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Agreement between the experimental value I'(Ks m pp) aud the number predicted via a one-

loop chiral perturbation theory calculation has been cited as a success for the latter. On the other
hand. the one-loop prediction for the closely related process KL, ~ 7r pp has been found to be a
factor 3 below the experimental value. Using the inputs of unitarity and dispersion relations, we

demonstrate the importance of higher order loop effects to both of these processes.

PACS number(s): 13.25.Es, 11.55.Fv, 12.39.Fe, 14.40.Aq

I. INTRODUCTION

During the past decade, we have learned (at last) how
to make rigorous contact between experimental low en-

ergy hadronic physics and @CD which is presumed to
underlie such processes. This contact is provided by chi-
ral perturbation theory (ChPT) [1], which exploits the
(broken) chiral invariance of the light quark component
of the @CD Lagrangian and provides a representation for
interaction amplitudes as an expansion in energy momen-
tum divided by the chiral scale parameter 4vrF 1 GeV
[2]. A review of ChPT techniques will not be attempted
here, but has been presented in a number of sources,
wherein it is shown that, at least in the Goldstone bo-
son sector, such a chiral approach provides a remarkably
successful and predictive representation of a wide variety
of experimental processes [3].

The chiral technology begins by writing down an ef-
fective chiral Lagrangian, the simplest (two-derivative)
form of which is, in the Goldstone sector [4],

TrD„UD"Ut + Tr2Bom(U+ Ut) +(2)
F2

where

U = exp =) Asks&'= '') (2)

2m+ 2mK
mu + ms mu + m

6m„'

m„+ m&+ 4m,
(3)

is a phenomenological constant, D„ is the covariant
derivative, and F is the pion decay constant in the limit
of chiral symmetry. Although these are only two of an
infinite number of terms, already at this level there ex-
ists predictive power e.g. , a tree-level evaluation of Z~ ~

is a nonlinear function of the pseudoscalar fields, m =
(m„, mg, m, )g; s is the quark mass matrix,

yields the familiar Weinberg predictions [at O(p2, m2)]
for S-wave x-vr scattering lengths [5] which are approx-
imately borne out experimentally. Loop diagrams re-
quired by unitarity produce terms of O(p4, p m, m ) and
contain divergences. However, just as in @ED such in-

anities can be absorbed into renormalizing phenomeno-
logical chiral couplings, and the most general "four-
derivative" Lagrangian has been given by Gasser and
Leutwyler [1]:

i,s ——Li(TrD„UD"Ut) + L2(TrD„UD„Ut)

+LaTr(D„UD"Ut) + (4)

Here the bare I, coeKcients are themselves unphysical
and are related to empirical quantities L,"(p) measured
at scale p, via

I', (1 4vr
L;(I.) = I„+ ',

~

—+ ln —,+1 —p ~,
327l (Ep') (5)

where I'; are constants defined in Ref. [1] and e = 4 —d

is the usual parameter arising in dimensional regulariza-
tion, with d being the number of dimensions. Gasser and
Leutwyler have obtained empirical values for the phe-
nomenological constants I z, . . . , L&0.

A wide range of electroweak and strong interactions
of these Goldstone bosons have been successfully treated
within this formalism, but there is at least one recurring
problem —whenever the S-wave I=O a-7t. interaction is in-

volved the simple one-loop predictions have in general
been found to be wanting [6]. This is perhaps not surpris-

ing, as the associated phase shift bo (s) passes through 90'
somewhere in the vicinity of ~s 700—900 MeV, which
has sometimes been associated with the existence of a
broad resonance in this region. Such resonant behavior
can certainly not be treated in any perturbative fashion
and thus in this channel the chiral expansion must break
down well before this energy is reached.

