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Gerhard A. Schuler and Torbjorn Sjostrand
Theory Division, CERX, CH-1211 Geneva 23, Switzerland

(Received 11 May 1993)

A model for high-energy hadronic cross sections is proposed. It is based on Regge theory and pertur-
bative @CD, and includes soft and hard mechanisms as well as diffractive processes. The validity range
of Regge-pole theory in the description of total, elastic, single-, and double-diffractive cross sections is
investigated and inconsistencies found already at CERN LHC and/or SSC energies. Examining unitari-

ty constraints, modifications of the cross section formulas are proposed which allow a continued use of
formulas in the Regge spirit to describe elastic and diffractive events. The nondiffractive cross section is
allowed to rise at a rate consistent with unitarization of multiple parton-parton scatterings. However, in

our picture, the rise of the total cross section with increasing energy is only partly due to the minijet
cross sections; the diffractive topologies rise as well. Fully differential distributions are given and con-
venient parametrizations derived for the integrated rates of elastic and diffractive events. Predictions for
the various partial cross sections at Fermilab Tevatron, LHC, and SSC energies are given and compared
to other estimates.

PACS number(s}: 13.85.Hd, 12.40.Nn, 13.85.0z

I. INTRODUCTION

Many approaches have been used to explain the energy
variation of the total cross section in hadronic reactions:
Regge theory, impact parameter dependence, soft and
hard Pomerons, dual topological unitarization, minijets,
parton cascading and diffusion, and so on (for a selection
of recent work, see Refs. [1—14]). These alternative
descriptions need not be mutually exclusive, but can
represent different aspects of the correct underlying phys-
ics, which is still not understood from first principles.

%hile much effort has gone into the prediction of total
and elastic cross sections at future colliders, less has been
said about the subdivision of inelastic events into a
nondiffractive class, on the one hand, and various
diffractive topologies, on the other. Before we can claim
a detailed understanding, clearly all partial cross sections
must be predictable. Inelastic events have the advantage
that distributions are differential in momentum transfers
and masses, so that they provide a rich testing ground.
Further, knowledge of all components of the total cross
section is tightly linked with the study of a number of
other interesting physics topics, such as rapidity gaps
[15], minijets, hard scattering in diffractive states [16],
and heavy flavors.

The ultimate goal is a description of high-energy ha-
dronic interactions that can be derived from the QCD
Lagrangian. This is clearly beyond our current capabili-
ties, so instead we try to find an effective description
which one day could be related to QCD in some suitable
limits. Ideally such a description should be fully con-
sistent, respect s- and t-channel unitarity, and be valid up
to infinite energies. However, the simultaneous
fulfillment of these requirements can easily lead to a very
cumbersome formalism, which may be out of proportion
for what is at best an approximation to the true QCD.
Our aim in this article is more modest, namely a model

that respects basic unitarity constraints but is still practi-
cal, i.e., leads to a description of integrated and
differential partial cross sections that can easily be con-
fronted with experimental data. At ultrahigh energies
such a description will cease to be a valid approximation,
but we expect this to happen at energies well above those
of the next generation of hadron colliders, the CERN
Large Hadron Collider (LHC} and Superconducting
Super Collider (SSC).

The paper is divided into three parts. In the first part
(Sec. II) we briefly discuss models of hadronic cross sec-
tions in which the rise of the cross section is associated
with soft and/or hard Pomerons, in particular Regge
theory [17] and "eikonalized QCD" models [18]. There
we also outline the cornerstones of our approach, which
combines elements of Regge theory and perturbative
QCD. More details of our model are found in the second
part (Sec. III}where we show in some detail the failure of
the simple Regge-pole approach and study what minimal
modifications could be introduced to save it. Here we
also address the role of minijets and our model of multi-

ple parton-parton scatterings. The third part of the pa-
per (Sec. IV) is pragmatical: here we use such a modified
framework to produce convenient parametrizations of
partial (differential and integrated) cross sections for the
various event classes, which can then be used to give pre-
dictions for current and future colliders. Some final com-
ments are given in Sec. V.

II. MODELS OF HADRONIC CROSS SECTIONS

It has long been known that Regge theory leads to a
good description of high-energy, low ~t~ experimental
data [19,20, 17]. The version of a supercritical Pomeron
with ap(t}=1+a+a't, a=0 05 0 1, . a'—=0..2 —0.25
GeV describes simultaneously the rising total cross
sections, the do /dt behavior of elastic scattering, and the
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phenomenology of diffraction dissociation. A proper uni-
tarization of the theory requires the inclusion of diagrams
that describe the interaction of the Pomerons with each
other [21—26, 13]. These diagrams are ignored in the
"naive" eikonalization, but the theory can be made con-
sistent (satisfy both s- and t-channel unitarity) through in-
clusion of the so-called enhanced graphs [27] in an ex-
tended eikonal [13,25].

Despite the appeal of such an internally consistent ap-
proach, we do not follow it for two reasons, a practical
one and a theoretical one.

(1) The extended-eikonal formalism is well suited to
study the energy dependence of integrated cross sections,
but does not provide fully differential formulas and final
state configurations for all partial cross sections. These
distributions can be obtained already with a simple, fac-
torizing Pomeron pole [with e =up(0) —1 )0], which
gives a good description of the energy dependence of the
total cross section, the forward slope B, the p parameter
[18],and data on single diffraction [28]. Our aim is there-
fore to investigate how far the theory of a single super-
critical Pomeron (e) 0) can successfully simulate the re-
sults of the more complete theory. The great advantage
of such a simplification will be the very economical and
transparent description of the various diffractive cross
sections. Of course, at ultrahigh energies such an ap-
proach will cease to be a valid approximation.

