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We argue that the distribution functions for quarks and gluons are computable at small z for
sufficiently large nuclei, perhaps larger than can be physically realized. For such nuclei, we argue that
weak coupling methods may be used. We show that the computation of the distribution functions
can be recast as a many-body problem with a modified propagator, a coupling constant which
depends on the multiplicity of particles per unit rapidity per unit area, and for non-Abelian gauge
theories, some extra media-dependent vertices. We explicitly compute the distribution function for
gluons to lowest order, and argue how they may be computed in higher order.
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I. INTRODUCTION

The problem of computing the distribution functions
for quarks and gluons in hadrons is an old and difficult
problem. Issues such as Bjorken scaling were greatly
clarified by using light cone Hamiltonian methods [1,2].
There has been much progress recently in applying light
cone Hamiltonian methods together with nonperturba-
tive methods gleaned from lattice gauge theory technol-
ogy to compute these distribution functions [3]. It has
nevertheless been believed that the computation of these
distribution functions is intrinsically nonperturbative.

On the other hand, for a very large nucleus or at very
small Bjorken z, it is known that the density of quarks
and gluons per unit area per unit rapidity,

1 dN
P= TR? dy’ (1)

is large. For nuclei, we expect that this density scales
as A/3 or perhaps some larger power of A, so that
for some sufficiently large A, p >> A2QCD. Even if p
is not sufficiently large for realistic nuclei, we certainly
can imagine nuclei where this would be true. In any case,
when p >> A2QCD, we expect that the coupling constant
for strong interactions is weak, and weak coupling meth-
ods should be valid for computing the distribution func-
tions [4].

In this paper, we will show how to set up the problem
of computing the distribution functions when the parton
density p is large. We will explicitly compute the lowest
order gluon distribution function at small Bjorken z for
transverse momenta

Adop << a,p << ki << p (2)

and find that, in this kinematic region, the gluon distri-
bution functions are of the Weiszacker-Williams form
1 dN u? (3)
wR? dzd?k,  zk?’

where p is a parameter which we shall compute which
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behaves as A1/3. In this theory, the dimensionful scale
factor u will set the scale of the coupling constant. All
perturbation theory can be done in terms of a(u), and if
a(p) << 1 a weak coupling expansion is valid. This is
equivalent to p ~ p? >> Aqcp.-

We will also argue that the quark distribution func-
tions are computable in this kinematic region, and out-
line how to do the lowest order computation. It may
be possible to extend the region of validity for computa-
tion of the distribution functions to smaller values of k;
by including nonperturbative effects computable in weak
coupling. We also argue that the power dependence of
the distribution functions in Bjorken z may be modified
in higher orders of perturbation theory.

The outline of this paper is as follows. In the second
section, we present a brief review of the light cone quan-
tization method, and our notation. We also argue that
the valence quarks inside the nucleus may be replaced by
static quarks propagating along the light cone. We set
up the formalism which allows us to compute the ground
state properties of a large nucleus. In the third section,
we do a simple analysis for QED and compute the infinite
momentum frame wave function for an electron to low-
est nontrivial order in weak coupling. We show that the
photon distribution function is simply the Weiszacker-
Williams distribution of Lorentz-boosted Coulomb pho-
tons. In the fourth section, we do the problem analogous
to QED for large nuclei. We argue that, for large enough
nuclei for k2 << p where p was defined above, it is a good
approximation to treat the local density of color charge
classically. We argue that the local fluctuations in color
charge may be integrated out of the problem for comput-
ing ground state properties of the system. After perform-
ing this integration, we generate the distribution func-
tions for quarks and gluons. In lowest order in pertur-
bation theory, we compute the distribution functions of
gluons and show that they are of the Weiszacker-Williams
form. We also show that there is an effective field theory
with propagators modified from their vacuum form which
allows for the systematic computation of corrections to
the lowest order result. The problem of computing the
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distribution functions has therefore been converted into
a many-body problem which for sufficiently large nuclei
is a weak coupling problem. In the summary, we out-
line the computation of the quark distribution functions.
We also show how nonperturbative, although presumably
weak coupling, effects modify the distribution functions
at low k;, Adcp << k7 << a,p. We also argue that
the zp; dependence of the structure functions might be
modified in higher orders in perturbation theory.

