]E'p~~pk v 6 e

m

(2.40a)

(2.40b)
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gs
d, =—(2a, +b, ), (2.41a)

Since the results in Eqs. (2.40a) and (2.40b} can also be
obtained from the Lagrangian 2' ' „we can hence

u, PP

make the identifications

2gs
d,"=

(
—2ai+bi) . (2.41b)

It is clear that d, W —
—,'d,", in general.

Equations (2.21) and (2.41) are the main results in this
section.

III. 1/m& CORREt. j.'IONS TO THE DYNAMICS OF HEAVY BARYONS

In this section we study the I/m& corrections to the coupling constants appearing in the heavy-baryon chiral La-
grangian Xei' and Xz ' given by Eqs. (3.8) and (3.9},respectively, in Ref. [17]. In terms of velocity-dependent fields,

5'„'z= —,'tr[83(v)(iv. D)83(v)]+tr[86(u)(iu D)86(v)] —tr[86"(u)(iu D)86„(v)]

+g, tr[86(u}y y+"86(v)]+g2tr[B6(v)y yQ"83(u)]+H. c.+g3tr[86 (u)A"86(u)]+H. c.

+g4tr[86 "(v)A„83(v)]+H.c. +gstr[B6 "(v)y„y+"86„(u)]+g6tr[B3(v)y„y+"83(u)] (3.1)

with

D„B(u) = d„B(u)+ V„B(u)+8 (u)V„

+ie Q' A„B(u)+ie A„[6,8 (u) ],
where, as before,

Q =diag(-' —' ——')
7

(3.2)

is the charge matrix of light quarks and 6' is the charge
of the heavy quark Q. Note that we have omitted those
terms which are induced by mass differences between
various baryons.

It is well known that baryons do not behave much like
Dirac point particles. As a result, they can have large
anomalous magnetic moments. The most general gauge-
invariant Lagrangian for magnetic transitions of heavy
baryons is given by

X'„2z = a, tr[86(v)ao"F86(u)]+a', tr[86(v)6'o F86(u)]+aztr[86(v)ao"FB3(u)]+H. c.

+a2tr[86(u)Q'o"F83(v)]+H. c.+a3tr[e„ i,+6"(v)ey"F "86(u)]+Hc.
+a 3tr[e„,i+6 "(v)Q'y "F "86(u) ]+H. c.+a4tr[e„„i+76 "(u)ay "F "83(v)]+H.c.

+a~tr[e„,i+6"(v)6'y"F "83(u)]+H.c.+a~tr[86&(v)ao FB&&(v)]

+astr[86 "(u)Q'o"F86„(v)]+a6tr[83(u)ao"F83(v)]+a6tr[83(u)Q'o"F83(u)] . (3.3)

The Lagrangian Xt, z is also the most general chiral-
invariant one provided that one makes the replacement

A
g;=g,'+g,"

2mg
(3.5a)

6--,'(g'ay+peg'), 6 -6' . (3.4)
A

a, =a,'+a,'
2m'

(3.5b}

Note that, contrary to Eq. (3.9} of Ref. [17], we do not
need to subtract from Eq. (3.3) the Dirac magnetic mo-
ments of the heavy baryons, because X„"z is now ex-
pressed in terms of velocity-dependent fields and conse-
quently contains no Dirac magnetic moments to the
lowest order. The magnetic couplings a; are induced by
light-quark electromagnetic currents whereas a,-' are in-
duced by heavy-quark ones and they are of order 1/m&.

To incorporate 1/m& corrections, we expand the cou-
pling constants in X'„'e and X'„ i'tl as follows:

o&3oo3o (3.6a)

g4= +3gz ~ (3.6b)

Let us first focus on the coupling constants g s in X'„'ii.
The relations among the leading terms g, are governed
by HQS [11]. They have been derived by evaluating the
decay amplitudes 83~83+~, 86(86 ) +83+sr, and—
86(86 )—+86(8 6 }+n.. The results can be summarized as
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g =0. (3.6c)

The result g 6 =0 follows from the fact that, in the
heavy-quark spin symmetry limit, the strong transition

between antitriplet baryons is forbidden by parity conser-
vation. To relate the subleading coeScients g;"s, we in-

sert the operators 0, and 02 of Eqs. (1.15c) and (1.15d)
into the relevant matrix elements. First of all, the sub-

leading amplitude for B3—+B3+m. is given by

BM)[8)(u, s) 8-, (u, s')+u'(q)]= q" Bs(u, s') iTfd x [O, (x)+Os(x)]A'„(0) Br(u, s)) .l (3.7)

To determine the general Lorentz structure of Ms, we employ the following interpolating field for antitriplet baryons

