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We present a systematic analysis of the Bi'~ -+ 7rE v weak decay form factors to order 1/mb
in the heavy quark effective theory, including a discussion of renormalization-group effects. These
processes are described by a set of ten universal functions (two at leading order, and eight at order
1/ms), which are defined in terms of matrix elements of operators in the efFective theory. In the soft
pion limit, the efFective theory yields normalization conditions for these functions, which generalize
the well-known current algebra relations derived from the combination of heavy quark and chiral
symmetries to next-to-leading order in 1/ms. In particular, the eifects of the nearby B' pole are
correctly contained in the form factors of the efFective theory. We discuss the prospects for a model-
independent determination of ~V„s~ and the BB'm coupling constant from these processes.

PACS number(s): 13.20.He, 12.39.Hg, 14.40.Nd

I. INTRODUCTION

Of the three independent mixing angles in the
Cabibbo —Kobayashi —Maskawa matrix, ~V„g~ is the most
poorly determined. Chiral symmetry provides an abso-
lute normalization of the hadronic form factor in the de-
cay K ~ x E v, allowing a precise and model-independent
determination of [V„,

~
[1]. Heavy quark symmetry pro-

vides absolute normalization and various relations among
the form factors in the decays B —+ D(')8v, allow-
ing a precise and model-independent determination of
~V,s[ [2—6]. Neither of these symmetries is as powerful
in heavy-to-light transitions such as 6 ~ u/v. Conse-
quently, the present determination of ~V„s~ from the end
point of the lepton spectrum in semileptonic B decays
seers &om large theoretical uncertainties and strong
model dependence [7,8].

It was suggested that the exclusive semileptonic de-
cay mode B ~ vrEv could be used for a more reliable
determination of [V„s[ [9]. The basis for this hope is

the fact that, to leading order in the heavy quark ex-
pansion and over a limited kinematic range, the corre-
sponding form factors are related to those of D ~ m Zv

by heavy quark Bavor symmetry. The applicability of
this idea depends, besides experimental considerations,
on the importance of symmetry-breaking corrections of
order I/mq. For the related case of leptonic decays of
heavy mesons, there are indications from lattice gauge
theory [10—13] and /CD sum-rule calculations [14—17]
that these power corrections can be significant.

Our purpose in this study is to work out the structure
of I/mt, corrections for the B(*) -+ n I v decay form fac-
tors using the heavy quark effectiv theory. The main
points of our analysis are as follows.

(i) Eight universal functions are needed to describe the
I/mg corrections to these processes. They are defined in
terms of matrix elements of dixnension-four operators in

the effective theory.

(ii) The renormalization-group improvement of these
low-energy parameters is discussed in detail.

(iii) The behavior of the universal functions in the soft
pion limit is derived using standard current algebra tech-
niques.

(iv) It is shown explicitly that the B'-pole contribution
is correctly contained in the heavy quark effective theory.

At leading order in the heavy quark expansion, the two
form factors which parametrize B -+ m Ev decays have
been investigated by several authors [9,18—21]. It is well
known that, in this limit, the soft-pion behavior is fully
determined by the decay constant of the Bmeson and the
BB*vr coupling constant. Here we generalize these results
to next-to-leading order in I/ms. In particular, we show
that when one uses the physical meson decay constants
and the physical BB'x coupling constants (as opposed to
their asymptotic values in the ms ~ oo limit), there are
neither I/ms nor short-distance /CD corrections to the
soft pion relations. We also derive the general structure
of the decay form factors at larger pion momenta, where
a chiral expansion is no longer valid.

The paper is organized as follows: The formalism of
heavy quark effective theory relevant to our work is re-
viewed in Sec. II. In Sec. III we then construct the heavy
quark expansion for the B(') ~ m 8 v decay form factors
to next-to-leading order in I/m~, including a detailed
analysis of renormalization-group effects. In Sec. IV
we derive the normalization conditions for the univer-
sal functions of the effective theory, which arise in the
soft pion limit. We compare our results to the predic-
tions of the so-called heavy meson chiral perturbation
theory [19,20]. Section V contains a summary and some
concluding remarks concerning the prospects and possi-
bilities to obtain a model-independent xneasurement of
[V„s[ and the BB'7r coupling constant. Technical details
related to the renormalization-group improvement and
the soft pion limit are described in two Appendixes.
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II. THE I/mq EXPANSION

Our goal in this paper is to analyze the dependence of
the hadronic form factors describing B m vr 8 v decays on
the mass of the 6 quark, in the limit where mp )& AqgD.
A convenient tool to make this dependence explicit is
provided by the heavy quark efFective theory (HQET)
[22—30]. It is based on the construction of an effective
low-energy Lagrangian of QCD, which is appropriate to
describe the soft interactions of a heavy quark with light
degrees of &eedom. In the effective theory, a heavy quark
bound inside a hadron moving at velocity v is described
by a velocity-dependent field h,„,which is related to the
conventional quark field in QCD by [24]

h„(x) = exp(imq v x) Q(z) .
1+)

2

By means of the phase redefinition one removes the large
part of the heavy quark momentum from the new Beld.
When the total momentum is written as P = mq v + k,
the Beld h carries the residual momentum k, which re-
sults &om soft interactions of the heavy quark with light
degrees of &eedom and is typically of order AqpD. The
matrix 2(1 + $) projects out the heavy quark (rather
than antiquark) components of the spinor. The antiquark
components are integrated out to obtain the effective La-
grangian [22,24,25,28]

1
&efr = hv &v'D hv + Okin + &mag(p) Omag

2m@

+O(1/m2q),

where D" = 8" —ig, T A" is the gauge-covariant deriva-
tive. The operators appearing at order 1/mq are

Oi,;„=h„(iD) h„, O g
———'h„o„G" h„. (3)g 2 P

—3/P
&mag = & P = 11 —

s ny,2

where x = n(HALI)/n(mg), p, denotes the renormalization
scale, and ny is the number of light quarks with mass
below mg.

