
PHYSICAL REVIEW D VOLUME 49, NUMBER 5 1 MARCH 1994

Sea contributions and nucleon structure
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'We suggest a general formalism to treat a baryon as a composite system of three quarks and a "sea."
In this formalism, the sea is a cluster which can consist of gluons and quark-antiquark pairs. The had-

ron wave function with a sea component is given. The magnetic moments, related sum rules, and axial
vector weak coupling constants are obtained. The data seem to favor a vector sea rather than a scalar
sea. The quark spin distributions in the nucleon are also discussed.
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I. INTRODUCTION

Historically, the static SU(6) quark model provided a
good description of hadrons: Baryons (mesons) are
color-singlet combinations of three quark s (quark-
antiquark pairs) in the appropriate fiavor and spin com-
bination. The space-time part of a hadron wave function
can be determined by using a specific model of
confinement, e.g. , the bag model [1,2] simple harmonic
oscillator model [3—5], or other phenomenological mod-
els [6]. Although the naive SU(6) quark model works
successfully in explaining various properties of hadrons,
departures from the naive SU(6) results have been ob-
served. The naive valence picture of hadron struc-
ture is a simplification or a first order approximation to
the real system. Within the framework of QCD,
quarks interact through color forces mediated by
vector gluons. The QCD interaction Hamiltonian
Ht(x) =gf(x)y"(A; l2)g(x) A „'(x) has several conse-
quences. First of all, spin-dependent forces (e.g., color-
hyperfine interactions [7]) between the quarks due to one
(or multi) gluon exchange lift the SU(6) mass degeneracy
and explain the basic pattern of baryon and meson spec-
troscopies. The spin dependent forces also cause different
space-time distributions for different quark flavors and
provide a good description of baryon magnetic moments
and form factors [8,9]. Second, the existence of a quark-
gluon interaction implies that quark-antiquark (qq) pairs
can be created by the virtual gluons emitted from valence
quarks. These qq pairs are the so called sea quarks. Usu-
ally, the "sea" means a combination of the virtual gluons
and sea quark-antiquark pairs. Although deep inelastic
muon nucleon scattering shows that the sea components
(qq pairs and gluons) indeed exist and play a very impor-
tant role (e.g., gluons carry about one-half of the nucleon
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momentum and the sea dominates small-x behavior of
structure functions}, it is commonly believed that in the
low energy regime, static properties of hadrons are dom-
inated by their valence components. However, it has
been shown [10,11] that the sea contributions may
change the structure of hadrons and modify their low en-

ergy properties. Using the QCD interaction Hamiltonian
and the NIT bag model, Donoghue and Golowich (DG)
[10] (comments see cf [11])calculated the probabilities of
difFerent sea quark components in the proton. Several
models [12—15] have been suggested to study the gluon
component in hadrons. In these models, a mixing of q
and q +gluon, in which a color 8, gluon coupled to a 8,
q state to form a color singlet, has been discussed. How-
ever, the "sea" could be a gluon (as discussed in [12—15])
or a quark-antiquark pair (as discussed in [10,11]},or
even more complicated, for instance a multigluon state,
multi-(qq) pairs or gluon(s) plus (qq3 pair(s). In this paper,
we study the sea contributions in a more general formal-
ism and treat the "sea" as a cluster which can consist of
two-gluon and a gluon plus a (q-q) pair or some admix-
ture of both (which may be described by the generic term
"fiotsam"). Since the baryon should be colorless and a q
state can be in color states 1„8„and 10„ the "sea"
should also be in corresponding color states to form a
color singlet baryon. In addition, the "sea" spin is not re-
quired to be one (as in the single-gluon case). Further-
more, if the sea is in an S-wave state relative to the q
system, conservation of the angular momentum restricts
that sea spin can only be 0, 1, or 2 to give a spin-1/2
baryon. If the sea is in a I'-wave state, then its spin could
be 0, 1, 2, or 3. In this paper, we only discuss the S-wave
case. In Sec. II, a more general wave function of the
baryon, which consists of q and a "sea," is given. In
Sec. III, the magnetic moments and related suan rules are
derived and compared with the data. In Sec. IU, axial
weak coupling constants and first moments of nucleon
spin structure functions are calculated. A discussion of
the sea contribution, numerical results, and several con-
clusions are given in Secs. V, VI, and VII, respectively.
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II. HADRON %'AVE FUNCTION
WITH A SEA COMPONENT

The three (valence) quark wave function of the baryon
can be written as

2
(&'x'+ &'x'»1

Fg = —(4"x' 0—'x"»1

(2.8)