II. NOTATION AND THE INFINITE
MOMENTUM FRAME HAMILTONIAN

Before turning to a detailed computation, we first re-
view the infinite momentum frame Hamiltonian method.
We will also show how to include the effects of valence
quarks which we will treat as static sources moving along
the light cone.

We begin with the action for the Yang-Mills field cou-
pled to fermions and also possibly some external current
JH:

— 1
S = Zwi(}’ + M;); + ZF,“,F“" —J-A. (4)

Here the Yang-Mills field strength is
F}Y = 0" Ay — 0¥ Al + gfabc A} AL, (5)
and the covariant momentum is
1
7
where we use the notation that
A* = AbTe. (7)

We are using the metric where a - b = a'b? — a%°, but
with the ordinary convention for v matrices.

This Hamiltonian may be reexpressed in terms of light
cone variables by the identification of components of vec-

tors as
atr = (ao £ a3)/V2. (8)

In these variables, the metric is g4 = —1 = g_, the
transverse components of the metric are the unit matrix,
and all other components vanish.

To quantize along the light cone, as usual we first ex-
press the fermion fields in terms of their light cone spinor
components by introducing the projection operators

1
at = — 0y (9)

V2

These are Hermitian projection operators so that we can
write

1/)ﬁ: = a:h‘l/") (10)

where

aFYs =Y (11)

and
atpr =0, (12)
so that
Y=+ (13)

We are going to be interested in the light cone Hamilto-
nian P~ which generates displacements in z+. When we
write out the Euler-Lagrange equations for the fermion
fields, one of the equations is a constraint equation for
the fields on a surface of fixed z™:

V2P = —°(Pr+ M), (14)

This equation can be explicitly inverted in the light cone
gauge:

A_=-At=0. (15)

We find

ﬁVO(ﬂ + M)y, (16)

The fermion contribution to the action is, therefore,

Vo =

Sk = ~WL P~ + J0L (M= P) 5 (M4 PYs, (17

where we have rescaled ¢ — 21%1/}. In terms of these

variables, we see that 1,Z)Er is the light cone momentum
canonically conjugate to ¢ .

To analyze the vector contribution to the action, we
first write explicitly

F2:th_4Fk+Fk—+2F+—F+—- (18)
In the light cone gauge, we have

F+, = 8+A_ - 3_A+ - Zg[A+,A__] = —-5_A+, (19)

Frp = 0rAy — 04 Af — ig[Ag, Ay, (20)
and
Fi,_ = —-E, = —-0_A;. (21)
The equations of motion for the vector field are
D, F*" = —J". (22)

In particular, the equation for the plus component of the
current is a constraint equation for A~ on a fixed z*
surface:

—8%2 A~ = J} + D E*, (23)
where Jp is the current generated by the fermion field

Tia = P71 Tatp, (24)

plus whatever external currents there are in the system.
The piece of the right-hand side of this equation which is
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D E* (25)

can be thought of as the bosonic contribution to the +
component of the charge density to which A~ couples.
We can now write the bosonic part of the action as

1 1 1
ZFZ = Zth - DkEkA+ + 5(6-A+)2 - 3_Ak3+Ak.
(26)

We see that the momentum canonically conjugate to
the field Ay is the momentum Il = —E} where the index
k runs only over transverse coordinates. We can then
express the action in terms of momenta and coordinates
as

1 1 1
S:Zth""2‘(pF+Dt'Et)}—ﬁ(pF+Dt'Et)

FIUT (M= P g (M4 P — 10,6 + Bud A
(27)

We therefore see that the generator of 1 transforma-
tions is

- 1 1 1
P =ZFt2+E(PF+Dt'Et)'Fﬁ(pF+D¢'Et)

1 1
+59 (M~ P) 5r (M+ Py, (28)

It is clear from the above expression that the Hamil-
tonian is singular at P* = 0. This severe singular-
ity is tempered somewhat by considering the Hamilto-
nian’s action on states which have zero value for the
total light cone charge. Nevertheless, the problem of
how to treat this singularity again arises when one com-
putes propagators. There is a standard prescription,
the Leibbrandt-Mandelstam prescription [5,6], to treat
this singularity, which we will follow in future works.
For detailed discussions of the implementation of the
Leibbrandt-Mandelstam prescription, we refer the reader
to Refs. [7,8] and references therein.