Any operator of the full theory that contains one or
more heavy quark fields can be matched onto a short-
distance expansion in terms of operators of the effective
theory. In particular, the expansion of the heavy-light
vector current reads

Here G" is the gluon field-strength tensor defined by
[iD",iD"] = ig, G" . In the rest frame of the hadron,
it is readily seen that Og;„describes the kinetic energy
resulting from the residual motion of the heavy quark,
whereas O g describes the chromomagnetic coupling of
the heavy quark spin to the gluon Geld. One can show
that, to all orders in perturbation theory, the kinetic op-
erator Oi, ;„is not renormalized [31]. The renormalization
factor C g(p) of the chromomagnetic operator has been
calculated in leading logarithmic approximation and is
given by [28]

where the symbol = is used to indicate that this is an
equation that holds on the level of matrix elements. The
operators (J,j form a complete set of local dimension-
three current operators with the same quantum numbers
as the vector current in the full theory. In HQET there
are two such operators:

Jp ——
q v"h„. (6)

Similarly, (O~ ) denotes a complete set of local dimension-
four operators. It is convenient to use the background
field method, which ensures that there is no mixing be-
tween gauge-invariant and gauge-dependent operators.
Moreover, operators that vanish by the equations of mo-
tion are irrelevant. It is thus sufIicient to consider gauge-
invariant operators that do not vanish by the equations
of motion. A convenient basis of such operators is [29]

Oi ——qp" iP h„,
O2 ——q v" iP h„,
O3 ——q iD~h„,

O4 ——q( —iv 8) p"h„,
Os = q (

—iv 5) v"h„,
Os ——q (—i6")h„.

For simplicity, we consider here the limit where the light
quark is massless. Otherwise one would have to include
two additional operators O7 ——mq J] and O8 ——mq J2
is convenient to work with a regularization scheme with
anticommuting p5. This has the advantage that, to all
orders in I/mq, the operator product expansion of the
axial vector current can be simply obtained from (5) by
replacing q i —

ques

in the HQET operators. The Wilson
coefFicients remain unchanged. The reason is that in any
diagram the p5 from the current can be moved outside
next to the light quark spinor. For mq

——0, this operation
always leads to a minus sign. Hence it is sufhcient to
consider the case of the vector current.

A "hidden" symmetry of the effective theory, namely,
its invariance under reparametrizations of the heavy
quark velocity and residual momentum which leave the
total momentum unchanged [31],determines three of the
coefFicients B,(p,). It implies that, to all orders in per-
turbation theory [32],

Bi(v) = &i(v) B2(s ) = —,
' Bs(i ) = &2(~) . (8)

The remaining coefFicients in (5) can be obtained from
the solution of the renormalization-group equation that
determines the scale dependence of the renormalized cur-
rent operators in HQET. For our purposes, it will be suf-
ficient to know these coeflicients in leading logarithmic
approximation. They are [4,29,33]

(p) — 2 / /

qp" q = $ C;(p) 1, + ) B~(p) 0, + O(1/mq),
2m@

2

(5)
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where again z = a(p)/a(mq).
After the effective Lagrangian and currents have been

constructed, one proceeds to parametrize the relevant
hadronic matrix elements of the HQET operators in
terms of universal, mg-independent form factors. In the
effective theory, hadrons containing a heavy quark can
be represented by covariant tensor wave functions, which
are determined completely by their transformation prop-
erties under the Lorentz group and heavy quark sym-
metry. In particular, the ground-state pseudoscalar and
vector mesons are described by [26,34]

operators in the expansion of the currents (5). Matrix
elements of the operators Oq, 02, and 03, which contain
a covariant derivative acting on the heavy quark field,
have the generic structure

(ir(p)
~ q I'iD"h„[M(v))

= —Tr (Fi v" + F2 p~ + Fs p") ps

+ (E4 u" + Fs p~ + F p"S) p5 g I' M (v) }. (14)

1 + ] —ps pseudoscalar meson,
vector meson. (10)

Here e" is the polarization vector of the vector meson.
Any matrix element of an operator of the effective the-
ory can be written as a trace over such wave functions,
whose structure is determined by symmetry and by the
Feynman rules of the effective theory.

We will now develop this formalism for B —+ vr tran-
sitions. Matrix elements of the leading-order currents J;
in (6) can be written as (see, e.g. , Ref. [35])

FR+F2 —F3 = 0,
+4+F5 —F6 = 0 (15)

The functions F;(v p, y) are new low-energy parameters.
They, again, depend only on the kinematic variable v .p
and the renormalization scale (although we do not dis-
play this dependence for simplicity), but not on the heavy
quark mass. Not all of these functions are independent.
The equation of motion, iv Dh = 0, implies

We may furthermore use the structure of the field redef-
inition (1) to derive that

II(v, p) = ps A(v p, y) +gB(v p, p) (12)

where I' is an arbitrary Dirac matrix. Note that we use a
mass-independent normalization of meson states to 2v
(instead of 2po), as this is more convenient when dealing
with heavy quark systems. The Feynman rules of HQET
imply that there cannot appear any p matrices on the
right-hand side of I'. The matrix II(v, p) must transform
as a pseudoscalar, but is otherwise a general function of
v and p. Using the fact that JH(v) $ = —JH(v), we can
write down the most general decomposition

( (p)~ '8"(qrh„) ~M( ))

= (Av" —p") (ir(p)[qI'h„ iM(v)), (16)

where A = mM —mq denotes the finite mass difference
between a heavy meson and the heavy quark that it con-
tains, in the infinite quark-mass limit [27,29]. This pa-
rameter sets the canonical scale for power corrections in
HQET. Substituting I' = p„l" into the above relation,
and using the equation of motion for the light quark field,

iraq =0, we find

We find it convenient to introduce the dimensionless vari-
able

F2 —F4 + 2 F6 ———e .p A —A B,
Fi —4Fs+2F4+p Fs ——AA+ (2A —v pp ) B. (17)

pPpP—
V p

v. p= 1,
We shall use the relations (15) and (17) to eliminate Fi,
F2 F3 and F4 in favor of Fs and Fs. Matrix elements
of the operators O4, Os, and Os in (7) can be evaluated
along the same lines, using

so that the scalar functions A(v . p, p) and B(v p, p)
have the same dimension. These universal form factors
depend on the kinematic variable v p. They also depend
on the scale p at which the HQET operators are renor-
malized, but not on the heavy quark mass mq. These
functions are the analogs of the celebrated Isgur-Wise
function, which describes heavy-to-heavy meson transi-
tions at leading order in HQET [5].