(2) Our second argument concerns the nature of the
Pomeron. The Pomeron with ap(0) —1 =E =0.08 dis-
cussed above is purely phenomenological; i.e., the param-
eters e and a' are extracted from experimental data. In
contrast with this "soft" Pomeron, the Pomeron that one
calculates in perturbative QCD is "hard" with an inter-
cept close to one-half [29]. It is likely that it leads to an
increase of the total cross section as well.

As long as the soft Pomeron cannot be calculated from
QCD' or, equivalently, the hard Pomeron cannot unique-

ly be extrapolated to zero t, the only solution seems to be
to add incoherently the contributions from the soft and
the hard Pomeron. Indeed, using the eikonal description
in impact parameter space [30,31] reasonable descriptions
of total and elastic cross section data can be obtained
[18]. Here the eikonal is taken as the sum of a soft ( ~ s')
and a hard component reflecting the soft and the hard
Pomeron, respectively. The latter contribution is es-
timated either as a term ~ s with J= 1/2, or by the per-
turbative QCD two-two cross sections (minijets) cut at
some minimal p~. If one is aiming at a complete descrip-
tion of hadronic cross sections one should include also
diffractive processes in addition the soft and serni6ard
contributions. Diffractive reactions can be of high or low
mass, and originate from the soft or semihard sector.
However, as already stated, one has to go beyond the
naive eikonal for a proper unitarization. How this can be
done consistently in a model containing both a soft and a
perturbative Pomeron is still an open problem. One

An attempt to calculate total, elastic and diffraction dissocia-
tiou cross sections in perturbative QCD without recourse to a

soft Pomerou was tried in Refs. [9,14].

might argue that multiparticle t-channel unitarity is not
significant at present energies due to the smallness of the
triple Pomeron coupling [18]. Then the standard eikonal
formalism would provide an implementation of the

(larger) s-channel unitarity effects.
This approach is followed in the dual topological uni-

tarization (DTU) model [12] where the eikonal consists of
four terms. These are the soft component, described by a
supercritical Pomeron, the hard component, built up
from (lowest-order) perturbative QCD scatterings, and
the triple Pomeron graph and a Pomeron-loop graph (in

first order). The latter two contain the triple Pomeron
coupling and their simplest cut gives high-mass single-
diffractive and double-diffractive events, respectively.
The approach has been turned into a full event generator
and seems to describe data, both partial cross sections
and event distributions, fairly well [12].

Here we propose a model that also tries to combine the
contributions from the soft (supercritical) Pomeron and
the hard Pomeron with inclusion of diffractive processes.
Though our physics input is similar, our model differs
from the DTU model [12] in two major respects, the ac-
tual expressions for and implementations of the various
components, and the way unitarity corrections are treat-
ed. As an example of the former point, there is consider-
able freedom in the way single diffraction is modeled in

the DTU model: the Pomeron is split into a qq pair
where x and x are distributed such that the sum xo

cj
2behaves like I/xD in order to reproduce the 1/M spec-

trum. On the experimental side, an understanding of sys-
tematic uncertainties requires comparisons with several
independent generators. For instance, detector accep-
tance gaps open the potentiality of misclassification be-
tween event classes, so that different physics inputs may
give similar experimental signatures.

The other point concerns the use of an explicit unitari-
zation scheme (the eikonal) in Ref. [12]: in doing so, one
assumes one can predict all details of a hadronic interac-
tion at arbitrary high energies, once input cross sections
have been specified. Yet, this formalism suffers from
many uncertainties. First, the use of the eikonal formula
is limited but its validity range is not known. Second, the
distributions in impact space (b) are merely assumed.
Third, it is not clear why the diffractive input cross sec-
tions are calculated from the soft Pomeron only, with
a„«(0)=-1. Also approximate formulas are used which
hold only for &'s &&4 TeV. Fourth, there is no clear
definition of the hard component of the b-space scattering
amplitude or eikonal. Even if the hard component is ad-
ditive in the eikonal, there is no insight on its b depen-
dence. Also, there are uncertainties in the calculation of
the (semi)hard QCD c:oss section trh„~ connected with

the behavior of the parton distribution functions at low x,
the K factor, the pT cutoft; etc. Therefore we think it mill

be useful to have a (simpler) alternative description to
this rather cumbersome approach.

In contrast, in our approach we stick as closely as pos-
sible to experimentally accessible definitions of event
classes. In this way we obtain a rather constrained
effective description, much in the same spirit as the
Regge-pole-like parametrization of the total cross section
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which is successful at least up to Fermilab Tevatron ener-
gies. Rather than resorting to an explicit unitarization
scheme, corrections to the soft-Pomeron contributions
are approximated by using Regge-pole theory with a re-
duced Pomeron intercept. The hard sector, described by
the perturbative QCD scatterings, is regularized through
a model of multiple parton-parton scatterings. The broad
outline is as follows, with further details given in subse-
quent sections.

(1) Since we do not explicitly unitarize, we cannot pre-
dict the rise of the total cross section. Rather we need a
o „,(s ) parametrization as input to constrain the partial
cross sections. We choose the following phenomenologi-
cal but elegant and simple description of the total cross
section [8]: o«,(s)=Xs'+ Ys ". The power e=0.08 is
to be interpreted as an effective one, representing the
(combined) increase due to the soft and the hard sectors,
and should be expected to have some slow energy depen-
dence.