There are a number of ways which have been used in
order to avoid this difficulty. One is simply to confine
predictions to a low enough energy that one-loop correc-
tions should be sufficient. However, it is also possible to
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treat such effects nonperturbatively either by inclusion of
S-wave I = 0 (rr or e) pole effects or by use of dispersion
relations which effectively treat the vr-vr interaction to all
loop orders —but at the price of introduction of model
dependence [7]. This cost is usually considered worth
paying, however, as by inclusion of such well-motivated
model dependence one can often reliably extend the usual
region of validity of chiral predictions (E + 400 —500

I

MeV) up to much higher values (E + 1 GeV).
A particularly useful example of this procedure has re-

cently been provided for the process pp ~ m vr . Because
only neutral particles are involved, there exists no tree-
level two-derivative or four-derivative contribution to this
reaction, which guarantees that the one-loop chiral per-
turbative prediction must itself be finite. This has been
calculated as [8]

Here

amp(pp ~ n m ) = 2e e~Iez 2 & ~ ~
E(s, m ).o o 2 p v s —mm (gi, „kI k2 —k2„kI~I

16m2I's
g kq k2 )

(6)

with

However, the associated pp ~ ver cross section is given by

(7)

8 —m
(8)

Ck 4m20 0)
256+3F4 8

1 — ~F(s, m') ]'
8

and is found to bear little resemblance to its recently measured experimental analogue, as shown in Fig. 1.
The solution to this problem has recently been explored by a number of authors and has been found to be related to

the inadequacy of the one-loop approach in the I = 0 S-wave m-m channel [9]. The solution is most clearly presented
in terms of a dispersion relation approach. We assume, consistent with the chiral expansion, that when we are in the
near-threshold region the only relevant higher order effects are in the helicity-conserving 8-wave amplitude, which we
write as

~~ -+ x'x f (s) = - [»0(s) + f2(s)l

f"(s) = —[fo(s) —f2(s)l3 (9)

where I = 0,2 refers to the isospin of the final arm state. For neutral pion production and working in the gauge wherein
E2 k2 = 62 ' ky = 6y k2 = E'y ' k~ ——0 the transition amplitude is

amp = 2ie eI e2f (s) (10)

In the charged pion case the Born and seagull contributions to this multipole must also be included, so that the
full amplitude becomes

20
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I
I FIG. 1. Indicated are experimental data

points for pp —+ arm compared to the one-loop
chiral perturbative prediction (dashed line)
and dispersive calculations using Pade (dot-
ted line) and Gasser (sohd line) De (s) func-
tions.
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+ —. . 2 Cy ' P+C2 P—vr: amp = 2ie ei e2a(s)—
p+-kg

P C2 P+
P+ k2

Here

a(s) =1+f (s) —fB...(-)
where

1 —P'(s) (1+P(s) )
»(s) (1 —&(s) )

fBorn(
) fBorn(

is the Born approximation value for the helicity-
conserving S-wave multipole. In the threshold region the
phase of fr(s) is required by unitarity to be equal to the
corresponding irir phase shift 8r(s). When s ) 16m2, in-
elastic reactions involving four pions are allowed. How-
ever, the inelasticity is small, being of order F in the
chiral expansion and will be neglected.

The functions fr(s) are analytic functions of s except
for cuts along the positive and negative real axis. For
positive 8, the right-hand cut extends from 4m & s & ao
and is due to the 8 channel 7r7r state. For negative s, the
left-hand cut is due to t, u-channel intermediate states
such as per ~ vr ~ p7r or p7r m p ~ p~, and extends from
—oo & s & 0. The single-channel Anal-state unitarization
problem has a simple solution in terms of the Omnes
function [10]

D—1 1

1 —krs+ trcA(s)[h(s) —h(0)]
'

with

P(s) (P{s)+ 1&

qP(s) —1) ' h(0) = —, (18)

and allows one an approximate but simple analytic rep-
resentation for the pp -+ ver amplitude. Here tr are the
current algebra expressions for the s-wave 7rm scattering
amplitudes with isospin I:

2

to
CA 28 —m

32mF2 '

2

t2
CA s —2m

32vrF2
(19)

One can now address the origin of the large corrections
found in the pp ~ ~ ~ amplitude. Do they arise simply
from the unitarization of the amplitude [i.e., Dr(s) g 1]
or are new inputs needed in the amplitude? It turns out
that the rescattering physics in Dr (s) is most impor-
tant, and that the main corrections are due to well-known
ingredients. In our subsequent discussion, we will use a
full phenomenological treatment but it is useful here to
explore the case with a simple analytic form for Dr (s).
The condition FmDr(s) = —P(s)tr (s) defines the [0,1]
Pade approximation for the Omnes function [12], i.e. ,

( s ds' bar (s')
Dr s = exp

7r 4m 2 8 8 —s —zc

—the result must have the form

fr(s) = 9r(s)Dr (s)