(2.9)

+=@(I(t& lx & Ig&)(l(&) (2.1)
and

where lp&, IX&, lq&, and ~g& denote flavor, spin, color,
and space-time q wave functions. For the lowest-lying
hadrons, quarks appear to be in S-wave states and the
space-time q wave function

~ g & is total symmetric under
permutation of any two quarks. Hence the fiavor-spin-
color part 4 should be total antisymmetric under q, ~q .
In the conventional quark model, the color wave function
))( is taken to be total antisymmetric, i.e. , a color singlet.
But in general this is not necessary if baryon is con-
sidered to have a sea component in addition to the q'.
Let superscripts S and A denote total permutation sym-
metry and antisymmetry, and A, ,p denote symmetry and
antisymmetry under quark permutation q, ~q2. Then
the q wave functions for a flavor octet baryon are

F~ = —(O'Ps 0'—08» (2.10)

where the detail expressions for P, (t))', X, and X)' can be
found in Ref. [16], and x' / ' is the totally symmetric q
spin wave function with spin 3/2.

We note that 4()'/ ' in (2.2) is the standard q' wave

function which transforms as 56 of SU(6) and was denot
ed by ~XO& in Ref. [15]. Our (I)(()' ' and 4(() ' corre-

spond to the notation ) Ns & and
~ X~ & in Ref. [15] re-

spectively, they transform as 70 of SU(6). There is no
' term in previous works.

We consider a flavorless sea, which has spin (0,1,2, if
we assume sea is in a S-wave state) and color (1„8„and
10,). Let H0, 2 and G»-)0 denote spin and color sea

wave functions, which satisfy

@((/2) —q)(8 1/2 1 ) F qA

1
I)

——4(8, 1/2, 8, ) = —(FMsgq FMq g() )—,
2

' =—4( 81 2/, 1 0)= F„g s)0,

C)I)
' —=4(8,3/2, 8, ) =F~x'

where

(2.2)

(2.3)

(2.4)

(2.5)

(2.11)

H061 N8 H0G8, 410 HOG10

'H G 4" 'H G 4" 'H G-
1 1 1& 8 1 8& 10 1 10

(2.12)

(2.13)

The possible combinations of q and sea wave functions,
which can give a spin 1/2, flavor octet, color singlet state,
are

Fs = —(O'X"+O'X'»1
(2.6)

q)(3/2)H G (P(3/2)H G (2.14)

1
FMs = —(O'X' O'X'), —

v'2 (2.7)

The total flavor-spin-color wave function of a spin up
baryon which consists of three-valence quarks and a sea
component can be written as

~q)(fl
&
— [q)(l/2()H G + (P(1/2()H G + q)(1/2()H G +b ((P(1/2)@H )(G

+b (C)' 'SH ) 6 +b (4" 'H ) 6-, +c (4' '3H ) 6 +d (4' 'H ) 6 ] (2.15)

where

~2 1+a2+a2 +b2+b2+b2 +~2+d2 (2.16)

Although there are seven correction terms in (2.15), they
are not equally important. Some arguments are given in
Sec. V to show that the main modifications come from
the vector sea, in particular b8, b, and c8 terms, and
minor contributions come from the scalar sea, e.g., a10
term.

The first three terms in (2.15) come from a spin 1/2 q
state coupled to a spin 0 (scalar) sea. The next three
terms in (2.15) come from spin 1/2 q spin 1 (vector) sea
and in more detail we have

((y(1/2)@H )1 —q&(1/2()yA
1 1 b1 . 1

(q)()/2)g, H )1=(P(1/2l)
8 1 b8

(q)( 1/2)@ H )
l = (P() /2T )qs

10 1 b10 10 &

where

@{1/2T)—.r' 2H +(1/2J) „/ l H P(1/2f )

q (1/2$) g l l. q (1/2$).I~ (P(1/2$). ),&]

(1/2 t ) „j'2 H F(1/2$ ) „f' 1 H F{1/2 t )

b10 V 3 11 A V 3 10 A

In (2.21), e"""and e"/2') are

(2.17)

(2.18)

(2.19}

(2.2O)

(2.21)

(2.22)
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(2 23) (tensor sea), respectively. Their expressions are

@(1/2f ) „gz~ y (1/2$) „g ]~ ~(1/2f)
b8A V 3 1, 1 MA V 3 1,0 MA (2.24)

The final two (c(),d() } terms in Eq. (2.15) come from spin
3/2 (q ) spin 1 (vector sea) and spin 3/2 (q )spin 2