(2) Next we model the elastic cross section. The
description is based on an interpretation of the powerlike
increase of o.„,~ s' as being due to a single Pomeron pole
with ap(0)=1+e. Investigating the s-channel unitarity
violation in b space tells us how to modify the elastic
cross section formula so that it still fits existing data but
obeys unitarity at high energies.

(3) Then the inelastic cross section is calculated as the
difference between total and elastic ones, and is split into
a diffractive and a nondiffractive component. To this end
we assume that diffractive processes are dominated by the
soft Pomeron. The diffractive cross sections can thus be
calculated in Regge-pole theory. Here we choose a criti-
cal Pomeron (e=0) to approximate the unitarity correc-
tions. Then the diffractive cross section will satisfy the
Pumplin bound [32] o d

~
—,'cr«, —o„.

(4) Regge theory predicts only the high-mass part of
diffractive states. The cross section of the low-mass part
is usually taken as a constant times the integrated elastic
cross section. Since we are interested in the fully
differential cross section formulas, we need a model for
the low-mass region in which resonance structures are
visible. This is achieved by suitable modifications of the
Regge formulas.

(5) The nondiffractive cross section is finally given by
the difference o.„d=o.«, —o.,&

—o.d. At low energies it is
solely given by soft-Pomeron contributions, because the
perturbative QCD cross section is negligible. As the en-

ergy increases, the hard component rises much faster
than the soft one. Unitarity corrections will in general
mix the various contributions, but we may expect the
faster-growing perturbative QCD contribution to dom-
inate at high energies. Allowing for multiple parton-
parton scatterings, the unitarized "minijet" cross section
will not grow faster than its upper limit, the
nondiffractive cross section.

In the collision of two hadrons A and B, the total cross
section is thus subdivided as

o tot ($)=O'e((S)+ g O'k d(S)+0 ~g(S)
k=1

Here a.,&
is the elastic scattering A +B~A +B, while

d denotes the cross section of events containing k
diffractive subsystems. The dominant diffractive reac-
tions are single diffraction, A+8~A+X and A+8
—+X+8, and double diffraction, A +B~X& +X2. The
nondiffractive event class of o.„d covers the generic pro-
cess A+B~X, where the system X is supposed not to
contain any large rapidity gaps, i.e., to be distinctive from
diffractive events. To us, the nondiffractive events are
those that involve a net color exchange between the two
incoming hadrons, while diffractive topologies arise from
the exchange of color neutral objects. The experimental
samples of diffractive and "minimum-bias" nondiffractive
events are not going to agree exactly with the theoretical
definition, with mixing coming, e.g. , from fiuctuations in
the fragmentation process and from detector imperfec-
tions.

III. A MODIFIED REGGE DESCRIPTION

where P„p(t} denotes the coupling of particle A to the
Pomeron. The Green's function of the Pomeron, at an
"energy" &s and a "squared mass" t, is given—by

Gp(g, t)=g rt(ap)=Pe ""&g(ap),
So

(3)

Here rt(ap}=i —cot —,'na p(=i+p pfor t =0) is the signa-

ture factor, so is a reference scale, and a' is the slope of
the Pomeron trajectory, ap(t)=up(0)+a't=l+e+a't
In the following we will neglect pp, which is predicted to
be small, in agreement with data. Via the optical
theorem the total cross section is

o,"„(s)=ImT" (s,0)=P„p(0)Pap(0) —+ Y" s
Sp

=X"~s'+ y "~s (4)

where the second term arises from p, cg, f, and a ex-
changes.

Available data on total cross sections are well fitted
with [8)

a=0.0808, g =0.4525 .

This form very nicely predicts, e.g., the Tevatron pp cross
section and the DESY ep collider HERA yp one. The
second term in Eq. (4), the Reggeon one, is important
only at low energies. From rather low energies onwards,
total cross sections are therefore~redicted to rise as a sin-

gle power of the c.m. energy &s,o, , ~ s'. Of course, at
ultrahigh energies unitarity corrections have to become
important so that the increase is at most as ln s. But with
the above smallness of e, the Froissart-Martin [33]bound
is respected up to energies of around 10 GeV [8].
Therefore one might expect reasonable estimates of total
cross sections at supercollider energies. In fact, at SSC
energies, a pp total cross section of about 120 mb is pre-

The exchange of a single, factorizing Pomeron pole
leads to the following contribution to the forward scatter-
ing amplitude:

Tp (s, t ) =P„p( t)Ptt p(t)G p(g, t ),
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dieted, well within the range of predictions of other ap-
proaches where unitarity is explicitly enforced by using
the eikonal formalism, see Table I.

However, the standard Regge-pole theory with e & 0

leads to inconsistencies in the description of partial cross
sections. This is well known (see, e.g. , Ref. [17]) and
most easily seen when considering the s-channel unitarity
condition at low partial waves. The Fourier-Bessel trans-

TABLE I. (Anti)proton-proton cross sections and forward slope 8. The experimental data (at a few
representative energies) are taken from the footnotes listed (the errors in the diffractive cross sections
should be enlarged, to take into account the different definitions as well as different integration ranges;
most results are for M /s &0.05). Model predictions are Goulianos [28] [o„, from Fig. 40, the rest
from Eq. (58)], Pumplin [1],BFHMV [2] (extracted from their figures), BSW [3,51], BCW [4], GLM [5]
(models Qiv and Qv), BHR [6], CM [7],DTU [12] [for MRS(DO)], RS [14] (extracted from their figures),
KPT [13] (extracted from their figures), SchSj: this work (see footnote i; single-diffractive cross section
within the experimental cuts, M /s & 0.05, in parentheses).