With the above identification of canonical momenta
and coordinates, we see that we can quantize the fermion
and vector fields as

d*k ik —ik

ta(z) = / [ba(k)e™® + df,(k)e =]  (29)

k>0 (2m)3

and
a(r) = d3k a® eikz aaf e——ik::
Ai()——./lc+>0(27f)3m;|:i(k) + 1(k) ]
(30)

The commutation relations for the operators a, b, and d
are

[b(k), b5 (k)4 = [da(k), d}(k")]+
= (2m)*6® (k — K')dqp (31)

and

(a4 (k), ol (K')] = (2m)*6¢) (k — K')6" 8o, (32)

with all other (anti)commutators vanishing.

The above review of the light cone quantization proce-
dure will standardize the notation for the following analy-
sis. We have seen that it is possible to explicitly eliminate
the constraints of gauge fixing in the light cone gauge
and get a light cone Hamiltonian expressed in terms of
the true dynamical degrees of freedom of the system.

Finally, we will discuss an essential part of our formal-
ism: the reduction of the valence quarks for the infinite
momentum frame wave function to static external sources
of charge. To do this, we first make the assumption that
in the end we will be applying our analysis to weakly cou-
pled systems. In a theory such as QED, this can be done
automatically since in this theory the coupling constant
is always weak, except possibly at very short distances.
In QCD, we will have to restrict our attention to systems
where the density of partons per unit area is very large.

If the coupling is weak, then the dominant mechanism
for producing a cloud of partons around a fast moving
valence particle is by bremsstrahlung or chains of par-
ticles bremsstrahlunging from bremsstrahlung particles.
In this case, for weak coupling, the typical momentum
being transferred in the bremsstrahlung process is soft,
and the valence parton does not lose a large fraction of
its momenta. If this is the case, then the valence par-
ton typically moves with a velocity close to light velocity
with only very small transverse components generated by
coupling to multiparticle degrees of freedom. The valence
parton is therefore a recoilless source of charge moving
along the light cone. It is well known that this approxi-
mation describes the soft photon dressing of the electron
in QED, and has been used to study the infrared region
of QED.

In QCD, we are claiming that the approximation
should be valid for describing the parton distributions
generated by the valence parton whenever the density of
partons is sufficiently high that weak coupling methods
can be used. This will, however, only work for describing
the parton cloud generated at small zr. In the fragmen-
tation region, we are sensitive to details of the spatial
distribution of quarks as generated by the nuclear wave
function. For example, if we look at the distribution of
nucleons in the rest frame of a nucleus, we see the ex-
tended nuclear structure. If we, however, look in the
central region, the valence nucleons will appear to be
Lorentz contracted to a pancake of dimensions of order
Rouc/Ye.m. where Ry, is the nuclear radius, and e m.
is the gamma factor for the nucleus as measured in the
center-of-mass frame. In the central region, we expect
that the parton distributions will be insensitive to the
details of the distribution of partons in the fragmenta-
tion region; that is, the valence partons will act simply
as a source of charge which is essentially a § function
along the light cone.

In addition, maintaining the constraint that the mo-
mentum transfer be small and the coupling weak is a
little tricky in QCD. We will require that the momentum
transfer be small compared to the total momentum of the
valence partons, but large compared to the QCD scale.
For this to be consistent, the low momentum range of
integration must be cut off for small momentum transfer
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for the range of dynamically important momenta. Pre-
sumably this happens due to media effects caused by the
high density of partons.

Although the arguments given above are heuristic, we
will find that the solution we generate for the quark and
gluon distribution functions in the central region is self-
consistent with the assumption that the valence partons
may be treated as a § function source of charge along the
light cone. Perhaps it might be possible at some point
to relax the assumptions about the fragmentation region
distributions, but we do not at this point know how to
do it.

We will therefore treat the valence parton distributions
as recoiless sources of charge which are localized along the
light cone. We take

I = Qa(2*)d(z7)8P (%), (33)

where we have assumed the source is localized at = = 0
and x; = 0. (We could have placed the sources any-
where.) The charge Q, is an operator which has the
charge algebra

[Qav Qb] = ifachc (34)

and is in some representation of the Lie group corre-
sponding to the structure constant f,p.. If the repre-
sentation of the Lie algebra is sufficiently large, we may
be able to replace the charge operator @, by a c-number
classical source.