Let us now turn to the study of the leading power
corrections proportional to 1/mg, which arise from the
corrections both to the currents and to the effective La-
grangian of HQET. We first consider the dimension-four

q( —i5 ) I'h„= qI'(iD") h„—i8"(qI'h„) (18)

together with (16).
Next we investigate the effects of 1/mg corrections to

the effective Lagrangian of HQET. The operators O),;
and O s in (3) can be inserted into matrix elements of
the leading-order currents J;. The corresponding correc-
tions can be described in terms of six additional functions
G;(v.p, p), which parametrize the matrix elements of the
time-ordered products:
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(v{p)(if dy T(qri (O„)G,v; {y„))(M(v)) = —Tr(yv (G, +{iGr)Tnn{v)),

(19)

(v(P)(i dy T(& Tir (0) 0 v(y)) (M(v)) = —Tr( (iGrP yp+ Grv P)yv+ (r'G P TP+ Gvv P)y f
xp v VM(v)).

1+
2

Using the above definitions and relations, it is a matter
of patience to compute the matrix elements relevant to
Bl'l -+ 7r E v decays to order 1/ms. We will discuss these
matrix elements in the following section.

I

meson, and to consider the form factors as functions of
the kinematic variable

m +m —
qv'p=

2m+

III. MATRIX ELEMENTS Accordingly, we define

The matrix element of the Bavor-changing vector
current responsible for the decay I3 ~ x/v can be
parametrized in terms of two invariant form factors,
which are conveniently defined as

(&(p)~qp" Q~B(v)) = 2 f&(v p) v" + f2(v p) p~

The two sets of form factors are related by

(22)

/mB (7r(p)~ qp" q ~B(v))

m2 —m2
= f+(q') (m»+p)"—

m2 —m2
f ( 2) B (20)

f2(v p) A(v p)
v p mB
m2

fo(q') =, , fl(v p)+f2(v p)
gmg m~ —m

f)(v p) + p~ fs(v p)mg
(23)

where q = mg v —p. The prefactor pm~ appears since we
use a somewhat unconventional normalization of states.
In practice, only f+{q2) is measurable in B 4 vr E v de-
cays into the light leptons e or p, , since the contribution of
fo{q2) to the decay rate is suppressed by a factor m&2/m&.

However, both form factors are important in B ~ 7t w v
decays.

As we have seen above, in the context of HABET it
is more natural to work with the velocity of the heavy

The fact that in the ms ~ oo limit the functions fq 2(v p)
become independent of mb (rnodulo logarithms) implies
the well-known scaling relations [9]

f+ ~ V('mg r fo - 1//mal, (24)

which are valid as long as v p does not scale with m~.
By evaluating the traces and using the definitions of

the previous section, we find, to next-to-leading order in

1/ms, the expressions

f) ——Ci A+ C2 (A+ B)
1

Cg —(A —2v. p) A+ v pp B+4Fs+ Gi
2mb

+C2 (A + v . p) A + (3A —v . pp ) B + 4Fs + Gg + Gg

84 (A —v p)—A —B5 (A —v p) (A+ B) —Bs (A —v p) A —2Fs

+Cg C~~s —2Gs+ 6G4+ 2J) Gs + C2C~~s 6G4 —2(l —p ) Gs+ 6Gs

f2 ——Cg B+ Cq —v . p A —A B —4F6 + G2 —2C2 v . p A + A B + 2F6
2mb

B4 (A —v . p) B —B—s (A —v p) B+2Fs + Cq C~~s 2Gs —2Gs + 6Gs
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For simplicity we have omitted the dependence of the
universal functions on v p and p, and the dependence of
the Wilson coeKcients on p.

From the fact that the physical form factors must be
independent of the renormalization scale, one can deduce
the p, dependence of the universal functions of HABET,
since it has to cancel against that of the Wilson coef-
ficients. For the leading-order functions A(v p, p) and
B(v p, p, ), it follows that

- 2/P
A„„(v p) = n, (p, ) A(v p, p),

B„„(v p)
—= n, (p) B(v p, p,), (26)

must be p independent (in leading logarithmic approxi-
mation). It is then convenient to define two related func-
tions

- —2/P
A(v p) = a,,(mq) A„„(v p) = z2~~ A(v p, p),

- —2/P
B(v p) = n, (mq) B„„(v.p) = z B(v p, p),

1
fi ——A+

2mb

—2G3+ 6G4+ 2P G5

—(A —2v p) A+ v pp B+4Fs+ Gi

A ]
f2 ——B+

2mb

—2G5 + 6G6

A—v J A —AB —4F6+G2+2G3

(29)

and the B' + x decay form factors are given by

hg ——B+
2mb

v pA+ AB+ 2F6+ G2 —2G6

dence of the universal functions. We discuss this some-
what technical issue in Appendix A. There we define a
set of renormalization-group invariant functions F; (v .p)
and G;(v .p), which are p, independent and coincide with
F; and G; at the tree level. In terms of these functions,
the form factor relations take a much simpler form. In-
stead of (25) we find

which are clearly also p independent. These functions
are no longer universal since they contain a logarithmic
dependence on the heavy quark mass. At the tree level,
however, they agree with the original functions A and B.

In order to find the corresponding relations for the sub-
leading universal functions F; and G;, the expressions
(25) for fi and f2 are not sufficient. We have thus worked
out the heavy quark expansion for B' ~ xEv decays,
although these processes have little (if any) phenomeno-
logical relevance. We define hadronic form factors h; by

(~(p)lqp" QIB'(v)) =»s~ ~&e ppv, h, (v p),

~h

+Gg + G2 —2G4 —2G6

A 1
h3 ——B+

2mb

A, A—v. pA —AB —2F5

P

+G2 —2G3 —2G6 )

1
h4 —— 2F5 + 2G5

2mb

h2 —(A+ B) + si (A —v p) A
2mb

+-' (A —v p p') B ——(1 —p') Fs3 3

(3o)

(~(p) I q ~"» Q IB*(v))

= 2 hz(v p) e" —hs(v p) e p v" —h4(v p) e p p

By studying these form factors at order I/ms, one can
derive enough relations to fully determine the p depen-

Note that Fs appears only in the vector form factors fi,
f2, and hi, whereas Fs appears only in the axial form
factors hq, h3, and h4.

Most relevant, of course, are the form factors f+ and

fo that are usually used to describe B m

mdiv

decays.
From (23) we obtain, at next-to-leading order in 1/ms,

mg
v p 2mb

P

v P A —A B —4F6 + G2 + 2G3 —2G5 + 6G6

(A+ B) +pm' 2mb
—(A + v p) A —(A + v .p p ) B + Gi + G2 + 6G4 —2(1 —p )Gs + 6Gs

These relations show how, in a rather complicated way,
the 1/ms corrections to f+ and fo are related to matrix
elements of operators in HABET. To gain more insight
into the structure of the corrections, it is instructive to
consider the soft pion limit v - p —+ 0 and p = m -+ 0,
in which current algebra can be used to derive normal-
ization conditions on the universal functions. This is the
subject of the following section.