Expt.
SchSj
Goulianos

Expt.
SchSj
Goulianos

Expt.
SchSj
Goulianos
Pumplin
DTU

Expt.
SchSj
6oulianos
BHR
Pumplin
DTU

SchSj
Goulianos
Pumplin
BFHMV
BC%'
DTU
RS

SchSj
Goulianos
Pumplin
BFHMV
BSW
BCW
GLM
BHR
CM
DTU
RS
KpT

~... (mb)

39.20+0.13'
39.36'

40

43.51+0.16'
43.66'

44

61 9+1 5

60.42'

57
62. 1

60

72.8+3.1g

72.98'
63
76.1

72.7—73.1

71

103.72'

74
92.3 —94.6
108
105
96
108

120.27'

82
100.7 —104.1
121
121.2
118
134—191
144.1

140—230
109
133
111

o.,&
(mb)

pp at &s =23.5 GeV
6.81+0.19' 11.80+0.30'
6.79 11.66
7.1

pp at ~s =546 GeV
13.3+0 6" 15.5+0.8'
11.60 16.08
10.0

16.7
10

pp at &s =1800 GeV
16.6+1.6" 16.99+0.47
14.76 18.43
1. 1.0
17.6 17.2

17.7
13

pp at ~s = 16 TeV
22.80 24.12
13.0

31
22.9—28.4
21
32

19.2 —19.7
19.5
20.0—24.8

pp at ~s =40 TeV
27.21 27.17
14.4

36.5
36.4
25.9—33.4
40—63
42.6

20.0—20.7
20.7
21.1

21.5 —27.7
21 —57
25.7

26
42
27

pp at ~s =62.5 GeV
7.51+0.19' 13.02+0.27'
7.61 12.80
7.7

6 07+0 17"
7.09(5.09)
5.8

7.5+0.3'
8.52(6.72)
8.2

9.4+0.7
11.13(9.36)
14.0
6.8 —14.2
8.7

9.4+1.4"
12.38( 10.60)
17.3
12.0
7.6—16.6
9.6

14.41( 12.64)
23.2
9.0—20,4

10.6
6.7

15.19(13.42)
25.7
9.4—21.8

13.9

11.0
7.2
24

1.90
1.6

3.08
2.9

5.73
6.5

7.30
9.0

10.41
13.8

6.5

11.80
15.3

4.9

'Reference [48].
Reference [38].

'Reference [39].
Reference [49].

'Reference [45].

Reference [40].
gReference [50].
"Reference [46].
'Total cross sections from [8].
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form

f(s,b)= fd q e'qbT(s, t)1

8m
(6)

can also obtain "reasonable" behavior in the simple
Regge-pole model. Inspection of the high-energy limit of
Eq. (6),

exceeds the unitarity bound f(s, b ) =1 for b =0 at about
5 TeV. Here we have taken sp=1/a' and a'=0. 25
GeV [34]. One might argue that a partial wave
analysis is experimentally impossible at such high ener-
gies, and thus this violation has no measurable conse-
quences. However, violation of unitarity does show up
explicitly. We will demonstrate below that the integrated
elastic cross section violates the bound o.,&/0. «t~ —,

' at
about 10 GeV. The problem is even more severe for
diffractive cross sections: there we find that the single
diffractive pp cross section exceeds the total cross section
already at around 40 TeV. In fact, higher and higher
diffractive production becomes more and more "diver-
gent. " Thus, without modifications, the Regge-pole ap-
proach cannot be used to predict LHC and/or SSC par-
tial cross sections.

The elastic cross section is given by 16mdcr,
~

/dt
=

~

T" (s, t ) ~, so that, at high energies, where the Pome-
ron dominates,

dg AB s~ eo
' 2E'

p2 (t)p2 (t) e2a'ting
AP BP

sp

B,"~ (s}=2b„+2b&+2a'ln
Sp

(8)

and hence the total elastic cross section rises like s '/lns.
As anticipated above, erg' exceeds ,'o~f, at abo—ut 10 TeV,
the precise value depending on the values of the parame-
ters sp, a', and b .

The Regge-pole model can be made consistent by going
to Regge field theory. Here we investigate whether we

I

For low t, where the bulk of the cross section is, we can
parametrize the form factor for a particle A as
p„p(t)=p„p(0)exp(b„t). With the sp and a' given
above, b =2.3 GeV gives a satisfactory description of
pp elastic scattering. Thus the slope parameter 8,&

of
standard Regge theory increases logarithmically,

P~@(0}Ps@(0)(s/sp )'
f(s,b)~i exp

8m R
b

4R
(9)

s s
Gp(g, t)= —exp. t cp ——c,

sp sp
(10)

If one takes cp=2. 24 GeV and c& =2. 1 GeV, this
hardly implies any numerical changes for the energy
dependence of B„(s) and do„/dt ~, p(s) in the energy
range 10-100 GeV, where the bulk of the data is found
(this is the well-known similarity between a loglike
behavior and a behavior like a small power). For 1.8 TeV

pp events, the modification gives a change of o.,&
from

17.0 mb to 14.8 mb. Both numbers are consistent with
Tevatron data, 16.6+1.6 mb [35].