((y(3/2)N ~ )
f —q)(1/2f )

I c8

((p(3/2)g ~ )
f —(y(1/2 f )

8 2 18

where

(2.25)

(2.26)

q)(1/2T )—
c8

(3/2) ~ (3/2) ~ (3/2)
1, —1X3/2 ~ ~),OX)/2 + ~ ~(, IX—1/2 +A (2.27)

@ds [V 5H2, 2X—3/2 V 1082, (X—1/2+V YH2, 0X1/2 V 1082, —1X3/2 ]+A (2.28)

The wave function used in Ref. [15] (see Eq. (3.9) in [15])can be obtained from (2.15) by taking (2() 10 =bi 10 =d() =0 and

bs =c()= —5. However, we would not like to restrict ourselves to this special case.

III. MAGNETIC MOMENTS AND RELATED SUM RULES

For any operator 0 which only depends on quark Aavor and spin and does not depend on the color and space-time,
we have

((P(f~)(g~g)(f~) ) — ((P( / f)~0~(P( / f )+ y o (@( / f)~g~@( / f))+ y b ((y( / f)~g~g, / f))
i =8, 10 i =1,8, 10

(@((/ f)~@@(1/2f))+ (@((/2f)~0~@()/2f))+d (@( /2f)~@C(1/2f)) (3.1)

The first term is the conventional quark model result. The a8, a,0 terms are the corrections coming from the scalar sea,
bi () 10, cs and bscs terms are from the vector sea, and the ds term is from the tensor sea.

If operator 0 has a form such as 0 =g, Of'o,' where gf depends only on the flavor of the ith quark and o,' is the spin
projection (z direction} operator of ith quark, from(3. 1) we obtain

(@(f)~g~@(t) ) &y[(0( )Ai( i )if) f+(gi )pp(&i )pfpf+2(gi )ip( i )ifpf]

+bg((0') "+(0')pp)((o') f+(o') )

+cy[(gi )32( i )pfpf + ( gi )pp( i )2 fi f 2( gi )ip( i )ifpf ]

There are only five combinations of seven parameters appearing in (3.2):

8

2 3 4 8 3 2 10
b10

2

3

V2
d =

—,', (5c() —3d() ), e = bsc()

y( gi ))iL+y( gi )pp + y(( gi )pp ( gi )22)( i )3 f3/2f +2y( gi )ip(oi )pf3/2f
l l

(3.2)

(3.3)

(3 4)

and (gf) "—:(1)t) (Of')p ), (o,')"1 =(X f~o,'~X f). Similar notation is used for (Of)pp, (o,')pfpf etc. All matrix
elements for octet baryons are listed in Appendix A.

For magnetic moments, 0&=e'/2m; (i =u, d, s). The baryon magnetic moments can be expressed in terms of the
quark magnetic moments ((M„, pd, )M, ) and two parameters a and p as

i, =3(i.a i dp» i.=3(i da—i.p»—
pA= ,'(a 4P}(i2„+pd )+—(2a—+P)p, ,

p 3(p a p P) p 3(Ada p—P) p (p +p'

p= 3(p' a p P) p= 3(p a pdP)

(3.5)

(3.6)

(3.7)

(3.8)



2214 X. SONG AND V. GUPTA

Also, the transition moment

v'3
ps~= —

2
(a+2»(p. —p~),

where p =e /2m (q =u, d, s) and

1 4a = —(2a +2b + 3d + &2e ),x' (3.10)

1 1P= —(2a 4b——6c —6d +4&2e } .~2 (3.11)

One may ask why the seven parameters (a, , b, , etc. ) in
the wave function contribute only through the combina-
tions given by a and P. The physical reason is that a and
P are connected with the number of spin-up [n (q& )] and
spin-down [n (q ( ) ] quarks in the spin-up proton.
If, bq =n(q&)——n(qi)+n(q&) n(—q&), q =u, d, s then
b, u =3a and b,d = —3P. This can be directly checked
from the wave function given in (2.15). Also, as there are

no explicit antiquarks or s quarks in the wave function,
n (q} )

—n (q i ) =0 and bs =0. Further, because of in-

built fiavor SU(3) symmetry in the wave function, a and P
determine the other magnetic moments. If there is no sea
contribution, 2a =1 and b =c =d =e =0, then a=4/9
and P= 1/9, and the simplest quark model result is repro-
duced [17]. A class of models [18,19] have been recently
considered in which the magnetic moments have been ex-
pressed in terms of p and b,q (q =u, d, s) without giving
an explicit wave function. Their expressions reduce to
ours on putting b, u =3a, b, d = —3P, and b,s =0 (see
Refs. [18,19]).