(14) The constant ko = 25, is chosen to match the small-s25m~

behavior of the experimental Do (s) function, and k2 =
30 is chosen from a fit to I = 2 7r7r scattering. The30m

resulting form for the pp ~ vr vr amplitude is

where 9r(s) is an analytic function with no cuts along
the positive real axis. Morgan and Pennington consider
a function pr(s) which has the same left-hand singularity
structure as fr(s), but which is real for s ) 0. They
then write a twice subtracted dispersion relation for the
difference [fr{s)—pr(s)]Dr(s), with the result [ll]

f (s) = — F(s, m )

x [(2s —m )Do (s) + (s —2m )D2 (s)]

(2o)

fr(s) = Dr '(s) pr(s)Dr(s) + (cr + sdr)

s' ds' pr(s')FmDr(s')
4m» I2 /

{16)

where cr, dr are subtraction constants. Picking pr(s) to
be given by its Born value and matching onto the known
form of the low energy amplitude required by chiral sym-
metry determines these constants unambiguously to be

2 „„1 —l, I =O,
er = o, dr =,(L g + I.io) +Q2 384~2 +2,

which, when the Pade forms of Dr (s) are used, provides
a consistent analytic solution to the dispersion relation
while also displaying the correct chiral properties to O(s).
In Fig. 1, we plot the resulting cross section, in compar-
ison with the data and the lowest order result. It can
be seen that the Omnes functions produce a substantial
modification even near threshold. Of these, the most im-
portant is Do (s) which reflects the strong attractive crier

scattering in the I = 0, 1 = 0 channel [6].
A much more satisfactory fit is found by use of an

Omnes function Do (s) determined via the use of ex-
perimental values of the pion-pion phase shifts [13] as
well as including contributions to the left-hand cut due
to Al, p, ~ exchange diagrams, which leads to the very
good fit given in Fig. 1. Details of this calculation can
be found in Ref. [9].
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The lesson to be learned from this example is the im-
portance of the inclusion of I = 0 S-wave vr-vr rescat-
tering corrections especially in processes which have no
counterterm contributions and are generated from a sim-
ple one-loop chiral calculation. We shall see in the next
sections two additional examples of this type, when we
extend our formalism to cover the nonleptonic weak-
radiative decays Kg —+ pp and KL, —+ vr pp.

amp(~s —+ pp) = ~~ ~2
)

xciF B(mJc),

the one-loop chiral prediction is found to be

(22)

decay process Kp -+ pp. Nevertheless, there does exist
a finite one-loop piece. Defining [15]

II. Ks B(a) = Gs ~

—(m —a)F(a, m ) —[m -+ mrs)
~

. (23)

A good deal of work has been done extending the chiral
formalism into the regime of nonleptonic weak processes.
To two-derivative order the form of the efFective SU(3)
octet chiral Lagrangian is unique:

With the value

G 91x10 GeV (24)

determined &om the tree-level prediction for Kg -+ xx,

1 ——F GsTr (AsD„UD"Ut) (21) amp (Ka ~ 7r+7r )= 2F A0 (m&)
where Gs is a constant whose value can be determined
empirically. The corresponding four-derivative weak ef-
fective Lagrangian has also been written down and in-
volves 37 additional terms [14], whose explicit form will
not be needed here, since as in the case of pp —+ m vr

there is no tree-level contributions to the weak-radiative

= 2F.Gs'"(m~ —m.'), (25)

B(Ks ~ pp)chpT = 2.0 x 10 (26a)

we find the one-loop chiral prediction to be in good agree-
ment with the recently determined experimental number

i x io-6-

0. 5

-0. 5

—1.5
0. 3

I

0. 4 0. 5 0.6 0.7

0.2 x 10-6 (b)

u s [GeV] FIG. 2. Shown are the results of one-loop
chiral perturbation theory (dashed line) and
dispersive analysis scenario d) (solid line) for
Im B(s) (a) and Re B(s) (b) respectively.
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vs

B(It"s m pp),„,= (2.4 + 1.2) x 10 (26b)

TABLE I ~ Shown are the amplitudes and predicted branch-

ing ratios for the process Ks ~ pp using various theoretical
inputs to the dispersion relation Eq. (29) as described in the
text.