Asymptotically one obtains a constant ratio o,&/o„„
because the forward slope is now also increasing power-
like:

B,) (s) =2bq +2btt +2 cp ——c (
s

sp

For pp collisions we find that the asymptotic ratio is
o e~/o „,=28%. This value is inversely proportional to cp
(and hence to a'), and could therefore be shifted by some
amount. In Table I our predictions for LHC and SSC are
compared with other estimates, and are found to be in
the range of predictions based on eikonal models.

One may ask whether the above modification also
guarantees correct asymptotic behavior of diffractive pro-
cesses. In the triple Regge approximation and restricting
to Pomeron exchange, the cross sections of the dominant
single- and double-diffractive processes are

shows that f(s, b ) ~ 1 can be achieved if the interaction
radius R is allowed to rise powerlike (a-s'} as well

(R =
—,'Be&). The following modification of the Green's

function of the Pomeron cures the unphysical behavior of
ael/a~a~:

d2o'sD( AB~ AX
16aM

dt dM2

2
s M

g3p(t)pzp(t)psp(0) Gp, t ImGp, 0
M sp

(12)

d cr D(DAB~ X, ~X)

16aM ]M2

T

ssp
g3P(t)PaP(0)PaP(0) GP, t

MiM2

M
,0ImGp,

sp

M
,0 ImGp

sp
(13)

Experimental data suggest that the triple Pomeron vertex
g3P(t) is independent of t and about 0.36 mb'r [28].
However, if we do take a constant triple Pomeron vertex
then, even with the modification of Eq. (10},osD grows
faster than o.«t:

I

Using the measured ratio 2crg /o fg, at fixed target ener-
gies [28] one obtains 2o/crt~, = 1 already at about 40
TeV.

This inconsistency could be avoided if g3P(t) vanished
at t =0, for example, like

2~sD Mmax~ln ~lns .
CT tot min

(14)
g»(t) =( t )ge" . —

Then the diffractive cross section in Eq. (12) asymptoti-
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cally grows like the total cross section

2o sD 1 —(Mo/s )

l 1+ A2(M() /s )' (16)

XJ

Od — Op d S ~S
k=1

(17)

where b, =0.05 [17]. The exact value of 6 does depend
on model details such as phase space limits, so it would
certainly be possible to fine-tune for A=a, i.e., to have a
constant ratio od/o. „,asymptotically. However, a value
5 & e is not unreasonable either. In any case, the
difFractive cross section stays below its upper limit [32],

1
—.o tot o ei.

%e have the following picture in mind. Both the soft
Pomeron [with a "bare" intercept ap(0) = 1+e„«) 1]
and perturbative QCD scatterings contribute to the in-
elastic cross section, which may be split into diffractive

The value of A2 together with the lower cutoff Mo 1 ~ 5

GeV determine how fast the asymptotic value 3 l is ap-
proached. The values for A, z depend on the parameters
assumed, but it is difficult to obtain a "reasonable"
asymptotic ratio. With the above choices ( bp

=2. 3
GeV, co =2.24 GeV, c, =2. 1 GeV, so =4.0 GeV )

and taking a =2.3 GeV we find 3 l =60%%uo and
A2=0. 675. At LHC/SSC energies, the ratio is about
40 jc.

More serious than this rather large value is the fact
that data do not support g3p(0) =0. The t distribution of
single diffraction is well fitted by an exponential distribu-
tion down to the smallest measured values,

~
t

~

=0.015
GeV [36]. This requires a in Eq. (15) to be larger than
60 GeV, in contradiction with the measured slope.
Therefore, we have to conclude that the modification of
Eq. (10) does not render Regge theory free of inconsisten-
cies.

This confirms the general observation [17,22,24] that
corrections to single-pole exchange remain small only if
g3p(0) =0. Even though the absolute magnitude of
g,p(0) is numerically small, the corrections become im-

portant already below SSC energies. In the case of single
difFraction, the lowest-order contribution (described by
the triple Pomeron graph) is screened by the diagram
where an additional Pomeron is being exchanged [21]. In
b space this amounts to multiplying GsD(s, b) [where
asD= f d bGsD(b)] by the factor ~1 Imf(s, b)~ .—This
factor goes to zero as s —+ ~, thus suppressing pure disso-
ciation in low partial waves (I ,'b &s————,' (R ) &s ). For
higher difFractive states the corrections become more
complicated.

%e can try to approximate these corrections by lower-
ing the intercept ap(0). In particular, if we take
ap(0) —1=0 then we make use of the phenomenological
success of Regge theory in the description of diffraction
up to at least CERN SppS energies [36—40]. It is known
that in Regge theory with a critical Pomeron the single-
diffractive cross section grows as ln ln s, and the sum of
the diffractive cross sections asymptotically increases
powerlike with energy

and nondiffractive cross sections. Unitarization will mix
soft and hard Pomeron contributions and yield expres-
sions for e„„o.„and corrected expressions for od and

o„d. Phenomenologically, it turns out that up to very

high energies o.„, is well described by a powerlike in-

crease o.„,~ s' where @=0.08. Similarly, diffractive cross
sections are well described by the Regge formulas with a
critical Pomeron. This can be understood if the contribu-
tion of the hard Pomeron to diffractive cross sections is

negligible. A hard scattering component in diffractive
systems surely is negligible at low c.m. energies. But at
high energies, shadowing corrections will keep it small by
suppressing low impact values [9]. Indeed, the observed
weak rise of the single-diffractive cross section up to
Tevatron energies is fully compatible with a pure soft
component (see the results below), leaving at most very
little room for a hard component. Thus we may safely
assume that o.

d is predominantly due to contributions
from the soft Pomeron which, however, should be taken
at a reduced intercept e,ff(6 ft to take into account (at
least approximately) the reduction due to the unitarity
corrections. In practice, e,&=0 works well.