At first sight, (3.5)—(3.9) seem to contain five parame-
ters pq (q=u, d, s), a and P. However, as these always

appear as products there are only four effective parame-
ters which we take to be U =—3apz, D =——313pz,

2p =——p„ /p& & O„and r =JM, /pz & 0. The numerical re-

sults for this four-parameter At to the magnetic moments
are discussed later. Here we note the following four rela-
tions or sum rules between the eight magnetic moments:

(4.71)p, —p„=p +
—p (p o p— )(4.—15+0.07),

(3.68+0.02)—6pA=(p, ++p )
—2(p +p„+p, 0+p )(3.36+0.09),

(3.42 0.26)(p~+ —p~-) —(p'0 —p'-)=p,' —p'„(4. 14},

(5.58+0.28}—2&3pq~=2(p —
p, „)—(p )

—p. )(5.83+0.06) .

(3.12)

(3.13)

(3.14)

(3.15)

The values of the two sides taken from the data [17]
are shown in parentheses. The three sum rules in
(3.12)—(3.14) are not new and hold in the class of models
with As&0 referred to above. A discussion of why they
are poorly satisfied can be found in Ref. [18]. The sum
rule in (3.15), a consequence of the four-parameter model,
is surprisingly well satisfied.

The simpler case with three effective parameters p„o;,
pg, and r (po=—e/2m„) is of interest since it makes the
natural assumption m„=m& or IM„= —2pz. This implies
an additional sum rule [apart from the (3.12)-(3.15)]

(1.61+0.08)pg~= p„(1.66),
v'3

2
(3.16)

IV. WEAK DECAY CONSTANTS AND SPIN
DISTRIBUTIONS

For the weak decay constant (g~ /g~), Of =2I3 and we
obtain

which is quite well satisfied [20,21].
The important point to note is that because of the sea

contribution, a and P are free parameters and not re-
stricted to the simple quark model value. Finally, we
note that the failure of the data to satisfy the relations
(3.12)—(3.14) implies that one can only obtain, at best, an
approximate At to the magnetic moment data in all the
above cases.

(gg/gv)„~=-, — 2a+ b ——c+——d+ —V'2e
4 6 6 8

5 5 5

=3(a+P), (4. 1)

1 1
(g „/g„,),=———(2a 4b —6c ——6d +4&2e )

Using (3.5) and (4. 1), (4.2) we obtain

(p=o p= }/(pp pn } (gA /gv }= =o/(gA /gv)n —»p

(4.3)

Note that the relation Eq. (4.3) continues to hold in mod-

els [18,19] with b,sWO mentioned above. For the three-
parameter model (i.e., with p„=—2pz) in addition to
(4.3), one obtains

(p„+2p. )/(p, p. )=(g~/gv}--——o/(g~/gv). ,
(4.4)

The relations (4.3} and (4.4) cannot be checked directly
with data as (g& /gv) . p is not measured. However,

we can predict (see Table I) the (g„/gv) for various

semi-leptonic decays since they can be expressed, using
fiavor SU(3) symmetry, in terms of F and D or a and P.

In fact (g„/gv)„. =F +D and (g, /gv)
F —D, from (4.1) an—d-(4.2) we have
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1 p; 1 5 C 2
IJ,' =—ge, 0,' —a+2b +—+3d+ —&2e

2 . 3' 3 3 3

(4.6)

1 2; 1 4 4 2b+——c +2d ——&2e
2 . 3' 3 3 3

(4.7)

where I~ = fg~~(x )dx etc. Similarly, one can obtain

1 2; 1 1 4 2It =—ge; rr,' —a + b+c +—2d ——v'2e2,. p 3'2 3 3 3

(4.8)

Using the parameters a and P, they are

I~t =—,'(4a —P), I& =—,'(a —4P), It =—,'(a —2P) . (4.9)

One can see that the standard SU(6) result gives

fg~t(x)dx =5/18, fg&(x)dx =0, and fg& (x)dx =1/18.

F =3a/2, D =3(a+2@)/2, F/D=a/(a+2p) .

(4.5)

It is easy to verify that when there is no sea contribution
(i.e., ag to=bt g to=cg=dg=0) and p„=—2pd, the stan-
dard SU(6) quark model results, e.g., p„/p = —2/3,
(gz /gv)„„=5/3, and F/D =2/3 follow.