IV. SOFT PION RELATIONS
In this section we shall derive the normalization condi-

tions for the universal functions of HABET, which arise in
the soft pion limit p m 0. Our goal is to reduce, as much
as possible, the number of independent parameters upon
which our predictions depend. The soft pion relations
are derived by using the PCAC (partial conservation of
the axial vector current) relation for the pion field. To be
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m+(z) = 1 8"A„(z),m'.
(32)

specific, let us consider the decay M m 7r+E v (where
M =B or B ') T. hen

where A„= dp„p5u is the axial vector current, and

f 132 MeV is the pion decay constant. The Lehmann-
Symanzik-Zimmermann (LSZ) reduction formalism can
be employed to write

1m2 2

(vr(p) l 0(o) lM(v)) = lim — i dz e'"'* (0 l
T (O(0), )9"A„(z))lM(v)),p'

where 0 may be any operator that couples M to vr. The
right-hand side can be rewritten using

i dze*~* T (O(0), )9"A„(z))

d~e'~'T A„z,00 —i „00
(34)

Here Qs denotes the axial charge, i.e. , the spatial inte-
gral of the zero component of A„: Qs ——f d zdtpsu.
Therefore,

Qs, O(0) = O'(0),

where the operator 0' is obtained from 0 by replacing
u by d( —ps), i.e., if O = up" b then O' = dp"ps 6, etc.
The soft pion relation is obtained by analytically contin-
uing (33) to p -+ 0. In this limit the first term on the
right-hand side of (34) is saturated by intermediate states
degenerate with the ground state. They lead to poles pro-
portional to 1/v p, which cancel the factor p" in front
of the integral. In the case of B ~ vr transitions, the
relevant intermediate state will be the B' meson, which
to leading order in HQET is in fact degenerate with the
B meson. We obtain

lim (vr(p)l O(0) lM(v)) = — —
& (0 l

O'(0) lM(v)) + lim
p —+0 p-+0

dze'~' (0) T}O(0),p A)z)} )M)v))) .

In what follows we shall refer to the first and second
terms on the right-hand side as the commutator and the
pole contribution, respectively.

where M' is ofI'-shell by the pion momentum p. The form
factor g(v p) is real and regular as v p ~ 0. We define

lim g(v p) = g(0) = g.

A. Soft pion relations for A(v ~ p) and B(v ~ p)

Let us now evaluate this relation for the matrix ele-
ments arising at leading order in the 1/mq expansion,
where the eHective current operators have the generic
form 0 = q I' 6 . Both the commutator and the pole con-
tribution involve a current-induced transition of a heavy
meson into the vacuum. At leading order in HQET, the
corresponding matrix elements can be written as [14]

Note that g is renormalization-group invariant. We can
now write the pole contribution as

) (olg«. IM'( )), (M'( )lp AIM( ))
M'

(&)g( p) )- ~(q~)( ))4v. p

(0 l q I"h„ lM(v)) = Tr(I"M(v)),
xTr p5 M vMv (40)

where I' = —p5 I' in the commutator term and I" = I' in
the pole term. The prefactor is chosen such that the uni-
versal low-energy parameter F(p), which is independent
of the heavy quark mass, corresponds to the asymptotic
value of the scaled meson decay constant: F fM+mM
(modulo logarithms).

To compute the pole term, we further need the cou-
pling of two heavy mesons to the axial vector current, as
shown in Fig. 1. We define

(M'(v, p)l p. A lM(v, 0))

= g( p) Tr(7ggM ( )M(v)), (M)

where we have used that in the effective theory the in-
termediate meson propagator is simply given by i/v . k,
where k stands for the residual momentum. (Recall that

T
P

p)
I

FIG. 1. Pole diagram contributing to the soft pion rela-
tions for the universal form factors. The axial vector cur-
rent is shown as the dashed line, whereas the weak current is
drawn as a wiggly line. The black dot represents the strong
interaction vertex, the open box the weak interaction matrix
element.
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we use a mass-independent normalization of states. ) To
proceed further, we need a relation that allows us to com-
bine the two traces appearing on the right-hand side into
a single trace. This is accomplished by the identity

) Tr(XA('(v))Tr(pv/A((v)M(v))
M'=P, V

= —2Tr p5 —v p XMv, 41

which is valid for any Dirac matrix X, and for a pseu-
doscalar or vector meson M(v). The sum extends over
the ground-state pseudoscalar and vector mesons M'(v)
degenerate with M(v), and summation over polarizations
is understood if M'(v) is a vector meson.

Putting together the various pieces and using (11), we
obtain the soft pion relation

lim Tr p5 Av ~ p, p, + Bv.p, p I' v = Tr p5I'Wv +limgv p Tr p5 —1
F() )

(42)

&om which we read o8 the values of the form factors A
and B in the soft pion limit:

—p5 I'. Combining the two, we obtain, &om a comparison
with (14),

A(o, y,) = (1 —g),
F(~)
2

&(0,p) = g (4~)
F(~)
2~

These relations are preserved by renormalization. In
fact, one can define a scale-independent quantity F =
z )i F(IJ), which agrees with F at tree level [14]. As
mentioned above, the coupling constant g is not renor-
malized. From (27), it then follows that

Fi(0 v) =—

Fs(0, p) =—

F(p) A

2'
F2(o, p, ) = — g,

F(p) 2A

F(p) A

2f 3

F4(0, p) = — —g,
F(p) A

Fs(0, p) = 0,

Fs(0 P) = — —g.F(y) A

(47)
vrr

&(0) = (1 —g)2f B(0) = g, (44)

which are the desired normalization conditions for the
renormalized form factors in the soft pion limit.