In Figs. 1 and 2 we show the partial cross sections o;
that are obtained under the assumptions on efFective e

gPP [mb]
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FIG. 1. The total pp cross section crit~, (s), top full curve. The
different components are separated by dashed lines, from bot-

torn to top elastic, single diffractive (pX and Xp, equally large

but shown separately), double diffractive, and nondiffractive.
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values made above. The latter figure also indicates a pos-
sible net contribution from all diffractive topologies.

The nondiffractive cross section can be calculated from
O.nd=o. «, —O.

e&
—

hard, using our parametrizations of o,&

and crd. The partial cross sections are shown in Figs. 1

and 2 as functions of the c.m. energy &$, and o„d is
found to increase monotonically with V $. Since we do
not invoke unitarization explicitly, we cannot predict the
soft and hard Pomeron contributions to the
nondiffractive cross section without an assumption on the
energy dependence of o soft —0 nd We proceed as follows.

Consider first the case of low energies. Then the cross
section of QCD parton-parton scatterings (minijets) is
negligible compared to the soft Pomeron one for any
reasonable lower cutoff pj;„, i.e., O.nd=o gift As the en-

ergy increases, the minijet cross section sets in. But as
long as O„„d is not too large (i.e., for sufficiently small
&$), the nondiffractive cross section is simply the sum

d($) =&Soft($;Plmtn )+&hard($;Plmin ) .

At larger energies, the hard cross section rises faster than
O.„d, unless pz;„ is made strongly energy dependent. A
strong energy dependence is not sensible, however, be-

cause the cutoff should not grow faster than the interac-
tion radius of the proton, i.e., p~;„should grow only log-
arithmically (or as $'). The rise of ITh„d($;pi;„) is shown
in Fig. 3 for two pi;„choices (see below), one fixed at 1.3
GeV and the other varying according to Eq. (19). In ei-
ther case the rise is faster, at all energies, than that of the
nondiffractive cross section as a whole. Unitarization
corrections are supposed to be applied, which then
reduce the hard cross section. In our approach, this
reduction arises from the allowance of multiple parton-
parton scatterings. Because 0.„«and o.h„d are mixed by
the unitarization, the effective soft cross section is re-
duced as well. Since the increase of the minijet cross sec-
tion is enough to drive the rise of o „d, the input cr„«(be-
fore unitarization) could well be taken energy indepen-
dent.

Our model of nondiffractive events is based on Ref.
[41]. In this model, (n ) =ah„d(p„;„)Icr„d($) is simply
the average number of parton-parton scatterings above

p~;„ in an event, and this number may well be larger
than unity. In the simplest scenario, interactions at
different p~ values are assumed to take place indepen-
dently of each other. This gives a Poisson distribution in
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the number of interactions that take place in a given
event. In particular, with an average number ( n ) of in-
teractions per event, a fraction exp( —( n ) ) of events will
have no hard interactions at all, and thus be "true"
low-p~ ones, with beam jets and nothing else. This
simplest unitarization possibility, which gives cr, fi(s)
=cr„d(s)exp[ —crh«d(s;pi;„)/cr„d(s)], is also shown in

Fig. 3.
In a more sophisticated scenario, interactions are as-

sumed to take place with varying impact parameter.
Central collisions are then assumed to lead to enhanced
activity, while peripheral ones give reduced activity.
%hile roughly preserving the average behavior, it is thus
possible to increase the fluctuations around this average.
The model contains many unknowns; hopefully most of
these can effectively be shufBed into the choice of the free

parameters of the model, such as p~;„.
The pj;„cutoff probably rejects the fact that the in-

coming hadrons are color neutral objects: when the p~ of
an exchanged gluon is made small and the transverse
wavelength correspondingly large, the gluon can no
longer resolve the individual color charges, and then the
effective coupling is decreased. This mechanism cannot
be predicted by perturbative @CD but is also not in con-
tradiction with perturbative QCD calculations, which are
always performed assuming scattering of free partons
(rather than partons inside hadrons). A first determina-
tion of pi;„was made in Ref. [41]. Based on studies of
multiplicity distributions in pp collisions, a value in the
range 1.5 —2.0 GeV is obtained. For our recent pho-
toproduction study [42], we made a refit to pp collider
data [43], using a modified set of proton structure func-
tions. In order to agree with the average charged multi-
plicity of minimum bias events one needs p~,„=1.3 GeV
at 200 GeV and p zmjrI 1 45 GeV at 900 GeV. It is not
clear whether the difference is significant, but in the fol-
lowing we have taken as extremes either a fix p~;„=1.3
GeV or a slow logarithmic variation

3 +0 1
51n(s /200)

(19)
ln(900/200)

IV. PARAMKTRIZATIONS
OF PARTIAL CROSS SECTIONS

%e now specify the details of our model. As pa'ame-
trization of cr„,(s ) we take the powerlike ansatz of Eq. (4)
with the parameters given in Ref. [8).