For spin distributions in the proton and neutron, we
have

Including the sea contributions, however, fg~~(x)dx,

fg, (x)dx could be different from their SU(6) value, and

also fg ", (x)dx could be nonzero. One can verify, howev-

er, that the Bjorken sum rule is still satisfied:

f [gf(x)—g&(x)]dx =-,'(g„/gv)„~ . (4.10)

In addition, we have

J [g i(x) g—i (x)]dx= ,', [—(g~/gv). ,+(g~/gv4

(4.11)

In our model, fg &
(x)dx will be less than its SU(6) value

if sea contributions are taken into account (see Table I).
It is interesting to note that an experiment to measure the
spin structure function of the A particle has been suggest-
ed recently [22].

V. DISCUSSION OF THE SEA CONTRIBUTION

For simplicity, we consider the case when the magnetic
moments are given by three parameters a, P, and r [i.e.,
put p„=—2pd in (3.5)—(3.9)]. The discussion for the

case when p„A —2pd can be carried out on similar lines

and suggests that —p„/2pd &1 for both pure scalar and

vector sea.

A. Scalar sea

If sea spin is zero, agAO and a,oWO, but b, =bg
~10 c8 =ds =0 one obtains

TABLE I. Comparison of the calculated magnetic moments and axial vector coupling constants of
baryons with data and other models.

Baryon

P
n

A
roc
y+
yo

X
~p

~f A /RV~n p

(g„/g )

&t~ ~tv &,—

~SA ~SV~ —,
~RA ~RV~- — -0

Jg ~
(x)dx

fg", (x)dx

Jg, (x)dx

Data [16]

2.7928
—1.9130

—0.613+0.004
—1.61+0.08

2.42+0.05

—1.160+0.025
—1.250+0.014

—0.6507+0.0025
1.2573+0.0028

0.718+0.015
—0.340+0.017

0.25+0.05

0. 126+0.010+0.015
—0.08+0.06'

SQM'

2.793
—1 913
—0.613
—1.63

2.674
0.791

—1.092
—1.435
—0.493

1.666
1.000

—0.333

0.333
—0.333

0.278

0.0
0.0556

Set Ib

2.7928d
—1 913
—0.613
—1.61

2.678
0.761

—1.156
—1.408
—0.537

1.2571
0.7605

—0.2325

0.2640
—0.2325

0.2147
—0.0052

0.0466

Set II'

2.793
—1 917
—0.613
—1.66

2.664
0.830

—1.004
—1.463
—0.421

1.2573
0.7455

—0.2781

0.2337
—0.2781

0.202
—0.007

0.0353

'Standard quark model result, e.g., see Ref. [16],VIII. 59.
Four-parameter fit.

'Three-parameter fit.
Input.

'Ref. [24].
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1 a)p
p, „/p =( ——') =( ——')(1——'a'a' + )n P 3 (+i( 2 2

)
3 3 8 10

Q8 Q lp

g", x dx =
~ a8+2a ~p

1
(5.3)

is positive which seems to contradict the negative value
indicated by the earlier analysis of the European Muon
Collaboration (EMC) result [23] and the latest data given
by the Spin Muon Collaboration (SMC) [24].

since 0 a 8,a,p 1. It is obvious that the contribution
from the scalar sea leads to a wrong correction to the ra-
tio of neutron and proton magnetic moments. For I'/D
ratio, one obtains

F/D =
—,'(1+—,'a8+a ~0+ ),

which also disagrees with the data. Furthermore, for the
scalar sea, the first moment of the neutron spin structure
function,

cally come from the nonperturbative interactions be-

tween quarks and gluons. Hence we do not attempt to
calculate these parameters, but rather estimate them by
the required agreement with the low energy data. Before
doing this, we give some arguments as motivations for
choosing the parameters. Since the sea basically comes
from the emission of virtual gluons, the b8 term would be

dominant and we would expect

b, , b, 0(two-gluon sea) (&b8(one-gluon sea) . (5.7)

The c8 term is expected to be small due to another reason

c2(quark spin flip) &(b8(quark spin nonflip) . (5.8)

The scalar sea a8 and a, p terms are expected to be also

small because they can only come from the two-gluon
sea. The tensor sea (d8) term comes from two-gluon sea

and quark spin-Hip processes; hence, it should be highly

suppressed. Assuming no scalar and tensor sea contribu-
tion and neglecting the c 8 term (since c 8 &(b8), we have

1 —
—,'b',

B.Vector sea

We first look at a special vector sea as discussed in Ref.
[15]. Assuming as ~

0= b» 0=d 8= Oand b8=c8 = —5, it
is easy to see from (3.5) that

(5.9)

thus, the sea contribution gives a correction in the right
direction.