[25]:

Bi(v, s)=u(v, s)(|)„h„, (3.8)

where P„ is a Lorentz scalar. One can easily show that 0, does not contribute to M3. Denoting the 0, s contribution

as hM ~, we then have

BM)[Bs(us) 8-, (vs')+«'(q)]= q 8,(us')
iT f-d x h, ((D)'h, ( )Ax()u80,(us))-.1

Zf mg
(3.9)

By Eq. (3.8) we may rewrite (3.9) as

EM3 = q"u(v, s')u (v, s)
l

2 pig

we conclude that

(3.11)

X OiT dx „iD „'„0 (3.10)

Since we cannot construct an axial vector out of U and q,

and hence EM3 =0. The situation is different in the case
of Oz insertion. The amplitude EM3 is given by

hMs= — Bs(v, s') iTf d xh, rr SG,«h, ( )A' (0x) Brv(us)) .
4m' m

Applying Eq. (3.8) gives

(3.12)

hM)= — «(u, s') rr' «(u, s) 0 iTfd x(),G,«()„A« 0) .gsV, 1+if p 1+if . 4

4m' f '
2 2

(3.13)

which is nonvanishing, in general. This shows that the
decay B3~Bi+m, while forbidden in the infinitely

heavy-quark limit, is allowed in the subleading order. As
a similar conclusion has also been arrived at by Cho [18],
we would like to compare our result with his in some de-
tails.

Cho constructed the following operator to describe the
decay B3~B3+m. to the order of 1/m&.

Since the diquark field P, is a Lorentz scalar, we may
parametrize the matrix element of light constituents as

(3.14)

where r is a constant independent of the heavy-quark
mass. %e have also neglected the flavor wave functions
of incoming and outgoing baryons as they are irrelevant
to our discussion. Substituting Eq. (3.14) into Eq. (3.13)
yields (3.17)OTTg G~yGhT (U)CT D T;(U)(~ )jTTA )M vtTA,

0 iTfd sx Q„G sq,A„0)= rs s„„u", —

rgs
AM3 = u(v, s')gysu (v, s) .

2m&
(3.15)

where

Comparing this result with Eqs. (3.1) and (3.5), we find T(V);=E)jk[B-,(v)]jk s (3.18)

g6 =rg, /A, (3.16) apart from an overall normalization. In Eq. (3.18), (83 ),k
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X6=g6tr(8 3y„y sA, "83), (3.19)

where it is understood that B3 and B3 have velocity v.

The reparametrization-invariant generalization of X6 is
obtained through the substitution [20]

is the jk matrix element in the baryon matrix 83 [11].
The operator OrT„ is not reparametrization invariant it-
self. Therefore, it should be part of one which is. We
will now show that OTT„ is a reparametrization-invariant
partner to the interaction term in (3.1) with the coupling
constant g6:

(8, );,(d-„+d„)y (8, )kg =-d„[(8, ),Jy-5(8 , }kl ]-,

(8, )~j-ys(8 , )g-=0 .

(3.25a)

(3.25b}

The second term in (3.24) can be further transformed
with the aid of the identity

tr[ 83(D„A"+A "D„)y583
3

+i83cr„„(D"A" A—"D")y583] . (3.24)

The first term in (3.24} vanishes as a result of the two
identities

B-—+ 1+ B- .3 2M-
3

The result is

(3.20) &pvoH && &nQ 5 ~

Finally, we obtain

(3.26)

x +—

ig igX,=g, tr 8- 1 — y y~l 1+
3 .

2m- 2M-
3

=X6+X6,

where X6 is given by (3.19) and

fg6 +-

tr[B-, (gy+" +yQ "I)) )y,B-] .
3

The identity

l'PXv=gPv «f v

reduces X6 to

(3.21)

(3.22}

(3.23)

e„„»tr[B~o""(DA» AD—)83],
3

(3.27)

which, aside from the factor g6, is Orr„ in a somewhat
different notation. We see that as a reparametrization-
invariant partner to X6, the coupling constant for OrT„
is given by g6 which is of order O(1/m&). Since the
operator Or7„already contains a factor of 1/m&, its
contribution is smaller by one power of 1/m& relative to

6
Our next task is to relate g2 to g4. To do this, we

evaluate the amplitudes of 86~83+m and 86 ~83+@.
With our previous notations, the subleading contribution
1s

hM -[Bs(ll s s) Bl(ll s')+«(0)]= 0«Bl(ll s') (Tf4 x[Ol(x)+Os(x)]A«(0) Bs(ll S «))
1 (3.28)

where K is used to specify the spin of sextet baryons:
K= 1 corresponds to spin —,' baryons whereas K=2 denotes

spin —,' ones. To evaluate 4M&3, we employ the interpo-

lating fields [17]