The z* dependence of the source @, is determined by
a covariant conservation law

8+Qa = ifabcAbQC' (35)

This equation is necessary so that the equations of motion
for the vector fields are consistent; that is, we must have

0=D,D,F* =D,J". (36)

This equation would be immediately true if we took the
current for dynamical fermion fields. We can take the
static limit for fermion fields and construct the current,
and the above equation will therefore be valid.

We can solve the equation for the time dependence of
the charge operator. If we let

Q =7°Qa, (37)
A+ = TGA+G. (38)
Further, let the time-ordered exponential be defined as
. pzt U [
Te'l.fo dzt A+(:c+ & ,@y) — U(IL‘+,0), (39)

where we are not writing out the dependence of U upon
z~ and z;. We therefore have that

Q(z™) =U(z",0)Q(0)U(0,z™). (40)
Note that U is a unitary matrix and that

U@,z%) =U"Yzt,0), (41)

so that the time evolution of the charge operator is just
a rotation of the charge operator in charge space.

We emphasize here that the above equation for the
time evolution of the charge operator is true for classi-
cal as well as quantum charge operators. For Abelian
theories, the charge is simply time independent. In non-
Abelian theories, the charge is specified by its initial
value, but after this time rotates in charge space.

III. PHOTON DISTRIBUTION FUNCTION
OF AN ELECTRON

The discussion of the previous section has been highly
formal, and largely a brief review of what is already
known in the literature. The introduction of static
sources along the light cone in the form presented above
is perhaps less well known, and it is useful to see how
this formalism works in the case of QED. Here we will
compute the wave function for an electron moving along
the light cone, and the photon distribution function of
the electron. It will not be too surprising that we find
that the distribution function is precisely that for the
Weiszacker-Williams distribution of photons generated
by Lorentz boosting the Coulomb field.

We will work to lowest nontrivial order in a so that
we can ignore ete” pair production. In this approxi-
mation, we ignore dynamical fermions in the light cone
Hamiltonian. The source term for the valence electron is

pe = e8(z7)5 (x,). (42)

The light cone Hamiltonian is

- 1 1 1
P =/d31}<th2+‘2‘(pe+VtEt)W

X(Pe+vt'Et)>- (43)

The ground state for this light cone Hamiltonian is a
coherent state

| &) = C exp <i/d3:cA°P(x)-E°1(m)> 10).  (44)

In this expression, the quantity C is a normalization con-
stant, the field A°P is the operator value of the transverse
component of the vector potential, and E is a c-number-
valued classical electric field.

The reason the ground state is a coherent state is easily
understood. In the Weiszacker-Williams approximation,
the photon cloud is a classical distribution of electromag-
netic fields generated by Lorentz boosting the Coulomb
field. It is well known that coherent states describe clas-
sical fields.

The expectation value of the light cone Hamiltonian in
this state is simply

) 1 ay 1 .
P :/d3$5(pe+vt‘Et‘)m(peJth‘Et‘), (45)
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where we have used the fact that the exponential in the
coherent state simply shifts the electric field. Extremiz-
ing the Hamiltonian with respect to the classical electric
field gives

Vi-Eq = —pe, (46)

so that the classical electric field may be taken as purely
longitudinal in the two-dimensional transverse space.
This is consistent with ignoring the contribution from B?
which arises from transverse components. (A more care-
ful treatment would have involved writing the Hamilto-
nian in terms of transverse and longitudinal creation and
annihilation operators, constructing a coherent state in
terms of transverse and longitudinal fields, and showing
that the minimum energy configuration has zero trans-
verse vector potential.)

An amusing feature of the QED analysis is that the
eigenvalue of the light cone Hamiltonian for the ground
state vanishes. This is because only a longitudinal field
arises and hence there is no contribution from the trans-
verse magnetic field. The light cone charge of the source
is also identically canceled by the light cone charge gen-
erated by the transverse electric field.

We therefore have the classical electric field as

kl
Ej(k) = ie+ (47)
k;
and the vector potential as
1 K
] _ t
AR) =~z 7%, (48)
where our convention for Fourier transformation is
F(x,z%) = is]if(k zt) exp(ikz) (49)
N O El PLET).