An alternative derivation of this result is provided by
the use of a dispersion relation. We note that the function

B(s) has a cut along the line element 4m & s & oo and
by unitarity has the imaginary part [16]

Input
ChPT.
Pade
Gasser
Gasser+U, A

ImB [10 ]

0.77
0.47
0.49
0.46

ReB [10 ]
—0.44
—0.83
—0.73
—0.84

8 [10 ]
2.0
2.3
2.0
2.3

ImB (s) = 8(s —4m )P(s) Ap (s)fp (s), (27)

where Ap(s) is the amplitude for the weak decay Ks m
urer(I = 0) and fp(s) is the amplitude for S-wave radia-
tive pion annihilation 7rvr(I = 0) ~ pp discussed in the
previous section. Note that since we are using an SU(3)
octet assumption for the weak transition, both dipions
are required to be in an isoscalar configuration. To low-

est order in chiral perturbation theory we have

A(s) = A "(s) = G "( —m'),
I P'(s) —& I + P(s) &

2P(s) l 1 —P(s) )!lnfp(s) ~ fBorn(s) = (28)

We now write a doubly subtracted dispersion relation
for the function B(s) using as subtraction constants the
requirements that the amplitude vanish at both s = 0
and s = m, as given in the lowest order chiral analysis,
yielding

B(s) = s(s —m2) ImB(s') ds'

4~2 s' s' —m s' —s —z6

If the lowest order chiral values, Eq. (28), are used to de-
termine Im B(s') then the integration can be performed
analytically to yield

1
B(s) = (m —s)F(s—, m')Gs", (30)

which is precisely the (pion contribution to the) one-loop
chiral result Eq. (23).

At one level then the dispersive technique repre-
sents merely an alternative (and simpler) way by which
to perform the one-loop calculation. However, at a
deeper level the dispersion relation provides a means
to undertake a much more complete calculation of
the radiative decay process by using for Im B(s')
not just the lowest order chiral forms for these am-
plitudes but instead values which have more experi-
mental validity. Of course, the subtraction constants
must be fixed by some other means —we assume
that chiral perturbation theory to one loop is accurate
enough to describe the amplitude at very low energies.
In particular, this assumption amounts to neglecting
symmetry-breaking corrections of O(p ). They are ex-
pected to be small except possibly for those counter-
terms reflecting the effect of low-lying resonances [17,18].
However a consistent treatment would require a complete
ChPT calculation to order p, which is beyond the scope
of this work.

The Ks m nm decay amplitude Ap(s) itself is an an-
alytic function with a discontinuity along a cut 4m

s & oo given in terms of the S-wave I = 0 x-vr scattering
phase shift

I A.(.) =0(.-4 .').-'"('). ~,'(.)A.(.).
The general solution of such an equation is given as

Ap(s) = P(s)Dp (s), (32)

while the corresponding solution for fp(s) was derived in
Ref. [9] and has been outlined in Sec. I of this paper.
Substitution into Eq. (27) and numerical evaluation of
the dispersive integral then provides a prediction for the
Ks ~ pp amplitude which is much more complete and
founded in experiment than is its simple one-loop chi-
ral analogue. The result of the numerical integration is

shown in Table I, where values are given for the radiati. ve

decay amplitude B(mK)/branching ratio for four scenar-
ios: (a) simple one-loop chiral perturbation theory; (b)
use of the full unitarized values and with the Pade form
for the Omnes function; (c) use of the full unitarized
values and with a numerical representation of the Omnes
function based on experiment and given by Gasser [13,7];
(d) same as (c) but with vector and axial-vector exchange
contributions included also in fp(s), which provides the
best fit to the pp ~ ver system.

Examination of this table shows that the full unita-
rization procedure makes substantial changes in the pre-
dicted form of the decay amplitude with the importance
of the real and/or imaginary pieces being interchanged
for the ChPT and full unitarized calculations respec-
tively. This is clearly seen in Fig. 2 where we show
the very different shapes for Im, ReB(s) for these cases.