8„(v,s,K=1)= u(u, s)y5(y„+u„),p

B„(v,s,K=2)=u„(v,s),

(3.30a)

(3.30b)

86(u, s, K) =8„(v,s, K}(I)I„'h„, (3.29}

where g is an axial-vector field. The wave function 8„is
given by

with u„(u, s) and u (u, s) being the Rarita-Schwinger vec-
tor spinor and usual Dirac spinor, respectively. The con-
tribution from the operator 02 gives

hM'„-= — B-,(v s )iTf d'x h «'SG Sh (x)vd„s(0) 0 („v))ss«, ,
4m' f

«(v, s') «'s 0 "(v,s, «)(0 iTf d x d„G,)ss(s'$, „0l . (3.31)
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The matrix element for light constituents may be
parametrized as

M„,= & O}y,G.p ~ „'y„',}O &

r)(gpavp g pU )U„+r2(g„Up g„pV )V

r3gs
hM -(6*~3)= — uq"u

2m fQ

r3gs
bM63(6v3) = — — u3gysu6,

3mgf

(3.35a)

(3.35b)

+'r3(gapgP gPpga ) (3.32)

where r„r2, and r3 are constants independent of the
heavy-quark mass, and the flavor wave functions are
neglected for simplicity. This is the most general Lorentz
structure for M„„p which is antisymmetric in a and P.
With Eq. (3.32) we can immediately conclude that contri-
butions from r, and r2 are zero because of the identity

s
g2= r

A

2
3 (3.36a)

where we have used the notations 6* and 6 to denote a
spin- —', and spin- —,

' baryon in the sextet, respectively.

Equation (3.35) implies the following corrections to the
coupling constants g2 and g4.

1+2{ p 1+8 0. (3.33)
gs

g', =—
( &3r—' r, )—, (3.36b)

The contribution due to r3 is

bMs3= i — uo„+"(U,S,K) .
r3g, q"

2m'

Using (3.30) for the wave function B,we find

(3.34)

where we have added the contributions proportional to r'

coming from the operator 0& which preserves the spin

symmetry.
Finally, we discuss strong transitions among sextet

baryons. The contribution due to 02 gives

AMs6= — '
B6(v,s', K') iT Jd x h„o'PG, ph„(x)A'„(0) B6(U,S,K)

4mqf.

(3.37)

The matrix elements of the light constituents can be parametrized as

M&&, = OiT dx „&G „' „„0
U e2apg +Eapizvv g2ss) +Eapsvv g2ps2+ ~ap2vv g p&S3 +(gapEpv2z g pisEav2 y) 4

+(ga2 e'pv „gp2 Eav~„)V $3+('ga„epvtz2 gp„Eav~2 )U S6 (3.38)

with

gg Vp

4mgf„
(3.39)

where s and s; are constants independent of the heavy-

quark mass, and the flavor wave functions are again
neglected. This is the most general Lorentz structure for
M &„&„which conserves parity, and is antisymmetric
with respect to the indices a and P. Let us write

(2{ 1)Bp(v, s, K) —0,
y"u„(v, s) =0,

the identity (3.26), and

(3.42b)

(3.42c)

we obtain

i~"'"y.= ( y"y'y'—+g ""y' g""y"+—g "'y")y
3

(3.43)

b, = &B(v, ',s)Ko pB (v, , s)KMP" ~

We further denote

(3.40) 6, =0,
b, ,(6*~6*)=2s, u y"y,u2,

(3.44)

(3.45a)

6—6 +6+6+ . +6 (3.41)
h, (6*~6)= —s, uu",

1
(3.45b)

for contributions due to s, s &,sz, . . . , s6, respectively.
Using the properties of the wave functions

v"B„(v,s, K) =0, (3.42a)
h, (6~6*)= —s, u "u,

3
' (3.45c)
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2
b, (6~6)=—s, u y"ysu,

b2(6'~6 )=52(6' —+6)=0,

b2(6~6') =2&3$2u "u,
b2(6~6) = —2s2u y "y,u,
h3(6' ~6' ) =h3(6~6' )=0,
b 3(6' ~6)=2&3$3uu ",
b 3(6~6)= 2s—3u y"ysu,

b,4(6' —+6') =64(6~6)=0,
b 4(6' ~6)=2&3$4uu",

b6(6~6') = —
2&3$6u "u,

b,,(6'~6') =2s, u y"y, u 2,

h&(6' ~6)= —ss uu ",
3

b, ,(6~6 )=— s,u"u,2

h, (6~6)=Y8$5u y—"y5u,

56(6' 6') =2s6u y"ysuz,

2
b, (6'~6)= — —s uu",6 g3 6

(3.45d)