The calculation of cr „(s) is based on the optical
theorem. If one neglects the small real part and assumes
a simple exponential falloff in t, one has d cr „/dt
=(cr, ,/16m)exp(B, it ) and cr,i(s) =cr„,(s)/16mB, i,
where B,i=8,i(s) is given by Eq. (11), with co=2.24
GeV and ci=2. 1 GeV . (The p parameter is about
0.14, i.e., 1+p =1.02. The nonzero curvature gives a
reduction by a factor 0.97 at SSC, using the expected [44]
C=6 instead of the simple-minded C=0. Thus these
two neglected effects almost cancel each other, but are
anyway both small. )

The single- and double-diffractive cross sections are
given by Eqs. (12) and (13), with a=0 in the standard

Regge expression of Eq. (3). The slope parameters are
then

S
BsD(ax] =2b~ +2a'ln

M
(20)

sso
BDD 2a ln

MiM2
(21)

with b~ =2.3 GeV and a'=1/so =0.25 GeV . Single
diffraction with the incoming particle A diffractively ex-
cited is obtained by trivial substitution A~B. The loga-
rithm in the expressions above could have been replaced
by a small power, as we did for elastic scattering, without
any signi6cant numerical change in the following.

The Regge formulas for single-, double-, and
multidiffraction are supposed to hold in certain asymp-
totic regions of the total phase space. For example, the
single Regge limit, corresponding to A +B~ A +X,
needs ~t~ &&M &&s. The lower limits of the momentum
transfers are generally nonzero, which implies upper lim-

its on the diffractive invariant masses. For p+p ~p +X,
one has ~t~';„=m~(M —m~)/s. Requiring ~t~

& ~t~,„,
-m implies M —m (0.15s. Of course, there will be
diffraction outside the restrictive regions where the
Regge formulas were derived. Lacking a theory which
predicts differential cross sections at arbitrary t and M
values, we use the Regge formulas everywhere but intro-
duce fudge factors in order to obtain "sensible" behavior
in the full phase space. These factors are

M
FsD= 1—

2

1+
C res res

M„s+M

(M, +M2)
FD = 1—

D

c Mres res

sm 2

sm +MM
p 1 2

2

1+
C res r

M +M2
(22)

The first factor in either expression suppresses produc-
tion close to the kinematical limit. The second factor in

FDD suppresses con6gurations where the two diffractive
systems overlap in rapidity space. %e modify also the
slope of double diffraction,

ss0
BDD =2' lrl e +

M (M2

to keep BDD from becoming smaller than 8e'=2 GeV
In the low-mass region, a resonance structure is visible

at low energies for fixed t values [28], while UA4 reports
an enhancement by about a factor of 2 for the contribu-
tion from the region M &4 GeV [45). A detailed model-

ing of the resonance structure is beyond the scope of the
current paper. Instead the last factors in FsD and FDD
give a broad enhancement of the production rate in the
resonance region up to about M„,=2 GeV. The choice
of c„,=2 gives agreement with the UA4 data. E-710 re-

ports a mass spectrum shape dM2/(M2) with
a=1.13+0.07 [46]. Our assumed low-mass enhance-
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ment, when smeared with the E-710 mass resolution, cor-
responds to a shift of an input a=1 distribution to
a=1.05. In part, the steeper-than-expected mass spec-
trum can therefore be understood.

The total single- and double-diffractive cross sections
are obtained by integrating Eqs. (12) and (13) over the full

phase space. The result can be parametrized as

asD( ~~ ~X) PAp(0)PBp(0)~Ax
16m.

2

aDD( ~+ ~X(X2) PAP( }PBP( )~xx
16m

where

(24)

dMx B, 1 2b„+2a'ln(s/M', ,„)
~AX dr F e sd( Ax) ln

Mx 2a' 2bA+2a'ln(s/M» Ax)

C M
+ res 2res

2b A +2a'ln(B/M2«, M2m;n )+BAx M,',.„
dMX( dMX2

2 2
1 Io dminxx= f f f drFDDe "=, (yo —y;.)» +~o

M~) Mx2

In(sso/M (;„M2«,M2m(n )
ln

ln(s~o /Mm» XXM2«M2m;„)

C2
+ res

2a'ln(sso /M („,M im;„M2„,M2m;„) +Bxx

M
1+

2
+ [1~2]

M2min

M M
1 1+ 1res

1 1+ 2res

M )mjn M2
(25)

Here yo=ln(s/mB). The lower-mass integration limits2. 2
]min, 2min ( A, B+ n } ymin ylmin+y2min

=in[(mA+2m ) /m ]+1n[(mB+2m ) /mB] are good
approximations to where the experimental diffractive
mass spectrum turns on [28], while Mi„, 2„,
=m

A B
—mp+2 GeV represents the end of the resonance

region. An approximate analytical calculation of the in-
tegrals gives Mmax, Ax=Mmax, xx=s, BA~ =Biz =0, and
ho=2. The influence of the correct t ranges, the suppres-
sion factors, and the modified BDD [Eq. (23)] may be in-
cluded by making these parameters energy-dependent
functions, with coeScients fitted to the numerical results:

Mmax Ag =0.213s y

150
BAx= —o 47+

s

6 =3 2 —9'0+ 17.4
ln s

0.44 1.36M,„~~= 0.070— ' + ' s,
ln s

05+ 40 + 8000
&S S2

(26)

These forms can be used roughly from s =100 GeV on-
wards, and give the correct asymptotic behavior of JA&
and Jxx.