Notice that the transverse electric field which we have

generated is precisely the Weiszacker-Williams field gen-

erated by Lorentz boosting the Coulomb field. We could

further reproduce the magnetic components of the field if

we were to compute A, and its associated field strengths.
The photon distribution function is given by

F(k™, k) = (af (k)a' (k) (50)

_ 2e? 1 (51)
T (2m)3 kT2’

where F(k™*,k;) = dN/dk*d?k;. This can also be rewrit-
ten in terms of the Bjorken z variable as

a 1

The reexpression in terms of Bjorken z variables may
here seem a bit peculiar since nowhere has the longitu-
dinal momentum of the source been introduced. It can
be done because of the scaling property of the distribu-
tion function, peculiar to the 1/k* behavior. If there
was any other power of z, this could not be done. We
might therefore ask what would happen in the QCD case

or perhaps in QED if electron-positron pair creation was
included. Presumably the distribution function becomes
modified to be something like

1
x1+Ca ?

F(z) ~ (53)
so that higher orders generate terms which involve log-
arithms of z. These logarithms of k*/P} . presum-
ably arise in our formalism by a sensitivity to a high
momentum cut off necessary to regularize the §-function
distributions for the external sources. Note that for a 4-
function source, there is a contribution from arbitrarily
large momenta. This is presumably cut off at momenta
of order that of the valence particle when recoil is in-
cluded. If this is the case, then we expect that we will
be able to compute the dependence of the distribution
functions on = and k;, up to some overall constant. This
constant cannot be computed without a better knowl-
edge of the dynamics of the fragmentation region, that
is, understanding some of the relevant details of the va-
lence particle recoil. In any case, it is remarkable that,
to lowest order, the result is insensitive to such details.

IV. GROUND STATE PROPERTIES
IN QCD IN THE PRESENCE OF SOURCES

In QCD, we shall be interested in computing the dis-
tribution functions for quarks and gluons generated by
some valence distribution of quarks. In order to be able
to use weak coupling techniques, we will have to require
that the density of partons per unit area

1 dN (54)
P=TR? dy
be large,
P >> A2QCD' (55)

The simplest problem to consider is that of the dis-
tribution functions for a very large nucleus. Although
our results could be generalized to a finite size nucleus,
we will consider infinite nuclear matter in the transverse
direction with a uniform transverse density distribution.
We will assume that the nucleus is thick compared to a
proton, that is, that the local density of baryon number
per square fermi is large. Roughly speaking, the density
of baryon number per square fermi should be of order
A'/3 for an ordinary nucleus, and the transverse extent
should also be of order A'/3. We could also presum-
ably take the distribution functions we compute here as
a function of local baryon density per unit area and con-
volute them over a density distribution for a nucleus in
order to determine realistic parton densities. For real-
istic nuclei, our weak coupling approximations are quite
probably at the edge of being valid.

We shall therefore imagine that the baryons which gen-
erate the nuclear valence distribution are localized on the
light cone but uniform in transverse space. Their charge
will, however, in general be fluctuating around zero from
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one transverse position in space to the next. We expect
that the average color charge associated with the valence
distributions will be zero, and therefore the only way to
generate a nonzero source for charge is by fluctuations.
We will treat the nuclear valence quarks as static, that
is, recoiless, sources of charge.

To compute ground state properties of our ensemble of
charges, we consider the ground state expectation value

Z=(0]eT" | 0), (56)

where T is a parameter which will be taken to be large in
the end. The state | 0) is the ground state in the presence
of a uniform density of sources of color charge.

If we take the limit that 7' — oo, we can generate
ground state expectation values by

Z = lim TreT? . (57)
T—o0

The problem with evaluating the trace is that for quan-
tized sources of color charge, the sum over different values
of the color charges is difficult to evaluate. However, for
a large nucleus, as long as we resolve the system on a
transverse size scale which is much larger than a typical
transverse quark separation, we expect that many differ-
ent quark charges will contribute to the valence charge
density. A large number of charges corresponds to a
high dimensional representation of the color algebra, and
therefore the sum of the color charges of the quarks can
be treated classically.

To be more specific, we look at a region of transverse
extent where there are a large number of quarks. The
total charge in this region on the average will be zero.
There will however be fluctuations in the color charge.
We would naively expect that the typical value of the
fluctuating color charge would be of order /N where N
is the number of quarks in this region [9-11]. If N is
large, the typical color charge in this region is large, and
therefore may be treated classically.