(3.46a)

(3.46b)

(3.46c}

(3.47a)

(3.47b)

(3.47c)

(3.48a)

(3.48b)

(3.48c)

(3.49a)

(3.49b)

(3.49c)

(3.49d)

(3.50a)

(3.50b)

tions to the matrix elements bM . When Eq. (3.51) is
compared with (3.1), we find

gs, 1 4 4 (3.52a)

g, v'3 ,g'= —— s'+ —s +v'3$ —v'3$
3 A 2 g3 1 2 4

1 2

~—$5+ ~-$6 (3.52b)

gs &3, 2g" = —— s'+ s +3/3$ +&3$
2 vg'

2 1+ —$6 ~—$6 (3.52c)

c 8s 3
g5 = $ +s& +$5+$6 (3.52d)

$2 $4+$6 =$3+$4+$5

We can rewrite (3.52) in terms of the combinations

(3.53)

where we have added a term proportional to s' due to the
operator 01 which preserves the spin symmetry. As in

the heavy-meson case, we will assume that the phases for
the field operators of the heavy baryons have been so
chosen that all the coupling constants are real. Then,

g3 g3 gives

66(6~6 ) = s6u "u,4

b,6( 6~6)=—,'s6u y "ysu .

Collecting all the terms, we find

bM (6'~6')= — (s, +$6+$6)u fysuz,
2mg

(3.50c)

(3.50d)

$2 —S2+$3

$3=$s+$6

Finally, we obtain

gs, 1, 4
g = $ + $ S + $g1 P 3 1 2 3 3

(3.54a)

(3.54b)

(3.55a}

(3.51a) &3, 2 V3, 1
g3 g3 $ + ~ $) + $2+ ~ $3

A 2 v3 2 2+3
bM (6'~6)= — $1+&3$2+v'3$6

2mqf„

2+ ~—ss —~ s6 uq"u„,
3 3

Ns 3g' = ————s'+s +s'
2

(3.55b)

(3.55c)

(3.51b)

gs 2hM (6—+6 )=— —$1 + 1/3$2 V 3$4
2mt1f„V'3

1 2s5+ ~—s6 u„q"u,
3 3

(3.51c)

gs 1 4 4&M'(6~6)= — —s —s —s +—s +—s,f 3 1 2 3 3 5 3 6

Equation (3.55) shows that the spin symmetry relations
(3.6a) —(3.6c) are completely broken at order O(1/m&)
due to the presence of the parameters s„s2, and s 3.

We now turn to the 1/m& corrections to the radiative
interactions X'„s1, we shall treat the heavy- and light-
quark electromagnetic currents separately. It is known
that the magnetic couplings a', -a6, induced by heavy-
quark electromagnetic currents, can be rigorously deter-
mined by the heavy-quark effective theory [15,17]. As in
the meson case, coeScients a &-a 6 arise entirely from the
magnetic moment part of J„' shown in Eq. (2.26). For
antitriplet baryons, we evaluate the magnetic form factor

Xugy5u, (3.51d)

where we have dropped the subscripts 66 in the correc- Gf = 8-( s )k~"Uh„o P'„B~(u,s)) .
2m~

(3.56)
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Notice that we have taken v =v' while maintaining a
finite photon momentum k". Applying Eq. (3.8) yields

le a k~BG( s s) 1+8 I +jeff

XB~(v,s, v)(0l(I), (t)„&l0), (3.64)

with [25]

(3.57)
with [25]

(Olf„g, iilO) = g—&g, (u u')+u'u&g, (u u')+

(3.58)

and g(1)=1. After simplifying the gamma matrices and
comparing the result with that given by X', z, we obtain

(3.65)

where terms proportional to u or/and u p are not shown,
as they do not contribute to (3.64). The normalization of
g, is given by

(,(v u'=1)=l . (3.66)

I 1 ea6= ——
4 2m'

(3.59) In the u =u' limit, the function gz does not contribute to
G a„because

For magnetic transitions between sextet and antitriplet
baryons, we evaluate the matrix element

~ I

G~+ = B-,(v, s') k "li,ss„j, B ( , ,sv)) s. s (3.60)

Application of Eqs. (3.8) and (3.29) yields

ie 6' „,I+i( I +i(

XB (u, s, ik)(Ol(t„()I)„ lO) . (3.61)

Since the diquark fields ()) and P„are scalar and axial-
vector 6elds, respectively, the matrix elements
(Olp, ()I)„" l0) must vanish due to conservation of parity.
This renders

a2=0, a4=0. (3.62)

~ I

GIs„=(B (v, ', s) ssk"h, ts„g, B ( s, ,vs)s
277l g

Finally, we evaluate the following matrix elements to
determine the couplings a ', , a 3, and a ~:

v"B =0.
P (3.67)

I 1 e
a) =

6 2m'
1 e

v3 2m'
I 1 ea5=—

2 2t?l g

(3.68)

The results (3.59), (3.62), and (3.68) agree with the quark
model calculations [17].