'It is important to note here that when the solution Eq. (33)
for As(s) is used, the value Gs = Gs /I&o (s —mK)l
6.1 x 10 GeV must be employed in order that the proper
normalization to the Ks —+ urer decay rate be preserved.

where P(s) is an arbitrary polynomial and Dp (s) is the
Omnes function discussed in Sec. I. In order to determine
the polynomial P(s) we demand that the full Its —+ vrvr

amplitude given in Eq. (32) match the simple chiral
form Eq. (28) in the absence of rescattering [i.e. , when

Dp (s) = 1]. We have then

Ap(s) = Gs(s —m )Dp '(s),



49 Ks~py, KL, ~~ yy AND UNITARITY 2351

III. Kg -+ m pp

There has been considerable recent interest in the
nonleptonic-radiative mode KL, ~ x pp. This began
when one-loop chiral perturbation theory was used to
generate a supposedly reliable prediction [20]

f —g„„kg k2+ k2k,"&' ' l~C(.),
kg k2 )

where

C(s) = —Gs F(s, m )(m —s) —F(s, m&)

x(m~+m —s) . (35)

Since a three-body final state is involved, what emerges
is a prediction for both the overall branching ratio

8(KL, m n pp) = 0.68 x 10 (36)

in addition to the shape of the decay spectrum, as shown
in Fig. 3. This distinctive shape is in marked contrast

Despite these differences, the predicted branching ratio
is remarkably robust, changing only slightly among the
very different scenarios. We conclude then that the agree-
ment between the experimental Kg —+ pp rate and that
predicted via one-loop ChPT should not be considered
as a success for the latter, since we have produced nearly
identical predictions for the branching ratio &om a very
different set of assumptions concerning the input param-
eters. Truong has reached a similar conclusion using a
different parametrization of the Omnes function and an
approximated pp m xx amplitude [19].

Therefore, one must conclude that in order to distin-
guish between the various decay mechanisms one must
examine a process which offers the chance for a rather
richer experimental con&ontation —the related nonlep-
tonic radiative decay KL, —+ m pp.

with that arising &om a simple g, g pole model, which
gives support at lower values of s~~ [21]. When experi-
mental numbers were provided, the shape was found to
be in good agreement with the ChPT prediction. How-
ever, the measured rate was nearly a factor of 3 larger
than given in Eq. (36):

o (1.7+ 0.3) x 10 NA31 [22
(1.86 + 0.6) x 10 Fermilab [23).

(37)

Since this ending, a number of authors have examined
this problem. A quark loop calculation 6nds a relatively
small decrease of the branching ratio [24]. The inclu-
sion of the AI = 3/2 weak interaction results in a minor
effect, as expected [25]. A dispersive analysis including
unitarity corrections of O(ps) due to the x+n. interme-
diate state has also been presented recently [25,18]. In
this approach, the experimental results for the branching
ratio as well as the spectrum in the invariant mass of the
two photons can be reproduced if a somewhat sizable
contribution of vector meson exchange to the counter-
term Lagrangian of O(p ) is assumed. A similar result
has been obtained in Ref. [26], however without taking
into account unitarity corrections of O(p ).

Here we wish to examine the contribution of higher
order diagrams to the decay process, by generalizing the
dispersive approach which was applied in the previous
section to Ks —+ pp. The general KL, ~ m pp amplitude
admits a second invariant amplitude which only appears
at order ps in the chiral expansion [25,18] and which is
not displayed in Eq. (34). It arises from higher par-
tial wave components in the subprocess K ~ 3'. We
concentrate on the unitarity corrections due to the lead-
ing s-wave component; then only the invariant amplitude
C(s) in Eq. (34) will appear. However, for this ampli-
tude, unitarity corrections due to vrvr intermediate states
will be treated to all orders in the chiral expansion. We
begin by rederiving the one-loop ChPT result in this fash-
ion. The amplitude C(s) possesses a cut along the real
axis from 4m ( s ( oo with a discontinuity determined

5-

3

2

FIG. 3. Normalized spectra I/I'dI'/dz
in the invariant mass of the two photons
(z = q /M~, ). Plotted are chiral perturba-
tion theory (dashed line) and dispersive anal-
ysis using Gasser Ds (s) function (solid line).
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via unitarity, which takes the form [27]

2 1
ImC(s) = 8(s —4m ) —P(s)A+ o(s)f *(s), (38)

K ~ 3' amplitude we shall use an approximate solu-
tion to twice subtracted Khuri-Treiman equations [28].
Define the AI = —K m 3' decay amplitude as

where the lowest order GhPT amplitudes for pp m ~+7t.

and Kl, m 7t.+sr 7r are given, respectively, by

(s) = f""(s)
amp(KI, -+ ~+sr ~ )

—= A+ o(s) = Gs (s —m ). (39)