B. Soft pion relations for E;(v ~ p)

Let us next consider the soft pion relations for the sub-
leading form factors F; defined in (14). The only difFer-
ence &om the previous derivation is that now the cur-
rent contains a covariant derivative. Hence we need the
corresponding matrix elements for the case of meson-to-
vacuum transitions. They are [14]

(O] gr'iD~h„~M(v))

—Tr((vv+ pv) I"Al(v)) . (45)

Using again the trace relation (41), we obtain, for the
pole term,

) (0]ql' D"h„]M'( )) (M'( )]p. A]M( ))I'
F()M) A g(v p)

6 v p

x~ ~, (46)

The commutator term is simply given by (45) with I" =

Note that the relations (15) and (17), which are conse-
quences of the equations of motion, are satisfied by these
expressions. Using the results of Appendix A we find
that radiative corrections can again be incorporated in
a straightforward manner. The two independent renor-
malized form factors satisfy

F,(0) =o, F A
Fs(0) = — —g2f 3

(48)

C. Soft pion relations for G;(v ~ p)

Here one encounters the complication that the soft
pion relation involves the time-ordered product of three
operators: the original heavy-light current, the axial vec-
tor current that interpolates the pion field, and one of the
operators Oi, ; and 0 s which appear at order 1/mq in
the efFective Lagrangian of HQET. Consequently, there
are both single and double pole contributions in addi-
tion to the commutator term, and the derivations become
more cumbersome. %e shall only give the final expres-
sions here and refer the interested reader to Appendix 8,
where we give details of the calculation.

The 1/mg insertions from corrections to the effective
Lagrangian correct both the meson decay constants and
the MM'a coupling constant, as shown in Fig. 2(a).
The corrections to the decay constant were treated in
Ref. [14]. They can be parametrized in terms of two
renormalized parameters gi and g2, which describe the
e6ects of the kinetic and chromomagnetic operator, re-
spectively. To order 1/mg (and in leading logarithmic
approximation), the physical decay constants are
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rw

I
I

I

P~C

I

I

I

I

ting between vector and pseudoscalar mesons. However,
as we shall see below, this is exactly what is required to
recover the correct pole contributions predicted by chiral
symmetry. The singular behavior of G3 results &om the
diagrams depicted in Fig. 2(b). For later purposes we

define a regular function Gs' (v .p) by

m2 —m2Fg (mv —m~)
4 „v p

FIG. 2. Single (a) and double (b) pole diagrams contribut-
in0; to the soft pion relations for the form factors G;. The
notation is the same as in Fig. l. In addition, a cross repre-
sents a 1/mq insertion of Qk;„or D

Gs's(0) = — 8g g2 + 4g2
2

D. Meson form factors in the chiral limit

(53)

A)
fpQmp —F 1 +

l
Ql + 602

mq 2)
(- - A'I

fvv mv = F 1+
l

&i 2&2+ —
I

mq 6) (49)

The soft pion relations derived above will become more
transparent when we consider the physical meson form
factors f; and h, defined in (22) and (28). We start by
considering the sum fi + f2 In th. e soft pion limit we
obtain

1
gpvtr gvp7r g + (gl + 4g2),

2m@

1
gvv = g + (gi —4g2)

2m@
(5o)

where P and V stand for a pseudoscalar or vector meson,
respectively. The coupling of two pseudoscalar mesons to
the pion vanishes by parity invariance of the strong inter-
actions. For the precise definition of the parameters g,
and g, and their renormalization the reader is encouraged
to consult Appendix B.

In terms of these parameters, we And the following soft
pion relations for the renormalized form factors G;:

Similarly, at next-to-leading order in 1/mq, the coupling
of two heavy mesons to the pion receives corrections. In-
stead of the universal coupling constant g in (39) we write

F 1 (- - Alf, (o)+ f, (o)= 1+
I &, +6

2f mb ( 2)

fBpm'
2

(54)

lim f2(v p) =
p —+0

F 1 (- - A

2f ms g
1 +

l
&i —2&2 +—

6

1 (
x g+ gy+4g2 1—

2mb l

i)

v p)
(55)

where

where we have used (49) to write the result in terms of
the physical decay constant f~ Next, co.nsider the form
factor f2 We find.

Gi(0) =

G2(0) =

2
2(1 —g) gi —gi

p
2g~i + gi

7r

2 2may mg
mB mg

2mb
(56)

as well as

G4(0) =

G, (o) =o,

Gs(0) =
2

2gg2+ 2g2

p
2

2(1 —g) gq —2g2

(51)

and we have factorized various terms in an educated way,
so that it is immediate to identify the decay constant of
the B' meson and the BB*vr coupling constant. In fact,
using (49) and (50) we can rewrite the result as

fg. g gm. v plim f2(v . p) = g~g*~ (57)i~o 2f (v. p+ A~)

lim Gs(v . p) = — (mv —mp)
p —+0 2f 2v. p

+8g&+ 4g2 (52)

It might seem surprising that G3 develops a pole as
v - p —+ 0, with a residue proportional to the mass split-

The resummation of the B*-pole term, which is allowed
to the order we are working, has removed the spurious
singularity at v-p = 0, and we have recovered the physical
pole position at v.p = —A~, corresponding to q = m&. .
This becomes apparent when we use (23) to convert to
the conventional form factors f+(q ) and fo(q2). In the
soft pion limit, they become
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( 2)
mB fB 9BB x

2 f (v p+6B)
fB- 9BB.w
f. 1 —q /mB. j

'

fp(mB) =

where we have used that mB. /mB = I+O(1/m&). These
are the well-known results for the meson form factors in
the chiral limit. They have been previously derived in
the m& ~ oo limit by combining HQET with chiral per-
turbation theory [19,20], or by using current algebra in
connection with the fact that the B and B* mesons are
degenerate to leading order in 1/mg [21]. The same re-
lations have also been obtained without a heavy quark
expansion, by assuming nearest pole dominance [18,36].
We emphasize, however, that here we have not only re-
covered these results from a rigorous expansion in QCD,
but we have proven them to hold even at next-to-leading
order in 1/ms, and including short-distance corrections.
We 6nd that there are no such corrections to the soft pion
relations once one uses the physical values of the meson
decay constants and of the BB'vr coupling constant, as
opposed to their values in the mb ~ oo limit.

In a similar manner, one can derive the soft pion limit
for the B' ~ m decay form factors h; defined in (28). We
obtain

fB./mB.
~1(0) = 9B'B2ff.qm.

2f
fBgmB v p

hs(0) = 9B.B

h, (o) =o.
Again, at leading order in 1/ms, these relations could
also be derived using heavy meson chiral perturbation
theory.