Next we tackle the light-quark electromagnetic
currents, which give rise to the magnetic couplings a, -a 6.
In the heavy-quark mass expansion, we again write

a, =a,'+a,' A
(3.69)

2@ig

where i =1,2, . . . , 6. The relations among a; 's were de-
rived in Ref. [17] by evaluating the matrix elements
for B3—kB3+y, B6(B*)~B&+y, and B6(B6 )

—kB6(B6 )+y. We find

a = — a a = ——a a =&3a a =0.&3 3
3 2

l~ 5 2
l~ 4 2~ 6

(3.70)

One can explicitly work out Ga„by substituting Eq.
(3.30) into Eq. (3.64). Comparing results obtained in this
manner with those given by the relevant couplings in
X', z, we arrive at

Applying Eq. (3.29), we obtain

(3.63)
We shall follow the previous procedure to obtain the sub-
leading contributions. For 83~83+y, we have

6383(Ups)tTdxO&{x)+O&(x)g'(0)B&(u, s)
m

(3.71)

~here the subscript m indicates magnetic contributions only. As in the previous section, we sha11 set the charge matrix
Q = I and suppress all the flavor quantum numbers in the subsequent discussions.

Since the operator 0& does not alter the Lorentz structure of light constituents matrix element, the magnetic form
factors in Eq. (3.71) receive no contributions from 0, [17]. The contribution from Oi is given by

G3 = — '
B3(v,s') iT f d x h„opG ~h,j„' (0) B. 3(u, s)

4m' m

u(v, s')u Pu(v, s)(M p„)4m'
(3.72)
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where

M~„= 0 iT x „~pj's, 0 (3.73)

M p„= i5—(g„kp g„—pk ), (3.74)

where 5 is a constant independent of the heavy-quark
mass and k is the photon's momentum. In parametrizing

Since M &„must be antisymmetric with respect to the in-

dices a,P and obeys constraints from both parity and
electromagnetic current conservation, one concludes &5g,62

2m'
u( us')cr„P "u (u, s) . (3.75)

Equation (3.75) corresponds to a change in the transition
amplitude for 8-, ~8-, +y:

M p„, we restrict ourselves to the structures linear in k3

since we are only interested in magnetic interactions.
The same simplification will be assumed in the subse-
quent discussions. Substituting Eq. (3.74) into Eq. (3.72),
we arrive at

ST(B) B, +y)=(-B-,y(k, s) iT J d x Os(x)[ j„—(0)'A "(0)] B;

where

u cr„g""u,
4m'

(3.76)

F„„—:i(k„e,—k„e„) .

Comparing Eq. (3.76) with X[„p],we conclude that

a', =g,Sea.

(3.77)

(3.78)

Since a 6 =0, the amplitude for the magnetic transition 8-, —+83+y is suppressed by A/2m&. For 86(86 )~83+y,
the operator 02 gives a contribution to the electromagnetic form factor:

G — = — * B, (s,s') (Tf d x h-, sr,sG'Sh„j '„(0) Bs(s, s, xl)
4m'

where

u(u, s')o P8 "(u,s, jk)(MGp„, )
4m'

(3.79)

M pp„= 0 iT x „~pj„' „,0 (3.80)

The most general structure of M p„„relevant to the magnetic transition is given by

K
Mapjdv (gavEjhpkh gpv6p(BAr)k u

where t is a constant independent of the heavy-quark mass. Equations (3.79) and (3.81) give

hr (0 0)=(B-,y(k, .);TJd .G,(.)]-i„-(0)A (o)) B;)
g, t

u~ F
4m'

(3.81)

(3.82a)

jh], l (6~3)=— —u3(r„g"'u6 .z

2mg 3

Comparing Eq. (3.82) with X[ s, we find
r

(3.82b)

(3.83a}

gs, ta' = ~3r'+-
A 2

(3.83b)

where the spin-symmetry-preserving contributions proportional to t' come from the operator 0, .

Finally we consider the couplings a'„a3, and a5, which are relevant to magnetic transitions among sextet baryons.
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The relevant matrix element is

666& 86 U srS yK lr d X 0] X +02 X J& 0 86 V, S, K (3.84)

Particularly, we shall focus on the contribution from the operator 02, which is given by

G66„=— B6(v, s', v') iT Jd x h, o &G ~h„j„' (0) B6(v,s, v)
4m' Pt

B'(v, s', a')o'~B "(v,s, a )(M,&„z„)
4m'

where

M.,„,„=&,o~y„.G.,J„-y'„,~0& .