This may be analyzed in a quantitative manner using
our formula for Z which generates ground state expecta-
tion values. The point is that in the trace there is the
sum over all possible color orientations of the external
source corresponding to the valence quark distributions.
Let us make a grid in the transverse space so that each
grid has many valence quarks in it. This therefore re-
stricts the validity of our analysis to spatial resolutions
with

d*z >> 1/pyatence ~ A7Y/? fm? (58)
or

g2 << (200 MeV)24%/3, (59)

For realistic large nuclei, this corresponds to ¢; ~ 1 — 2
GeV (recalling that in the center of the nucleus the effec-
tive value of A'/3 is larger than average), and in this
kinematic region, weak coupling methods are at best
marginal. In principle, we can imagine nuclei with very
large A, and so we can consider this as a theoretical labo-

ratory. The situation might also be improved if the den-
sity of partons per unit area in the central region were to
greatly exceed this and that the coupling constant were
smaller than naively expected from the above considera-
tion.

Now in our sum over states in the formula for Z there
is a large number of states being generated for each trans-
verse area. We would like to determine the set of most
probable configurations. To do this, we need to construct
the density of states for such configurations. We know
that the maximum will be centered around an average
color charge of zero. Since it is a maximum, it must be
true that it is quadratic in the charge density. Therefore
the contribution to Z is of the form

exp (—# /d"xt,ﬁ(x)) . (60)

Here p? is the charge density squared measured in units
of g, that is, with the factor of g extracted, and p? is the
average charge density squared per unit area divided by
g.
The above formula for the density of states is valid as
long as the average charge is of the order of the /Ng.
In this case, higher order corrections to the Gaussian
approximation for the density of states go like 1/y/Np.
Notice that with the assumption that the number of par-
ticles in our box is of order Ny, we have that d?zp? ~ 1,
and higher order terms are correspondingly smaller in
powers of Ny since p ~ pg/+/No where pg is the density
of valence quarks per unit area.
To see how such a density of charge works, we see that
if we define

[1dp] exp [~ 55 [ doup?(2)]

then we have

(p(z)) =0 (62)
as we have assumed and
(p(z)p(y)) = p?6P (x —y). (63)

We can determine the value of y? from elementary con-

siderations. The number of quarks per unit area in a
nucleus is
ng = 3(A/wR?) ~ 0.843 fm™?, (64)

and the average charge squared of a quark is
4
2 — 2 2 - = 2 65
() =g za:Ta 395 (65)
so that

2 - 1.14Y3 fm~2, 66
o

Now that we understand the density of charge states
associated with the external charge, we proceed to a path
integral representation for Z. This is easily done in the
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standard way by introducing states which are momen-
tum and coordinate basis states for the fields. The only
tricky part is to recall that in integrating over the exter-
nal charges, we must remember that the external charges
must satisfy the extended current conservation law dis-
cussed in the second section. The result of some analysis
is that, in light cone gauge,

2= [ ldAuda]ia' dulds

X exp (iS +1ig / d*z A4 (z)8(z7)p(z)

_ﬁ / P2,0% (0, :ct)). (67)

J

In the functional integral, we have that the path integral
over the fields is at all space-time points. The path inte-
gral over p is at only a fixed value of 2+ which we choose
to be zt = 0, and we define p at other values of z+ by

Tap®(z%) = U(zt,0)7,0%(0)U(0,27), (68)

where U is the time-ordered exponential of A, as dis-
cussed in the second section.

To get an action expressed only in terms of the vector
fields, we must perform the functional integration over
fluctuations in the external charges. This is straightfor-
ward to do because the action is quadratic in the external
charges. The part of the action involving p is

T/2 1
—iS, = —ig/ dz*t /dzthi(:c)pb(O; 2 )M (zT,0;27, %) |- —o +ﬁ d*z:p*(0; z¢). (69)
T/2
In this expression, the quantity M is
M®(z*,0;27,2,) =2 Tr [T“U(z+,O;w_,mt)TbU(O,m+;m_,:ct)] . (70)

Notice that in this expression there is nonlocality in the time variable z*, but locality in = and z;. The matrix M

is Hermitian since

M®(zt,0;27,2,) = M (0,27 ;27 z,). (71)