V. SUMMARY AND CONCLUSIONS

We have presented a systematic analysis of the B~*~ —+
mdiv decay form factors to order 1/my in the heavy
quark expansion, including a detailed treatment of short-
distance corrections. Similar analyses have been carried
out in the past for the semileptonic decays B —+ D&*&Ev

[27] and As +A, Ev [37],-and for heavy meson decay
constants [14). As in these cases, the analysis of the
form factors in the context of a heavy quark expansion
provides the theoretical framework for a comprehensive
investigation of the hadronic physics encoded in the uni-
versal functions of HQET, using nonperturbative tech-
niques such as lattice gauge theory or QCD sum rules.
For the decays between two heavy mesons, this strat-
egy has been very successful and has led to much insight
into the properties of these nonperturbative objects. In
particular, analytic (two-loop) predictions have been ob-
tained for the leading and subleading Isgur-Wise func-
tions using QCD sum rules [38,39], and first results for

the leading-order Isgur-Wise function are available &om
lattice gauge theory [40,41]. Previous predictions for the
B~ x E v form factors, on the other hand, were obtained
using quark models [42,43], or QCD sum rules in the full
theory [44—49]. The next step should be a more detailed
analysis in the context of the heavy quark expansion.
Recently, calculations incorporating ingredients of heavy
quark symmetry were performed in the mb -+ oo limit
[50—52]. One of the purposes of our paper is to allow an
extension of this type of calculations to order 1/ms.

The main motivation for a study of exclusive heavy-to-
light decays is to extract the element ~V„s~ of the quark
mixing matrix in a reliable, model-independent way. The
idea is to compare the lepton spectra in the decays B ~
~Zv and D ~ xZv, which are related to each other by
heavy quark flavor symmetry [9]. In the limit of vanishing
lepton mass, the differential decay rate is determined by
the form factor f+ defined in (20):

dI'(B E ) G

X
I f+ I'. (6o)

Hence, the ratio of the two distributions at the same value
of e.p ~s

dI'(B +x l v)/-d(v .p)
dI'(D +7rlv)/-d(v p) same v p

gmDf+B v p+zD
BD(v P

/mB f+D v p+ b,B
(62)

where A~ —— mph'
—

mph' 0.05 GeV and AD
mD. —mD 0.14 GeV. This definition of B~D takes
into account the dominant momentum dependence for
low momenta, which comes &om the presence of the
nearby vector meson pole. The difference in the pole
positions for B ~ xEv and D —+ vr Ev is formally of or-
der 1/mq, but is significant for v p close to its minimum
value m . This effect is explicitly taken into account in
(61). The remaining, nontrivial power corrections reside
in the quantity RBD. Using (31) we obtain

f .( .)&'"
RBD(v. p) = ' ' 1+ r, (v. p)

O|s mb 2mc

rg(v p) + O(1/mq)
A 2

2mb
where the function

( A A

rq(v .p) = 1+ „~ v. p A+—4Fp —G2 —2Gs'
AB

(63)

+2G5 —6Gs
~

(64)

depends logarithmically on mg through the de6nition

V„s t'mB l '
gmD f+

Vg (mD) gmB f+
In the limit of an exact heavy quark Havor symmetry,
the last factor on the right-hand side equals unity. It is
convenient to rewrite this factor as
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of the renormalized form factors in Appendix A. The
function Gs's has been defined in (53). The accuracy
with which ~V„s~ can be determined depends crucially
upon how well one will be able to estimate the 1/mq
corrections in (64). Thus, a detailed investigation of the

leading (A and B) and subleading (Fq and G, ) universal
functions is most desirable. Such an analysis is beyond
the scope of the present paper. We note, however, that
for the related case of B + plv decays, the form factor
ratio corresponding to (62) has been calculated in the
quark model, using a 1/mq expansion [53]. The results
are encouraging in that the deviations from the flavor
symmetry limit turn out to be small, of order 15%. We
expect corrections of similar size for the case of B ~ vr

transitions. In fact, assuming that rg is of order unity,
we expect that the scale of power corrections is set by

2m 2m/
11%, (65)

where we have used A = 0 5 GeV, m, = 1.5 GeV, and
mg ——4.8 GeV for the sake of argument.

Are there any indications that this estimate might be
too optimistic? We think not. The reason is that current
algebra puts powerful constraints on the form factors in
the soft pion limit. In particular, it fixes the normaliza-
tion of f+ at zero recoil. Using (58) one obtains

( )
gBB'» f&' /mB
gDr) fo i/mD

(66)

1.05 —1.20,fg). gmz)
(67)

i.e. , a rather moderate correction to the flavor symme-
try limit. Although we are not able to give a similar
estimate for the ratio g~~. /g~Li* in (66), we see no
reason why it should deviate from unity by an anoma-
lously large amount. Hence, we believe that the devia-
tions from the symmetry prediction R~D ——1 are of the
naively expected order of magnitude. We conclude that
&om a comparison of the lepton spectra in B + ~8v
and D m vr Ev decays, it should be possible to extract
~V„s~ in a model-independent way with a theoretical un-

While this relation was derived before in the infinite
heavy quark mass limit [19—21,51], we have shown that
it is actually valid to next-to-leading order in 1/mq.
It is well known that, for pseudoscalar mesons, there
are substantial corrections to the asymptotic scaling
law f~ pm~ = fD pm~, which enhance the ratio
f~/f~ Theore.tical predictions typically fall in the range

(f~gm~)/(fD/m~) 1.3 —1.5 [10—17]. However, in

(66) there appear the decay constants of vector mesons.
Both /CD sum rules and lattice gauge theory predict
that spin-symmetry-violating corrections decrease the ra-
tio f~ /fry ~ as compared to f~/fD The predic. tions are
f~. /f~. = K(f~/fbi) with K = 0.79 + 0.03 from @CD
sum rules [14], and K = 0.86 6 0.06 from lattice gauge
theory [ll]. The total effect is that the scaling violations
are much smaller for vector meson decay constants. One
expects

2m@
gg 1,

2m@
(68)

where A is the eH'ective mass of the light degrees of free-
dom in the initial heavy meson [29]. The first ratio is
of order 5% for Q = b and 15% for Q = c, whereas
the second ratio varies roughly between 0 and 1/4 for
m & v p ( —(m~& + m )/m~. Hence, we expect the
heavy quark expansion to hold over essentially the entire
kinematic range accessible in semileptonic decays. This
assertion is in fact supported by quark model calculations
[54,55].