One can parametrize M
& &„as follows:

M &,z„= iw, g,z(g„k& g„&k—, )+i w[2g, (g&„kz g~„k&—) gs, (g —„k~—gz„k, ) j

+iw3[g z(g&„k,—g„„k&)—g&z(g „k,—g„„k )j,

(3.85)

(3.86)

(3.87)

where the constants w &, wz, and w3 are independent of the heavy-quark mass. Equations (3.85) and (3.87) give a contri-

bution to the photon transition amplitude:

t)I' [ ( Bss&s sB&(s s s')'+, y',(k s&]=—(Bs(s s &s )y(ks', ) 'i,r'f st xostx)j (A0'&t s)0B&ts s s&

B„(v',s', v')(w &o PF &g" +2w&cr'~Fi3 +2w3o~Fi3')B&(v', s, v) .
mQ

(3.88)

Let us denote

~r =- „' (5, +5,+5,),
4m'

(3.89)

5,(6~6)=—,'w, uo ~F,&u &

5~(6"~6*)= wctu'cr'~—F isu, ,

52(6'~6) = w2e„,~„uy'F "u~
&

3

(3.92d)

(3.93a)

(3.93b)

where

5, =w, B"(v',s', Ir')o'~F, isB„(v,s, ~),

5z=2wzB, (v'&s'&~')o" F&qB (v&s&s) &

5, =2w, B"(v'&s'&a')o Fp,Bq(v&s&~} .

(3.90a)

(3.90b}

(3.90c}

Making uses of the identities for the Dirac matrices stat-
ed earlier and

5~(6~6' ) = — —w2e"' "u „yg ~„u,
3

5~(6~6)= 4w2ua ~F p—u,
53(6*~6*)= w, u "o'~F isu,—,

5,(6'~6) = — —w3e„,z„uy'F "u",
3

(3.93c)

(3.93d)

(3.94a)

(3.94b)

I opv& r). 1 2~I vxBr 'Y s

[o„., r~) = »(g„~r.—g.~r„),—

o} 'Yg=O

(3.91a)

(3.91b)

53(6~6")= —w3e"" "u„ygz, ,uv'3

5,(6k6)= ', w3uo F &—u —.

(3.91c) Collecting all the terms yields

(3.94c)

(3.94d)

u (v)a„g" uq(v)=2iu "(v)F„,u (v},

we obtain

(3.9 ld)
b, i (6'~6*)=— (w, —w~ —w, )u "cr ~F isu

m&

5,(6*~6*)=w, u "o ~F pu „,
5,(6*~6)=— —w, e„q„uy"F "u",

(3.92a)

(3.92b)
ar'(6'

(3.95a}

2 2 1—w& + ~—w2 —w3

5,(6~6*)=— —w, e"" "u yg&, , uv'3
(3.92c) (3.951)
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ar'(6 &s

4m'
2 l 2wl- ~- W2+ ~- W3

X Epvg~Q 7 F Q (3.95c)

b,r (6~6)=— Ns 1 4 4
4 3 1 3 2 3 3 aP

—w ——w ——w uo. F u .
Nlg

(3.95d)

When Eq. (3.95) is compared with X', z, we have

Rs 1a', =— w+ —(w, —4W2 —4W&) (3.96a)

Rsa'=—
2A

W+ —( —2Wi —W2+2W3)
3

(3.96b)

ce Ss
3 w + ~ ( —2w, +2w2 —w3)

V3

lsac—
2A

3——w+(w, —wz —w3)

(3.96c)

(3.96d)

where we have included the contributions proportional to
w from the spin-symmetry-preserving operator Oi.
Again, we will assume that the phases of the heavy
baryon fields have been so chosen that the coupling con-
stants are real. Then a 3

=a 3' gives

and

N2=N3 (3.97)

c ~s 1 8a'= — w+ —w ——w
2A 3 ' 3

(3.98a)

Ns
a c —a c4—

2A
w ~ Wi+ —W2

3 3

a
2A

3
W +W& 2W2

(3.98b)

(3.98c)

IV. DISCUSSION

In this work we have carried out a systematic theoreti-
cal study of the order 1/m& e6'ects to the heavy-meson
and heavy-baryon chiral Lagrangian for strong and elec-

It is clear from Eqs. (3.78), (3.83), and (3.98) that to order
0 ( I /m& ) all the spin symmetry relations among the cou-
pling constants a,- for radiative transitions are broken.