3
(5.4) VI. NUMERICAL RESULTS

(g A /g V)n~p
=5 '+-

1+26
(5.5)

1
'+-

«~ /gv)=-
3 1 +2/2

(5.6)

one can see that the conventional SU(6) result

(g„ /g v )„~/(g„ /g v ) . 0
= —5 is also preserved.

However, using the parameter 5= —0.35 given in [1S],
we obtain (g„ /gv)„~ = l. 727, which is inconsistent
with the data [17] (g „/g v )„=1.257+0.003. This
disagreement is not unexpected. Because the perturba-
tive calculation of the mixing parameters and its result

b8 =c8 = —5 are questionable. It is obvious that the non-

perturbative e8'ects, which are dominant in the low ener-

gy region, would change the relative weight of these mix-

ing parameters significantly. Therefore„we prefer to dis-
cuss a more general vector sea and to see if there is
another appropriate parameter set, in which the nonper-
turbative and perturbative e6'ects are taken into account,
that can lead to a better agreement with the low energy
baryon properties. We wi11 show below that this parame-
ter set not only gives a right modification to the ratio

p„/p but also gives a very good result for axial vector
coupling constants.

As we mentioned above, the mixing parameters basi-

where p0=e/Zm„. Hence the relation p„/p = —2/3 is

preserved as given in [15]. Similarly, from (4.1) and (4.2),
we have

To obtain numerical results, we use the data on mag-
netic moments and weak decay coupling constants to
determine the parameters. In particular, the values of e
and P so obtained should be reproducible by choice of the
seven basic parameters a8, a,p, b„b8, etc. which deter-

mine the sea contribution. It is clear from (3.10) and

(3.11) that there are many ways of choosing a8, etc. to

give the same a and P. However, guided by the qualita-

tive discussion of Sec. V, we will assume the sea is mainly

vector with a smal1 scalar component. The tensor sea is

neglected (d8=0). We shall see that the parameters

(b8, c8, etc.), which determine the contribution of such a

sea to the baryon structure, can be chosen to give the o,'

and P determined from the data.

A. Four-parameter fit

F/D =0.6878 . (6.1)

A more realistic model with a small As&0 could easily

modify this value. Note that in the models of [19] and

[18] with extra parameter (b.s) they obtain 0.726 and
0.585 for this ratio. To separate out the parameters o.

The magnetic moments in (3.5)—(3.9) are given in terms
of four effective parameters U = 3apd, D ==—3P—pd,
2p =——p„/pd &0, and r =p, /pd )0. Using p, p„, pz ~
as input one can directly determine U = —1.348,
D =0.306, and p =0.922 as these do not involve the pa-
rameter r. The value of p~ is used as input to fix

r =0.6255. Knowledge of the ratio a/P=4. 406 immedi-

ately predicts [see (4.5)]
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and P, we use the axial coupling constant data to obtain

a=0.3415, P=0.0775 . (6.2)

The values obtained for the quark magnetic moments (in
nuclear magnetons pN) are

p„=2.428, pd = —1.316, p, = —0.823 . (6.3)

A choice of sea parameters which reproduce the parame-
ters a and P given in (6.2) are b, =0.0039, b()=0.22,
c() =0.027 (for vector sea), and a(0=0.0975 (for scalar
sea) with bsc, )0.

The values obtained for magnetic moments and other
quantities are displayed in column 4 of Table I. It can be
seen that the fit to the magnetic moments and the axial
coupling constants is quite reasonable except for p +.
For the quark spin distributions our calculation suggests
a small nonzero negative value for fg((x)dx, how-

ever, the result for fgp)(x)dx =0.2147 is much larger
than the experimental value [23] of 0.126+0.018. One
must note, however, that the EMC experiment gives this
value for (Q )=10.7 (GeV/c) and this can be very
different from the very low g result predicted by our
q +sea model.