As for K~ m pp we now write a twice subtracted dis-
persion relation for the function C(s), the subtraction
constants being specified by the one-loop ChPT require-
ment that C(s) vanishes at both s = 0 and s = m~:

s(s —m2) ImC(s')ds'
C s 40

4~2 S 8 —m~ S —8 —ZE

Using the lowest order chiral expression to determine Im
C(s) the integration can again be performed analytically
yielding

amp(KI —+ vr vr 7r') = 8 b' F(s, sb, s, )

+permutations, (43)

amp(KI -+ ~+sr vr )
= A+ o

——F(s, sb, s, ),

amp(KI ~ 3' )—:Aooo ——F(s~, sb, s, ) + permutations.

(44)

where s, = (k —q;) 2. Also note that F(s, sb, s, ) must be
symmetric in its erst two arguments according to Bose
statistics. The decay modes relevant to our calculation
are then

C(s) = Gs —F(s, m )(s —m ), (41)
The discontinuity of F(s, sb, s, ) is provided by unitar-
ity. Thus for K —+ 3' the unitarity condition reads, in
general,

which reproduces exactly the (pion loop contribution to
the) one-loop ChPT result, i.e. , the first term in Eq. (35).

To provide an improved estimate, we use the disper-
sion relation Eq. (40), but with a more complete rep-
resentation of Im C(s) than just the lowest order ChPT
expression. (The subtraction constants are still taken
from one-loop ChPT. Again we neglect possible correc-
tions of order p in the chiral expansion. ) In addition to
the m+~ intermediate state considered so far we include
the discontinuity from the x x intermediate state in the
s-channel to the unitarity relation

1 Ipg
3!~- (2')'2Ed

def

pf 4

(2.) 2Z, "'
xb(k —pd —p, —p~)

1

x (7r vr 7r'~rr"vr'sr~)'(7r"vr'sr~ ~'R' ~K~) . (45)

ImC(s) = 0(s —4m )
—P(s) A+ o(s)f *(s)

+
~i Aooo(s) f (s) (42)

However, this equation is not amenable to an exact so-
lution, and so various approximations are necessary. VA

begin by approximating the 3m scattering amplitude by
a sum of two-pion, one-spectator ampLitudes:

where the superscript S indicates the S-wave compo-
nent of these amplitudes. Other intermediate states open
up at much higher thresholds and are suppressed in the
twice-subtracted dispersion relation.

To evaluate the improved imaginary part of the func-
tion C(s) in Eq. (42) we shall employ dispersion rela-
tions to calculate the pp ~ urer scattering amplitudesf, f and the K —+ 37r decay amplitudes A+ o, Aooo.
The approach to f, f has been reviewed in Sec. I.
%e shall use the explicit results given there. As for the

(vr m ~'~vr"vr'7r~) b'~(~ vr ~vr"~') + permutations.

(46)

Also, since any two-pion reaction is at low energy we

include only S-wave scattering terms:

(vr vr ~vr 7r') = 6 h"' —[Ai (s) —Ai (s)]aha 1

3

(Padgbe + gaegbd)A(2)( )
1
2

(47)

This intermediate state does not contribute to ImC in the
chiral one-loop analysis since f vanishes at order p . How-

ever, the thoro neutral pions also have a I = 0 component„.
therefore, 6nal-state interactions in this channel are expected
to give large corrections.

where

A"'( ) = "" ~'( )

The unitarity relation then reduces to the simpler form
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grnF(a, t, u) = [A *(8)F(a,t, u) + s(A *(8) —A )*(s)}(F(u,s, t) +F(t, u, a))4'
+ 1A(2)'(t)(F(8, t, u) + F(u, 8, t)) + 1A *(u)(F(8, t, u) + F(t, u, 8))] . (49)

The Khuri-Treiman equations are obtained by the ansatz
F(8, t, u) = U(s) + V(t) + V(u). We use a twice-
subtracted form with linear subtraction polynomials

where s~,s2 are the subtraction points, 4'2 is a correc-
tion which can be shown to be small, Do is the Omnes
function, and [29]

Up(8) = aU + blas,

Vp(8) —:0. (50)

2 dO
U(s) = Up(s) + — Up(t(8, cos 8)).