Another important question is over what range in v p
can one trust the leading term in the chiral expansion,
i.e. , the soft pion relations given in (58) and (66). Since
the pion is a pseudo Goldstone boson associated with
the spontaneous breaking of chiral symmetry, we expect
that the scale for the momentum dependence of the uni-
versal form factors of HABET is set by Az ——4uf, which
is the characteristic scale of chiral symmetry breaking.
Although one should not take this naive dimensional ar-
gument too seriously, we may argue that the universal
functions are slowly varying in x = v p/Az, and the
leading chiral behavior should be a good approximation
until v p 1 GeV. Hence, we expect that (58) and

(66) should not only hold near v p = 0, but actually
over a rather wide range in v p. Recent @CD sum
rule calculations of the q dependence of f+ (q ) in

the full theory support this expectation. The authors
of Ref. [47] find that the pole formula (58) gives an ex-
cellent fit to their theoretical calculation over the wide

range 0 & q & 20 GeV . For the residue at q = 0, they
obtain f+ (0) = 0.26 6 0.03, which is consistent with
other sum rule calculations [44—46,48,49], and with the
quark model prediction of Ref. [42].

This result is interesting since, by means of (58), the
residue can be translated into a value for the BB*vr cou-
pling constant, yielding ggy~. » 0.17 x (200 MeV/fIi. ).
This value is significantly smaller than a naive estimate
based on PCAC and the nonrelativistic constituent quark
model, which gives g~~- 1 [3,18,56]. However, it has

'For a discussion of the factor 2, see Ref. [30].

certainty of 10—20%. This would already be a major
improvement over the current, largely model-dependent
determination of ~V„s~ &om inclusive decays. To achieve
an even higher precision, it is necessary to study in detail
the 1/mq corrections in (63). It is only at this level that
hadronic uncertainties enter the analysis. In this paper
we have developed the theoretical &amework for such an
investigation.

At this point it is necessary to discuss the validity of
the various expansions considered in this paper. The
heavy quark expansion is valid as long as, in the rest
frame of the initial heavy meson, the energy of the light
degrees of &eedom before and after the weak decay is
small compared to (twice) the heavy quark mass. i Hence,
one must require that
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been pointed out that this number may indeed be too
large. From a generalization of the Nambu —Jona-Lasinio
model, the authors of Ref. [57] find g~~. 0.32. The
large spread in the theoretical predictions for the BB*m
coupling constant poses the question whether it is possi-
ble to obtain experimental information on this param-
eter. So far, attempts in this direction have focused
on the decays of charm mesons, assuming heavy quark
symmetry (i.e., neglecting 1/m, corrections). From the
width of the D*+, one can derive the rather loose up-
per bound gDD ( 1.7 [19]. The analysis of radiative
D' decays in Refs. [59,60] allows 0 ( gDD. ( 1. Fi-
nally, one can combine the measured branching ratio for
D + x e+v with the assumption of a monopole be-
havior of the form factor f++~ (q2) to obtain gD~.
(0.40+0.15) x (200 MeV/fD. ) [61,62]. All these determi-
nations have large uncertainties, however. The semilep-
tonic decay B —+ x w v, on the other hand, overs a rather
clean measurement of g~~. . By measuring the distri-
bution in the decay angle between the pion and the lep-
ton, it is possible to disentangle the contributions of the
form factors f+ and fo to the decay rate [36]. By means
of (58), such a measurement would determine the ratio
ggii. (fg. /fg) 1.1 gag. , where we have used the
results of Refs. [11,14] for the ratio of decay constants.
This might be one of the best ways to determine this
important coupling constant experimentally.
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APPENDIX A: RADIATIVE CORRECTIONS

The renormalization-scale dependence of the universal
functions of HABET can be derived from the requirement
that the physical meson form factors defined in (22) and

(28) be p independent. Using the explicit expressions
for the Wilson coefficients given in (4) and (9), we find
that, in leading logarithmic approximation, the follow-

ing combinations of functions are renormalization-group
invariant:

~1(v p) = +s(v p, S ) + v p»(v p, V), ~2(v p) = +s(v p V) + —,'(A —v p) B(v» &)

( p)= ' ——(A- p)l [ (])] '(" p)=Gi(v. p, p) 16 G2 (v p, ]u) 16

A(v. p, p) 3P B(v p, p) 3P

"(~ /) =]~ (/)) "' (G (~ / /) —&.(~ / /)+& ('/, /)/+l]i —'/)s(~ /, /)],

zq]t //) = ]a.(//)] ' IG4]v. //, //] —/(1 —
// ) Gq(v //, //) + G~(U //, //)

—
z&(A

—v p) A(v p, p) + B(v p, p)

(~ )=/]~. /(/)I
" I/:5(~../, /) —3+5(~ /, /) —l" /s(" / /))

«]U /)=]~ (/)] "(&6.(~ //)+l&~]~ /, l) —
2, 7]A —~ /) ]" / /)) (A1)

These renormalized functions are still universal in that they do not depend on the heavy quark mass. In the next
step, we define related renormalized functions Ii;(v .p) and G;(v p) in analogy to (27), by requiring that they be p
independent and agree at tree level with the original functions I"; and G, . This necessarily introduces logarithmic
dependence on the heavy quark mass. tA'e obtain, again in the leading logarithmic approximation,

The tighter bound gr/o. & 0.7 is obtained when one uses the value I'(D'+) ( 131 keV reported in Ref. [587.
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Fv(u p) = Fv(v p p) —(z —1) v ps(v p p), Fv(v p) = Fv(u p v) —
v (z —1) (A —v p) B(v p p),

G, ('p) G.('p, ) ) l6 — ~.( -p) G.( ',.) (-
)i(v p) &(v p p) ~P i (v. p) &(v»)(J)

Gv(v p) = z "Gv(v p, p) —
v z (z —z ) (A —v p) B(v p, p)

+ 3 1 —2z F5 v p, p + F6 v . p, p + 3 A + 2v p 8 v p ) pl

G, (v p) = z '&PG, (v p, p) + —,'~ (z'1P —z '1P) (A —v p)A(v p, p)

1 —z ~ 1 —p F5v pp, +3F6v pp, + A —v pp Bv pp,

G(v p)=z' G(v p, p)+l(1 —*') F(v p, p)+v FB(" pp)I

Gv(v. p)= z '1PGv(v p p) + vv
(z'1P ——z '&P) (A —v p) B(v p p)

3 1 —x F6 v p, p, + 3 A —v p B v p, p (A2)

where z = n, ()(1,) /n, (mq). Using (27) and (Al),
it is readily seen that these functions are indeed p-
independent. In terms of them, the l/mq expansion of
any meson form factor assumes the same form as at tree-
level.