The integral over p can be performed since the integration is Gaussian. The value of p is given by

p%(0) = igpzfdx+ A% (z)Mb(zF,0;27,24) |o-=o - (72)

Upon integrating out the sources, we obtain that the contribution of S, becomes

2
-is, > 'ty [ detay* f d2z, A% (z*, 2, 0) AL (v @ 2 ) M2 (a*, 050, 2) M (y", 02, 2) oo - (73)

In QED, the effect of integrating out the sources is simply to give

2
S, = gz% /dw+dy+d2th+(w+,m",:ct)
xA4 (¥, 27, 28) |- =0 (74)

that is, only the propagator is modified by the addition
of an extra term, which is formally of order p%g?. In
QCD, the problem is more complicated. In addition to
the modification of the propagator in order g2, there are
in addition a nonpolynomial and nonlocal set of vertices
which contain arbitrary powers of the field Ay. These
vertices will modify the Feynman rules in orders beyond
the lowest order formally in g2.

We must ask what is the expansion parameter of the
theory. Later in this section, we will show that the dis-
tribution function for the number of gluons per unit area
is given in lowest order by

F(kT k) 5 ,2(N2-1) 1

TR? I " en)p kR (75)

In general, when we are in the limit that the relevant
momentum scales are

g*u? << k? <<y, (76)

we are in the low density small g?u? limit so that the
effects of the modified gluon propagator may be treated
perturbatively. The other end of the limit, that k? <<
u?, is just the statement that we are at sufficiently small
momenta that the individual quarks which are the source
of color charge cannot be individually resolved.

In the above kinematic limit, a treatment of our ef-
fective Lagrangian to lowest order in weak coupling and
lowest order in u? is justified. The higher orders in g®
should be small as long as g2 is small due to the high
density of partons. This may be only part of the story,
however. As is known in QCD at finite temperature, it
may be true that at some order in perturbation theory
for the computation of physical observables, the weak
coupling expansion becomes essentially nonperturbative.
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This could happen here, and to know if it happens and
what order it affects observables are beyond the scope of
the present work.

In addition to the above problems, the constraints of
the renormalization group equations must be satisfied.
This will give a nontrivial dependence on coupling to the
structure functions. Beyond this there may also be sin-
gularities which arise from approximating the source of
color charge as recoiless. For example, if the structure
functions end up having a power of Bjorken x other than
1/z, then a scale associated with the longitudinal mo-
mentum of the sources will have to come into the prob-
lem. This will arise from regularizing the recoiless charge
distribution which for a 4 function involves integrating
over all longitudinal momentum. If we cut this off at
some value of PT, then if the corrections to the lowest
order result for the distribution functions involve loga-
rithms of this cutoff scale, they can sum up to something
like

> Cral it (pt /kT)/nl ~ 2T (77)

n

Thus, although there is only logarithmic dependence on
the cutoff, this can sum up to a power law behavior for
the structure functions. If this is the case, then it might

DYy (k,q) = ibap(2m) 6™ (k — q) (g“” -1

where n is the unit vector n# = §#~.

To find the first order correction to the propagator
arising from p? in our effective Lagrangian it is perhaps
most easy to compute the expectation value of

ADg (z,y) = 6{A%(z) A (v)) (79)

by computing with the source present and then integrat-
J

AD" (k,q) = g>1>8ap(2m)6 (k™) (2m)8(g ™) (2m) 26 (k, — q;)8i6"7

The change in the propagator has therefore been re-
placed by a product of two classical fields times an over-
all Kronecker § function for color invariance and a two-
dimensional é§ function for invariance under transverse
translations. There is also no factor of ¢ in the change of
the propagator. These are contributions to the disper-
sive part of the propagator. This is always the case in
many-body theory, where the dispersive part represents
occupied states.

It is now straightforward to compute the distribution
function for gluons. This may be done by, for example,
computing the expectation value of the light cone current
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be that although the momentum dependence of the struc-
ture functions can be determined, their overall scale is
not possible to evaluate. However, in weak coupling the
effect of the overall scale factor which cannot be com-
puted is of order A* ~ 1+ aIn(A), and as long as all the
kinematically singular terms have been included, the un-
determined coefficient A which is of order 1 and depends
on the details of the cutoff only makes a weak coupling
perturbative modification of the structure function.