3 4' (52)

The resulting system of equations has a simple approxi-
mate solution provided that we ignore the generally small
I = 2 scattering term with respect to its much larger
I = 0 counterpart:

We still need to specify the subtraction polynomial
Up(s). Since we want to input accurately the infornla-
tion provided by unitarity, we would like to use as much
as possible the experimental information on KI. -+ 3x de-
cays. The K -+ 3' amplitude may be expanded around
the center of the Dalitz plot as (neglecting b,I = 3/2
contributions)

(Dp(82) t a —al
+U(») l

—1 +C„
p 8 J 82 —S

A+ —p crl Pl 1 + ((1 + (1)1 + (Cl (1)+ ) (53)
3

V(8) = 0. (51) with

30 x lo-e.
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FIG. 4. Inl C(8) (a) and Re C(8) (b) in
the physical decay region. Shown are the
results of one-loop chiral perturbation the-
ory (dashed) and dispersive analysis using
Gasser Do (8) function (solid line). Also
shown is the result of the dispersive analy-
sis including the charged intermediate state
only (dot-dashed line).
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Expt.
91.7 6 0.3

—25.7 + 0.3

S3 —8O

m.'
82 —Sy

2
mm

(54)

TABLE II. Shown are values for the AI = -' component
of the KL, ~ 3m decay amplitude with final state interactions
generated by the Pade and Gasser forms for Do respectively.

[10 ] Fit (Pade) Fit (Gasser)
0.'y 89.6 + i19.6 89.9 + i18.2

—21.8 —i13.6 —22.6 —i12.2
BRabs [10

—
6]

0.68

0.68

TABLE III. Shown are the calculated branching ratios
(BR's) for KL, —+ vr pp under various input assumptions. The
second column indicates the contribution to the branching ra-
tio from the absorptive part of the amplitude.

Input BR [10 ]

Expt. 1.7 + 0.3
ChPT (pion-loop) 0.59 0.39
Pade-charged 0.93
Pade-charged+neutral 1.12 0.84
Gasser-charged 0.93
Gasser-charged+neutral 1.08 0 ~ 81

a~' = —2.3 x ].0-', brr' ——8.6 x 10 GeV {55)

to be compared with the current algebra expressions
gCA Q m2 = —$.8 X ].p 7 bCA gs
9.1 x 10 GeV . This yields the results given in the
second and third columns of Table 2 for two parametriza-
tions of the Omnes function, the Pade form, Eq. (18),
and the numerical parametrization given by Gasser re-
spectively. Interestingly, Pi develops a rather large imag-
inary part as can be seen in the second and third column
of Table II.

The advantage of this approach is twofold. First we use
the experimentally available information on coefBcients
ni, Pi —the shortcomings of a too low K ~ 37r ampli-
tude from soft pion theorems are thus avoided. Second.
it provides us with a representation of real and imagi-
nary parts of the decay amplitude outside the physical
region. This is exactly what is needed in order to make
Im C(s), Eq. (42), approximately real. If instead we
would use the experimental expansion of A+ o, Eq. (53),

Assuming the coefficients ni, Pi, . . . are real, experiment
fixes ni, Pi at the values given in column one of Table
II. As is well known, using the current algebra expres-
sion Uo(s) = G+sA(s —m ) as a subtraction polynomial
gives values for ni and Pi which are too small. On the
other hand, ChPT to one loop can 6t the K ~ 3' data
by adjusting the counterterm coupling constants of order
p . In the language of dispersion relations, this means
that beyond leading order ChPT not only final-state in-
teractions contribute to coefficients ai, Pi but also the
subtraction polynomial Uo is subject to corrections. This
might also include contributions from higher resonance
exchange.

In the same spirit we adopt the following phenomeno-
logical procedure. The E -+ 3a decay amplitude is cal-
culated according to the approximate solution of Khuri-
Treiman equations, Eq (51).. The subtraction constants
aU, bU of Uo are treated as free adjusted such that the
experimentally found ni, Pi are reproduced. The values
needed for the case of the Pade form of Do are

as an extrapolation, ImC(s) would develop an unaccept-
able large imaginary part at rather low energies, i.e. , for

+s & 450 MeV. Since our solution to the K i 37r am-

plitude is subject to several approximations, we cannot
hope that the imaginary part of Im C(s) cancels com-
pletely. However, it cancels to a large extent; i.e. , it
never reaches 10'%%uo of the real part in the region from the
two-pion threshold up to +s = 600 MeV.