Our assumption that diffractive states are generated by
a critical Pomeron implies that the p„P coefficients
should be defined with E=O in Eqs. (2} and (3). Since the
Porneron part of the total cross section is s dependent, it
is necessary to pick a scale s„at which the p„P and g3P
are determined. We have chosen Qs, =20 GeV, which

I

is high enough for diffractive data to be meaningful, but
below the region where the total cross section is rising
like s'. For this scale o,"„(P=pAPpBP=X" s;, i.e. (for s
inGeV },

P =P ~ ~~2 =/X&& 4 658 mbpp p 1 (27)

Our fit to the data gives g3p =0.318 mb' . Reinserting
this number into Eq. (24) and simplifying gives

AB
(rsD(Ax) (0'0336 mb GeV }X PAp'yAx

o DD=(0.0084 GeV }X"Sxx .

At 1.8 TeV this yields 2osD=10. 6 mb for M2/s &0.05,
which should be compared with the experimental number
9.4+1.4 mb [46]. The predicted energy dependence thus
does not seem unreasonable. Further comparisons are
given in Table I.

V. DISCUSSION

o sD ~ 2„xo- ln(lns },
o DD n)-'Sxx ~ lns in( lns ) .

(29)

Hence both diverge when s ~~, although slower than
o„,n)-s'. The fractions osD/(T„, and oDD/(r„, therefore
first increase but later turn over and decrease again. The
turnover is at around 100 (300) GeV for single diffraction

The energy dependence of the total and partial pp cross
sections is shown in Fig. 1, while the fractional composi-
tion is given in Fig. 2. The elastic cross section is seen to
approach its asymptotic value (about 28% in case of pp
collisions) very slowly. The asymptotic behaviors of the
diffractive cross sections are
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and at around 5 (50) TeV for double diffraction with
(without) the resonance region terms included, but the ra-
tio varies only slowly over a large range of energies. As
already mentioned, we believe that a decreasing rate of
the simple diffractive topologies discussed so far is com-
pensated by the emergence of more complicated
diffractive topologies, i.e., events with more than one ra-
pidity gap. Such events, recently discussed by Bjorken
[15], will have rates proportional to higher powers of lns.
At current energies, the total rapidity range is too small
to allow significant rates, so one should be able to neglect
them. Asymptotically we expect a roughly constant
nonzero fraction of diffractive events, as indicated by the
envelope in Fig. 2, but with an increasing average number
of gaps.

The nondiffractive cross section first falls with energy
in the low-energy, Reggeon-dominated region before it
starts to rise. The rise of o.„d can be fully accounted for
by the onset of minijet production, crh, „d(s;p~;„). This
shows that a consistent unitarization of soft and hard
contributions (needed because the latter exceeds o „d rath-
er quickly, see Fig. 3) is feasible with an energy-
independent "input cr o«(i.e., a,o«before unitarization).
This observation does not fully constrain the details of
the unitarization, however. The simplest unitarization
possibility in our model, which gives o „«(s}

cT d{$)e p[ cThard(s prmin)i cTnd{s)] is also shown in

Fig. 3.
The e=O used for diffractive events should be inter-

preted as an effective value, after unitarization effects
have been taken into account. However, it may well be
that diffractive systems of mass M are inherently different
from nondiffractive ones at &s =M, specifically that
hard scatterings are less important. This could be
motivated along the lines of Ref. [9], i.e., that screening
corrections similar to those that lead to a reduction of
diffraction dissociation in the Reggeon calculus [21] will

also reduce the contribution due to semihard processes at
high energies. It would be in contrast to scenarios in
which minijet production in diffraction is estimated using
Pomeron structure functions [16,47], unless the Pomeron
structure function does not obey the momentum sum rule
or has a low-x behavior different from hadronic ones.
These ideas can and should be tested through measure-
ments of diffractive cross sections at the Tevatron and
LHC/SSC: do M and t distributions agree with Eqs.
(12) and (13), what is the fraction of minijets inside
diffraction, are there signs of an anomalously high charm
content, etc.?

Finally, we should remind readers that, although we
have concentrated on pp/pp physics above, the formulas
in Sec. III should be applicable for any hadron-hadron
collision, once the coefficients b„,X",1'",and P„p are
given. For instance, for m p collisions, b =1.4 GeV, the
coefficients of Ref. [8] and the derived P p =X "~/
+X~~=2.926 mb'~ give the results shown in Fig. 4.
Since the ~ mass is abnormally light, the p mass has been
used to define the threshold behavior: M;„=rn +2m

IT I' [mb]
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FIG. 4. The total and partial cross sections for m p scatter-

ing. Notation as in Fig. 1, with the A+X diffractive cross sec-

tion below the Xp one.
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and M„„=m —rn +2 GeV.
In conclusion, we reemphasize the role of the soft com-

ponent in the description of hadronic cross sections. In
particular, a major fraction of the rise of the total cross
section originates from processes involving the soft
Pomeron. Despite the fact that the minijet cross sections

ah„d grows very fast with energy, its contribution to the

rise of o.„,or o;„remains relatively small. Furthermore
we find that elastic and diffractive events, on the one

hand, and nondiffractive ones, on the other, each consti-
tute about 50% of the total cross section over a large

range of energies. The continued investigation of the
decomposition of the total cross section into its various
subprocesses and event classes will therefore shed more
light on the origin of its rise with energy (&s ) and its
asymptotic (&s ~ oo ) behavior.
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