Equations (3.16), (3.36), and (3.55) are the main results
in this section for the strong-coupling constants
g, , . . . , g6, and (3.78), (3.83), and (3.98) for the elec-
tromagnetic transition couplings a, , . . . , a6.

tromagnetic interactions. There are two distinct correc-
tions at this order. The first is a kinematic correction re-
quired by reparametrization invariance. In practice, this
effect for simple processes such as decays can be largely
taken into account by using the full momentum P of a
heavy particle and the corresponding polarization vector
or Dirac spinor instead of parametrizing it by
P =M&v+k and dropping the residual momentum k.
The second e8'ect is a dynamic correction induced by the
order 1/m& terms in the QCD Lagrangian which break
the flavor-spin symmetry of the heavy quarks. As in our
earlier publications [11,17], we focus our attention on the
interactions involving only the first order in the momen-
tum of a Goldstone boson or a photon. To this order, not
surprisingly, the heavy-quark symmetry-breaking interac-
tions of QCD do not produce any new types of interac-
tions for the heavy hadrons with the Goldstone bosons or
photons. Instead, their effects make order 1/m& correc-
tions to the coupling constants in the heavy-hadron
chiral Lagrangian.

To order 1/m&, QCD contains one operator 0, [see
Eq. (1.15c)] which breaks only the heavy flavor symme-
try, and a second operator 02 [see Eq. (1.15d)] which
breaks the flavor-spin symmetry of heavy quarks. For a
given heavy flavor, the effects due to 0, can be absorbed
by the coupling constants which satisfy the heavy-quark
spin symmetry. EfFectively, the operator Oi does not in-
troduce any new unknowns. On the other hand, the
operator 02 introduces new unknowns of order 1/m&
which break the spin symmetry relations among the cou-
pling constants. In the heavy meson sector, there is one
new unknown each in the strong interactions and elec-
tromagnetic interactions, respectively. In the heavy-
baryon sector, there are five new unknowns of order
1/rn& to describe the six strong interaction coupling con-
stants g„.. . , g6. There are four new unknowns to de-
scribe the six radiative transition coupling constants
a„.. . , a6. In particular, the reactions B3~B3+n and

B3—+B3+y which are forbidden in the infinitely heavy-

quark limit have coupling strength of order 1/m&. In re-
ducing the number of unknowns, we have appealed to the
charge conjugation symmetry for certain processes and
the reality of the coupling constants associated with
them. This can always be accomplished by a proper
choice of the phases for the field operators of the heavy
hadrons. For example, in our quark model calculations
in Refs. [11,17], all the coupling constants are indeed
real.

These new unknowns depend on the QCD's long-
distance dynamics of light quarks and gluons. In princi-
ple, they are calculable numerically in lattice QCD. At a
more phenomenological level, the quark model has no
simple predictions for them either, unlike the coupling
constants in the infinitely heavy-quark limit. Neverthe-
less, it is important to consider the sizes of these correc-
tions as they a8'ect the strong and electromagnetic in-
teraction physics of the heavy hadrons, especially the
charmed mesons and baryons. For this purpose, it is
perhaps useful to calculate those corrections in the quark
model and the MIT bag model with some specific phe-
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nomenological wave functions for the heavy hadrons.
We will illustrate the last point with a problem of prac-

tical interest. For the heavy-meson chiral Lagrangian„the HQS relation f =2g is modified by 1/m&
corrections. The splitting of f and 2g, 5=2g f,—will
contribute to SU(3)-violating corrections to the heavy-
meson hyper6ne splitting. Such corrections are charac-
terized by the parameter [26]

effects induced by the splitting of f and 2g in the self-

energy diagram depicted in Fig. 1. At the order of 1/m„
5 is Snite, and D and D' will acquire different mass shifts
which contributes to the hyperfine splittings of heavy
mesons. Since the difference between D and D' mass
shifts is SU(3) Savor dependent, it therefore contributes
to the parameter b,D. Denoting this extra contribution as

AD, we find

AD=0. 911.9 MeV . (4.1)

hp ——(M, M—p}—(M g, Mp—).
S J d d

In the charmed meson case, experimental data give
[27,28]

3Pl ~

96 mf'
1 ~„1 ms&

3 3

32 ~f~ 48 ~fi
2 2Plg mg

ln (MD —Mii )x,
32 n2fI2 Ax

(4.5)

On the theoretical side, a one-loop calculation based on
the heavy-meson chiral Lagrangian given by Eq. (2.1) has
recently been performed [23]. In this work b,D is ob-
tained by evaluating the self-energy diagrams of D and
D', where each diagram contains one insertion of the re-
sidual mass term AM P(v)P (v) appearing in''" +. By

u, PP
retaining m, lnm, and m, corrections, it was found
that, to the order of 1/m, [23],

aD =+95 Mev . (4.2)