At higher orders in u2, the infrared structure of the
theory is probed. There are several possibilities which
might arise here. It might turn out that the infrared
singularities of the theory are entirely screened. In this
case, the infrared properties of all correlation functions
can be computed self-consistently in weak coupling in
the infrared. A more likely scenario is however that as
in finite temperature QCD, some of the screening lengths
are essentially nonperturbative. If this is the case, we can
compute structure functions only in specific kinematic re-
gions, and the behavior of at least some of the structure
functions in the infrared can be determined only nonper-
turbatively.

To determine the Feynman rules of the theory, we must
evaluate the propagator. To zeroth order in x?, the prop-
agator is simply the light cone gauge propagator. This
is

EnY + ntg* 2pktnv\ 1
n-q (n-9)?/ q

r

ing out the source. We see that this term is given in the
presence of the sources to lowest order as

v N1 V:’v V]
ADZb (z,y) = 92§u k) J<8ij pa() 8;’;'? pb(y)>. (80)

Upon integrating over the sources, we have therefore that

kiqi

(k*qtkiq?) (81)

f

density. It may also be read off directly from the above
equation in analogy to the result for QED. The result is
that

1 dN  au*(N2-1) 1
mR? &3k 2 k+k2’

(82)

This is just the Weiszacker-Williams distribution. The
strength of the gluon distribution is proportional to the

typical charge squared per unit area, and should go like
AY/3,
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V. SUMMARY AND CONCLUSIONS

In the previous sections, we discussed the potential
problems with computing the distribution functions in
higher order in weak coupling. Much must be done to
turn this hypothetical program into a reality. Some of
the problems to be solved are associated with the ultravi-
olet. There are two types of modifications here. The first
are corrections which generate the proper scaling behav-
ior of the distribution functions in order to be consistent
with the Altarelli-Parisi equations. This is presumably
straightforward to do. Following Brodsky, we must in-
troduce a transverse momentum cutoff, and then require
that the theory have the correct renormalization group
improved dependence on this cutoff. A second problem
is more serious, and that is how to get any nontrivial be-
havior in zg;. This presumably arises from a dependence
on the cutoff which regularizes the é-function source for
the static light cone sources of charge. The resulting
nontrivial scaling dependence of the structure functions
must in some way be related to the Lipatov Pomeron [12].
Needless to say, establishing whether this may be done
is entirely nontrivial and the success of this theory of
the structure functions hinges crucially on being able to
establish this fact. In the end, if the small-z behavior
is enhanced, the usefulness of weak coupling expansion
might even be extended to small A targets. This would
make the above formalism much more attractive.

The properties of the infrared structure of this theory
are also entirely nontrivial. Is the infrared structure com-
putable in weak coupling, or is it like finite temperature
field theory where some aspect of the infrared structure
of the theory is intrinsically nonperturbative? Is there
a hierarchy of different infrared scales as there is in fi-
nite temperature theory where the thermal wavelength is
much less than an electric screening length which in turn
is much less than a nonperturbative magnetic screening
length? Are there nontrivial nonperturbative phenomena
which occur at these nonperturbative length scales?

Finally, there remains the problem of computing the
quark distribution functions. To compute them in lowest
order demands a one-loop computation of the fermion
propagator. We intend to do this computation in a later
paper. Of interest here is the ratio of the quark sea dis-
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tribution to the small-z gluon distribution. This should
be computable in the same kinematic region where the
gluon distribution is computed.

Finally, there is the issue of how the distribution func-
tions for quarks and gluons described above are related
to the distribution functions measured in deep inelastic
scattering. Although at first sight this seems trivial, re-
call that we are in the limit where there is a high density
of partons, where one might expect screening effects to
be important. Moreover, the dependence of the struc-
ture functions on the Q? of the probe must be established
through use of the Altarelli-Parisi equations.

In all of our analyses in QCD, we never explicitly com-
puted a hadronic wave function. Is there any way in QCD
to establish what is this wave function, or is it as difficult
and in the end unrewarding task as determining what the
wave function is for a large system in the microcanonical
ensemble? In this latter case, it is sufficient to consider
density matrices to study properties of the system. The
actual wave function is almost never useful.

There is also the question of the relationship between
the distribution functions we have computed and the
early time behavior in heavy ion collisions. How does
one let the distributions thermalize and evolve through
a quark-gluon plasma?
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