We are now ready to calculate the function C(s) us-

ing the improved representation of its imaginary part.
We used two parametrizations of the Omnes function
Do 1 the Pade solution Eq. (18) and the numerical
representation given by Gasser. In Fig. 4(a) the im-
proved imaginary part ImC(s) is compared to the lowest
order approximation, and in Fig. 4(b) the correspond-
ing real parts calculated from the dispersion integral are
shown. In the dispersive approach, both imaginary and
real parts of C(s) are rather enhanced, already just above
the two-pion threshold. Calculating 8(KI. ~ erupt) with
these inputs we 6nd a net enhancement over the one-loop
ChPT result by a factor 1.9. The results are summa-
rized in Table III where the branching ratio is given for
several srenarios.

The observed enhancement is clearly seen to come from
two effects.

(i) The use of a corrected K i 37r amplitude in
agreement with data gives an enhancement factor of
= 1.6 in the branching ratio. This has been noted ear-
lier [27,17]; in a very simple approach one could just
scale Gs in Eq. (39) to reproduce the experimental
A --& 3' amplitude, leading to a similar enhancement far.-

tor for 8(KL, -+ vr pp). However, a consistent calculation
clearly should explain all relevant processes, K ~ 2',
K —& 3', pp m ~sr, Ks m pp, and KL, -+ ~"pg by the
same method. We have explained in detail above how
this can be achieved.

(ii) The inclusion of the neutral two-pion intermedi-

Iu a similar approach, Ref. [30], Truoug obtains a reason-
able representation of the K ~ 3' decay amplitude using
current algebra constraints for subtraction constants and ap-
pending a "p-pole" contribution.

It should be noted that our result with inclusion of charged
intermediate state only is consistent with that previously cal-
culated by Ko aud Rosuer [27] using a simple one-loop ap-
proximation. We do not understand the discrepancy with the
dispersive calculation of Truoug [19] who also includes only
the charged intermediate state and finds a branching ratio of
1.3 ~ 10
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ate state in the unitarity relation brings an additional
enhancement factor of 1.2. As mentioned before,
this contribution is missed in all approaches where the
mar + pp vertex is treated only at the Born level. Al-
though this eH'ect is moderate, it goes in the right direc-
tion. Moreover, it is critical to include the m m interme-
diate state in order to properly implement the constraints
of unitarity.

Finally we note that using a twice-subtracted disper-
sion relation, the contributions from the high energy re-
gion to the dispersive integral are very much suppressed.
Cutting the integral at ~s = 600 MeV instead of 1 GeV
changes the branching ratio by less than 1%. Also, the
calculated spectrum in the invariant mass of the two pho-
tons is plotted in Fig. 3. It deviates insignificantly kom
the spectrum obtained in one-loop chiral perturbation
theory. If only the charged intermediate state is included,
the maximum of

& &
is shifted toward higher q values,

contrary to the experimental trend. Inclusion of the neu-
tral intermediate state in the unitarity relation restores
the maximum to its original location.

ing ratio is nearly a factor of 3 too small. Previous work
in this area has attempted to explain this discrepancy
in terms of vector meson pole contributions and/or in
terms of higher-loop final-state interaction egects. We
have here noted, however, that previous dispersion-based
final-state interaction calculations have included only the
intermediate x+vr intermediate state, omitting its po-
tentially important m vr analogue. Above we have given
a mutually consistent analysis of both EL, ~ 37r and
KL, ~ vr pp processes using dispersion relations and
have shown that by including this previously neglected
vr x intermediate state piece the branching ratio for
KL, ~ m pp is significantly enhanced, although it re-
mains too low to fully explain the data. This should by
no means be considered to be complete analysis —indeed
many eHects such as I = 1, 2 x-x scattering eKects as
well as higher order contributions to the EL, -+ 3m pro-
cess have been neglected. Nevertheless, we believe that
this calculation opens up interesting questions for future
study about the importance of effects beyond the one-

loop approximation in chiral perturbation theory.

IV. CONCLUSIONS

The process KL, ~ x pp has traditionally been a diffi-
cult one to understand within the context of chiral per-
turbation theory. Indeed, &om other successes one might
have expected the one-loop chiral prediction to be accu-
rate to 20% or so, whereas in fact the predicted branch-
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