In comparison with the experimental value given by Eq.
(4.1), this result is larger by almost two orders of magni-
tude. In addition to obtaining Eq. (4.2), the authors of
Ref. [23] also estimated other contributions to b, D, which
are of the same order or one order higher. As they point-
ed out, one had to include an additional contribution
which is quadratic in Goldstone-boson masses. Such
corrections arise from the chiral loops mentioned above
plus the counterterms listed below (see also Ref. [1]):

e'=~,M,P (gW'g+ g'Wg'}P',
(4.3)0"=~,M,.P„'(gW'g+g'ug'}P"",

where

A&=0f 2m,

Taking m, = 1.8 GeV and f =2 [30],we obtain

(4.6)

where x =f5, and we have suppressed contributions pro-
portional to (Mn —M~ ) or higher since they are found

S d

to be negligible. The first term in Eq. (4.5) can be easily
obtained from Eq. (4.3) of our forthcoming paper [1] (see
the footnote there for details). The second term emerges
as one takes into account the splitting of the strange and
nonstrange heavy-meson masses. Now for numerical
analyses, we shall take Ar= 1 GeV [29], and the fitted
value of [27]

(MD —MD )=99.5+0.6 MeV .
s d

In view of large positive value in Eq. (4.2}, one would
favor a negative b,D to counteract it. This requires x to
be positive or, in other words, 4g )f . At this point, we
do not plan to perform any model calculation of x. Nev-
ertheless, a crude estimation of x can be obtained by di-
mensional arguments. If we assume that the heavy-quark
expansion at the hadronic level is governed by the param-
eter Ar/2m& [22], we would roughly expect that

m„0 0

(4.4)

/xi 5 ~0 3
2

(4.7)

0 0 m,

The counterterms 8 and Gp contribute to b, D because
there will be a deviation from the spin-symmetry relation

n, = —az at the order of 1/m, . By a naive dimensional
argument, Randa11 and Sather estimated this contribu-
tion to be about 20 MeV in magnitude. Furthermore,
they noted that the O(l/m, ) contributions to b, D could
also be as large as 10 MeV in magnitude. These large in-
dividual corrections raise interesting questions on the re-
liability of chiral perturbation theory and/or 1/m& ex-
pansion. Given all these large contributions, the authors
suggested that there may be accidental cancellations
among various terms so that the resultant hD is smal1.
Although this might indeed be the case, we would like to
point out that the calculation done in Ref. [23] is not
complete at order 1/m, . Specifically, it missed those

If one simply assumes x =0.3f =0.6, then b'D= —62
MeV. If x is indeed positive, this would provide a sub-

stantial cancellation to the result of Eq. (4.2). The cancel-
lation would be further enhanced if the contribution from

FIG. 1. An additional chiral-loop diagram which contributes
to the hyper5ne splitting of charmed mesons. The dashed line

denotes a light meson which can be strange or nonstrange. The
solid line represents a charmed meson which can be strange or
nonstrange, spin 0 or spin 1. In this case, the propagator of the

heavy meson contains no insertion of the mass-difference term,
AM P(v)P (v).



CORRECTIONS TO CHIRAL DYNAMICS OF HEAVY. . . 2507

Eq. (4.3) is also negative. Unfortunately, there still exists
no data to support this claim. In fact, there is also no ex-
perimental evidence for a positive x. Certainly, a nega-
tive x would make the situation even more troublesome.
At any rate, we want to emphasize that one should in-
clude the effect of Fig. 1 when computing the parameter
b,D. Whether or not this effect is adequate to resolve the
puzzle posed by Eq. (4.2} is not yet clear until one has
more experimental data, and a better theoretical under-
standing [31].

From the above example, we have seen that the split-
ting of f and 2g at the order of 1/rn& could give impor-
tant effects. Similar situations may also occur in other
parts of the heavy-hadron chiral Lagrangian. Since there
are insufficient data to fix the parameters of the theory, it
would be helpful to combine the results of this paper with
a certain model estimation of parameters, so that quanti-
tative predictions of the I/trt& correction can be made.
The results in this paper provide constraints that indivi-

dual contributions must satisfy in any model calculation.

To cite just one example, consider the corrections to the
heavy-meson strong interaction coupling constants f and
g. From Eq. (2.21) we see that the corrections due to the
operator 0, satisfy the spin symmetry relation, and those
due to the operator Oz also satisfy a relation, albeit a
difFerent one. We shall leave such model studies to a fu-
ture investigation.
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