B. Three-parameter fit

The natural assumption m„=md implies the relation
((2„=—2pz. Implementing relation in (3.5}—(3.9)
gives pp =(((0(2a+P), p,„=—)Mo(a+2P) etc. , where )((0

=e/2m„. The magnetic moments are given in terms of
three effective parameters (Moa, )((g, and r Guided. by a
four-parameter fit we choose sea parameters similar to
that case, namely b, =0.1, b8=0.22, c8=0.027, and

a,o =0.02 with b8c8 & 0. Basically we have enhanced the
vector sea with a larger value of b& and reduced the sca-
lar sea with a smaller value of a,o. This choice immedi-
ately gives a=0.3264 and P=0.0927. Using (Mp and pz
as inputs then determines po=3. 7465pN and r =0.6286.
The results of magnetic moments etc. are listed in column
5 of Table I. Since the ratio a/P=3. 521 one obtains

VII. SUMMARY

In summary, we have suggested a general formalism to
treat a baryon as a composite system of q plus a flavor-
less sea. The modifications of the dim'erent properties of
spin 1/2 baryon, by the sea, are given. Numerical fits to
the individual magnetic moments, XA-transition moment
and axial weak coupling constants for the baryon octet
have been obtained. These results seem to favor a dom-
inantly vector sea.

It should be noted that our results and conclusions are
subject to the following points: (i} the sea and the three-
quarks are considered to be in a relative S state, possible
higher angular momentum states have been neglected; (ii)

the sea is assumed to be flavorless and has been specified
only by its total quantum numbers; (iii) further,
modification of the baryon wave function is needed to
have nonzero hs in the nucleon; (iv) relativistic correc-
tions have been neglected although the internal motion of
the light quarks in the baryon is expected to be relativis-
tic; (v) all calculations have been performed in the baryon
rest frame. This may be reasonable for the magnetic mo-
ments and the weak decay constants, but may not be ap-
propriate for comparing the spin distribution calculated
by us (at low Q scale) with the EMC data at much high
momentum transfer. All these points need to be con-
sidered in future work to fully understand baryon struc-
ture.
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APPENDIX A: MATRIX ELEMENTS FOR
DIFFERENT OPERATORS

1. Spin projection operator

( ( ) )&t2.f —( ( ) )Afar, t —2/3 ( ( ) )Af)j.t — 1/3 (Al)
F/D =0.6380, (6.4)

(~(1))pfpt —( &(2) )pf pf —p ( ~(3) )pf'pf —I (A2)

which is fairly close to the experimental value [25]. Since
F/D increases monotonically with increasing a/P, for
the simple quark model (a/@=4) the value of F/D =2/3
lies between those in (6.1) and (6.4}. The results for quark
spin distributions are similar to the four-parameter case.

For comparison, in column 3 of Table I the results for
the simple quark model are given. In this case there is no
sea contribution, and the baryons are given by standard
q wave function which fixes a=4/9 and P= 1/9. The
magnetic moments are given in terms of three-parameters
p„, pd, and p, . This fit with p, p„, and pz as inputs
gives )(2„/( —2pd ) =p =0.953 and r =p, /p„=0. 63. We
have used the same inputs in all three cases for a mean-
ingful comparison. From Table I one can see that the
four-parameter gives a somewhat better overall fit.

( (1) )2.fpf — ( (2) )Afpt —1/v/3 ( (3) )&tpf —p (A3)

3 3~ (&(1))2th t —~ ( (())pfpt —Iz Z (A4)

In addition,

( o ( 1 ) )2 t 3/2 f ( (2 ) ) 2 f 3/2 f v/Z /3

( (r ( 3 ) )x t 3 /2 f —23/2 /3

( (1))pt3/2t — ( (2) )pf3/2f v/2/3

( ~(3) )pt3/21' —pZ

(A6)

It is easy to see that the matrix elements in (1) and (2)
satisfy
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The matrix elements in (3), (5), and (6) satisfy

3 3 3~ ( (7(i) )Afpf ~ ( ~(i) )A f3/2f ~ ( (i) )pl3/2f pZ z z

2. Isospin projection operator

3. Charge operator with symmetry breaking eft'ect

For the proton, we have

(1) u, (2) m u, 1/2 ( ) u, 07

m1 p m2 p m3

(A17)

For the proton, we have

(I"')"A=(I( ')AA=1/3 (I( ) )A~= —1/63 p 3 p ~ 3 p

(I(»)pp=(I(2) )pp=p (I(3) )pp= 1/2p 3 p ' 3 p

( I( i )Ap ( I(2) ) Ap 1 /2+3 ( I(3) )imp 03 p 3 p 3 p 7

(A8)

(A9)

(A 10)

(I"') =(I' ') =5/12 (I' ') =1/6r+ 3 X+ ' 3 X+

(I',")pi=(I3 ')PP+=1/4, (I'3 ')pi=1/2,

(A 1 1)

(A12)

(I3" ) P~= —(I3 ') P+=1/43/3, (I3 ) P~=O; (A13)

similarly, for X the matrix elements reverse their signs.
For the " hyperon, we have