APPENDIX B: SOFT PION RELATIONS FOR
&'(v p)

where dM ——3 for a pseudoscalar meson, and dM ———1
for a vector meson. The corrections to the coupling of two
heavy mesons to the axial vector current can be written
as

(M'(v, p) ~

i dy T( p A(0), O),;„(y)}~M(v))

-I
=ggTr p5 Pt v N v

In this appendix we derive the soft pion relations for
the subleading form factors G;, which arise &om inser-
tions of the l/mq corrections in the effective Lagrangian
into matrix elements of the leading-order currents. The
corresponding corrections to meson decay constants are

(M'(v, p)~i dyT(p A(0), O~Bs(y)} ~M(v))

(82)

[l4]

( 0
~

i dy T(q I' h„(0), Ok,„(y)}~M(v))
=&(d~+ M)pv(p) (1vp (") ())+"

= F(&) g, (i ) v (rw(v)}, (Bl)

( 0
I
i dy T(q ~ ~„(0),O (y) }IM(v))

= 2idMF(p) P2(p) Tr(I'M(v) },

where the ellipses denote terms quadratic and higher or-
der in p.

Let us erst work out the pole terms arising from an
insertion of Ok;„. According to Fig. 2(a), there are two
single pole contributions:

) (0[ql'It ~M'(v)) (M'(v)~ i dyT(p. &(0), Ok; (y)} ~M(v))
M'

+ (0
) 1/ d T(qp(T0)A, (Gp)zi )M'(v)) (M'(u)) p A )M(v))

F(V) '«~(p) + pi T1(uv (P —"p) Tdd(")) + " (»)2v p

The constants g, (p) were denoted by G, ()(A) in the original P~P~~.
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As shown in Fig. 2(b), there are also potential double pole contributions. The first diagram gives rise to

2). (01q«- IM"(v)) (M"(v)l &~'-IM'(v)) (M'(v)l p & 1M(v)) I 2
M', M"

) (0~ql'h„]M'(v)) (M'(v)~p A]M(v)). (84)
M'

Note that only diagonal terms (M" = M') contribute
to the sum. We have introduced the mass parameter
Aq, which parametrizes the matrix element of the kinetic
operator. In general, one defines [63]

(M(v) ] &i ln ]M(v)) = 2 &x I

(M(v)
/
Q~,s /M(v)) = 2dM Az(p) . (B5)

The same matrix elements also determine the I/mq cor-
rections to the physical meson masses:

1
mM = mp + A — Ax + dM | s(p) Az(p) +

2m@

This induces a mass renorxnalization which modifies the
meson propagator, as shown in the second diagram in
Fig. 2(b). The corresponding correction is obtained Rom
the expansion

iM 1— +
[(M+s)v+ k]2 —Mi 2v. k ( v k ) '

(87)

where M = mg + A. For the kinetic operator, c =
—Ax/2m'. (The A2 term will be taken into account be-
low. ) Combining this with the leading-order pole contri-
bution in (40), we find that the contribution Rom xnass

renormalization exactly cancels the double pole contri-
bution (84). As a result, only the commutator and the
single pole terms remain, and we obtain the soft pion
relations

Gx(0, lx) = 2(l —g) gi(ld) —gi
+(l )
2f

G2(0, y) = 2g gx(lx) + gi
+() )
2~

Things are slightly more complicated in the case of
an insertion of the chromomagnetic operator 0 g. The
single pole contributions are

) 2drr g g, (p) + (dM + dM') g (p) T &r PI'(.) ) T2(&.II24'(.)~(.) ) .
P M/

To recover the trace structures appearing in (19), we need a second trace identity in addition to (41). It is

) (drl —drr)Tr(TM'( ))Tr{2,II24 ( )gd( )) = —4Tr 'p, g 24I' 24( )j.
M'

This allows us to rewrite our result (89) as

ggr(p)+gr(p) gr g(I( — .g)T a PI(v)j+() ) I+]
V P 2

(89)

(810)

2ggr(p) +gr(p) Tr Ig 2 Tg
I' a gdd(v) j, (Bll)2F(ld) I+] p

8 P 2

where we have used that 2(1+ P) o pM(v) o P = 2d~ M(v) [14]. The double pole contribution can be calculated
in complete analogy to the case of the kinetic operator, except that the contribution from mass renormalization will
not cancel the direct double pole term, since the spin of the pole meson can be difFerent from the spin of the external
heavy meson. In fact, we Gnd

) (dM —dM) (0~ql'& ~M'( )) (M'( )~p. &]M( ))2(v .p)2

=*'F(p)lr(p) Tr avlp 24T a Al(v)j. (B12)a(v. p) . 1+) p
(v. p)' 2
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The parameter Aq(p) has been defined in (B5). Collect-
ing the commutator, single and double pole contributions
and comparing the result with (20), we find the soft pion
relations

lim Gs(v . p) = —2A, (p) —8g g, (p)
F(p) g(v ' p)

p —+0 2f 8 'P

—49.(~),

Gq(0) = 2(1 —g) gq(V) —2gz(p)
F(~)
2f

Gs(0) = 0,

Gs(0) = 2g gqv + 2gq(p, )
F(v)
2

(BI3)

To obtain the corresponding relations for the renor-
malized functions G, (v p), one first has to renormalize
the low-energy parameters appearing on the right-hand
side of the soft pion relations. It is easy to see that g,

gq, and Aq are not renormalized to all orders in perturba-
tion theory, whereas the p dependence of gq(p) and A2(p)
is compensated by that of the Wilson coefBcient of the
chromomagnetic operator. The renormalization of gi 2

is slightly more complicated. It is discussed in Ref. [14].
In leading logarithmic approximation, the renormalized
low-energy parameters are given by

92 = ~ '~ 9.(v) A2 = ~ '~ Az(y) ~

8A
gi ——gi (p, ) — ln x,

3

(B14)
4A

g, =*-'» g, (~)—
27

where x = n, (p)/a, (mq). By means of (B6), A2 is
related to the mass splitting between vector and pseu-
doscalar mesons:

A2 ——-' (mi, —m~) . (B15)
The soft pion relations (51) and (52) follow by combining

(B8), (B13), (B14), and (A2).
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