(I(() )AA. —(I(2) )AiL —1/12 (I(3) )AA. —1 3 (A14)

for the neutron, all matrix elements get an opposite sign.
For the X+ hyperon, we have

P =2/3,
m1 p m2 p m3 p

(A18)

(
() ) m Ap (2) m

Ap —1/2+3
m1 p m2

m

m3
(A19)

where m =m„=md. We note that the matrix element

( e ' 'm /m 3 ) P vanishes for all octet baryons.
For the neutron, the matrix elements in (A19)

reverse their signs. But in (A18) the first two matrix
elements do not change the sign, i.e., (e "m/m;)pp
=(e"m/m, )pp (i =1,2) and the third one becomes
( e '3'm /m 3 )pp= —1/3. For the neutron matrix elements
in (A17), we have

(I ") o=(I',")".=1/4, ( I(3) )pp =0 (A15) e") m ~~= e' '

m1 n m2 n

( I',") Ap = —( I' ' )Ap = —1/4&3 ( I' ' ) Ap =0 (A16)

for =, all matrix elements reverse their signs. Finally,
all isospin matrix elements for A and X hyperons are
zero.

(3)

m3

For X+, we obtain

(A20)

m1 x+

(1) m pp

m1

(1) m Ap

m1

m2 y+
e ' ""=(10—r)/18, e' =2(1 r)/9, —

m3

m ~ ~
7 ~I

h

~
I~

~~
7

e' ' P =(2—r)/6, e' ' PP =2/3,
m2 m3

e' P =(2+r)/63/3;
m2

(A21)

(A22)

(A23)

while for X we have

e
m

m1
= e' ' = —(5+r)/18, e' ' = —(1+2r)/9,

X mg m3
(A24)

= —(1+«)/6,
m1 m2 m3

PP = —1/3,
X

(A25)

()) Ap (2) imp

ml x — m2
(A26)

For =, we have

( AA. — ( ) AA-(2 5 )/18 (3) m AA, -(4 )/9
m1 0 m2 m3 o

(A27)

(
e'" PP= e' ' PP=(2 —«)/6, e' ' PP= —«I3

m1 m2 p m3
(A28}
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e"' P= —e' ' P= —(2+r)/6l/3
m, m2

and, for =

(A29)

m

m

m

(2) AA,

w = e'2) m s,s

Ap e(2) m Ap

+5r) 1/8, (e~
~ = —(2+r)/9,

m3

+r)/6(e, rr = —r/3,
m3

r)/6&—3 .

(A30)

(A31)

(A32)

For A, we obtain

1).2.—e /l. il —
( 1 2r)/12 e v. —

1 /6
m~ &p m~ Ap m3 Ap

e'" PP= e' ' PP=(5 —2r)/36, e' ' PP=(1 4r)/18, —
m) ~p m2 Ap m3 Ap

e'" "P= —e' ' P = —(1+2r)/12&3,
m& m2 ~p

and for X one obtains

(A33)

(A34)

(A35)

e"' = e' ' =(5—2r)/36, e' ' =(1 4r)/18,—
m) ~p m2 ~p ~p

e' PP= e PP=(1 —2r)/12, e PP=1/6,
m) ~p my ~p m3 ~p

(
e'" P= —e' ' P=(1+2r)/12l/3 .

m& m2 ~p

Finally, for X ~A transition elements we have

(A36)

(A37)

(A38}

(
e(1) I elk —e(2) ~ AiL — 1/4+3

(1) m
pp (2) m

pp 1/4+3
x' m2 &p &p

(1) m 2p — (2) m /l.p —
1 /4

m& &p +p m2 &p hp

(
e (3) )12 —

1 /2l/3
X A

e' ' PP = —1/2V3,
r'

(A39}

(A40}

(A41)

4. Charge square operator

%'e only discuss the nucleon case: for the proton we obtain

(e'" )~~=(e' ' )~~=7/18 (e' ' )~~=2/9

(e )PP=(e )PP=5/18, (e )PP=4/9,

( e(1) ) )jp — ( e (2) ) rip —1/6+3 ( (3) )2p —0
P p

while for the neutron one obtains

( (1) )) A. ( (2) )2.A, 1/6 ( (3) ))) 1/3

(e"' )PP=(e' ' )PP=5/18, (e' ' )PP=1/9,

( e(1) )Ap — ( (2) ) 2.p —
1 /6l//3 ( (3) ) /l.p —0

(A43)

(A44)

(A45}

(A46)

(A47)
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