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New geometrical insight into the anomalies in string theory

Jian-Ge Zhou
China Center of Advanced Science and Technology (World Laboratory), P.O. Box 8730, Beijing 100080, People’s Republic of China
and Institute of High Energy Physics, Academia Sinica, P.O. Box 918(4) Beijing 100039, People’s Republic of China

Yan-Gang Miao
China Center of Advanced Science and Technology (World Laboratory), P.O. Box 8730, Beijing 100080, People’s Republic of China
and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, People’s Republic of China

Yao-Yang Liu
Department of Modern Physics, University of Science and Technology of China, Hefei 230026, People’s Republic of China
(Received 21 July 1993)

We apply the method of coadjoint orbits to evaluate the nonvanishing square of the BRST charge and
the central extension of the Virasoro algebra from the Weyl anomaly, which is based on the basic equa-
tion satisfied by the BRST operator on a coadjoint orbit associated with string theory.
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Recently, the construction of field theories on coad-
joint orbits of infinite-dimensional Lie groups has attract-
ed considerable attention [1-3]. Indeed, the construction
of the Wess-Zumino-Novikov-Witten (WZNW) theory
and two-dimensional (2D) induced gravity on coadjoint
orbits of Kac-Moody and Virasoro groups, respectively,
revealed a similarity in their structures, and a natural in-
terpretation for the SL(2,R) current algebra underlying
the 2D induced gravity has been found. Later on, the
method of coadjoint orbits was applied to construct bo-
sonized actions for anomalous gauge theories in two and
four space-time dimensions from the extended Lie alge-
bra generated by the Gauss-law constraints [4]. The
anomalous gauge algebra determines the anomalous part
of the actions. Otherwise, such a geometrical formula-
tion has also been used to analyze the commutation rela-
tions for the Gauss-law operators in anomalous gauge
theories [5]. The Becchi-Rouet-Stora-Tyutin (BRST)
operator on a coadjoint orbit associated with an anoma-
lous gauge theory satisfies a basic equation, and this equa-
tion reproduces the commutation relations for the
Gauss-law operators.

In this paper, we apply the method of coadjoint orbits
to explore the relationship among the anomalies in the
string theory. As is well known, in quantizing relativistic
strings at subcritical dimensions one encounters
anomalies that appear in different forms: the Weyl anom-
aly, the nonvanishing square of the BRST charge Q?, and
the Virasoro anomaly. Originally these anomalies were
discovered as a result of detailed calculations which in-
volved careful regularization of products of operators.
The relationship among these anomalies has been dis-
cussed from different schemes, and most of the results
can be found in Refs. [6-16]. Here we shall apply the
variational principle to derive Eq. (31) which relates the
BRST charge with the Weyl anomaly, and exploit the
basic equation satisfied by the BRST operator [5] on a
coadjoint orbit associated with the string theory to evalu-
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ate the square of the BRST charge Q2 out of the Weyl
anomaly. If we include the ghost contribution to the
Virasoro anomaly, the central extension of the Virasoro
algebra can be obtained from the value of Q2.

First, let us recapitulate the theory of coadjoint orbits
in the symplectic geometry of Lie groups G, laying a spe-
cial emphasis upon the fundamental equation (22) and its
solution, which we will use in our discussion. A coad-
joint orbit is a manifold constructed by a coadjoint action
of a connected Lie group G on a dual space of the Lie
algebra. Let g be a Lie algebra of the group G, and g*
the dual space of g. The coadjoint action of G and g on
g* are defined, respectively, by

(Ad*(x)U,Y)=(U,Ad"{x)Y)=(U,x"'yvx) , (1)
(ad*(X)U,Y)=—(U,adX)Y)=—(U,[X,Y]), )

where x €EG, X,YEg, UEg*, and (U, X)=U(X) is a
value of the linear functional U Eg* on the vector X Eg.
ad* is the coadjoint representation of the Lie algebra, and
satisfies the commutation relation

[ad*(X),ad*(Y)]=ad*([ X, Y]) 3

which can be obtained from (2).
Let {X,,X,, ...} be a basis of the Lie algebra g with
the commutation relations

(X Xy 1= fap X, s )

where f;, are structure constants, and let {67, e, .. .} be
a basis of the dual space, which satisfies the orthogonality
condition

(9",X1,>=5‘,§ . (5)

The general point of the coadjoint orbit Oy through a
fixed point Uy Eg* is defined as

U(g)=Ad*(g)U, (6)
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which can be expressed in terms of the coordinates
{u,,uy, ...} with respect to the dual basis as

Ug)=3 u,6° . (7)

The tangent vector field X is expressed in terms of the
coordinates on the coadjoint orbit as

0
X2=3 fu o ®
% b du,

which satisfies the commutation relations (4).

On Oy a natural G-invariant symplectic structure is
defined by introducing the symplectic two-form Q at U
as

(Qu; X5, YE)=(U,[X,Y]) . 9)

The symplectic structure {1, can be written in terms of

the one-form {v%v?% ...} dual to the vector fields

(X5, Xy,...]as

QU=%uabv”/\vb (10)
with

Ugp =Faplc - (1

The one-forms v* satisfy the equations
du, =u vt , (12)
dvi=—1fEv AV, (13)
owing to dQ ;=0 [1,5].
Denote by 8, the infinitesimal transformation on the

orbit by €. As a matter of fact 8y (X€Eg) is the Lie
derivative with respect to X:

8,U=L,U=ad*(X)U , (14)
§yY=LyY=ad(X)Y=[X,Y]. (15)

Let us consider the infinitesimal transformation on a
coadjoint orbit generated by an underlying generator Q
which takes values in g. For simplicity, we denote 8, =8.
Then the basic equations are

8U =ad*(Q)U , (16)

0X =ad(Q)X =[Q,X] , (17)

Svi=—1fEviAVE, (18)
and

du, ={(U,[0,X,])=uz " . (19)
The solution to (19) is

Q=X,v". 20

It should be noted that the solution (20) is not unique,
since we may add terms which commute with generators
(X,).

Taking infinitesimal transformations of both sides of Q,

8Q =8X,v*+X,8V°
=[Q.X, V"~ L1f5 XV AV, 2D
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and finally one obtains the basic equation for Q [5]:
80 =0*=1{0,0} . (22)

Equation (22) is the fundamental equation for Q, so that
the equation should hold even if there exist central exten-
sions in the algebra. And we will use this basic equation
to evaluate the nonvanishing square of the BRST charge
from the Weyl anomaly.

Now let us consider the Polyakov string theory de-
scribed by the action [6]

So=—1[d*ZV'—gg®Pd x+3px, , (23)

where x*(u=0,1,...,D —1) are the coordinates (in the
Minkowsksi space) of the string; g% (a,8=0,1) is the
metric tensor of the parameter space; d,=9,, 3;=0,;
g =detg,g. To avoid boundary effects, we will only dis-
cuss the closed string.

The action S|, is invariant under a reparametrization
and Weyl transformation. And the gauge-fixed action
[7,8,13]

S5=5,+5, (24)

is invariant under the BRST symmetry which is defined
by

Sgaﬁ = nyaygaﬁ + aBnygay + aanygﬁy + n WgaB ’
8x,=1"Bx,s SNT=NPO® Sny=nTdmu . (25)
Sﬁa:Bu? 6"_']W:BW ’

where 7%(%,) stand for the ghost (antighost) fields for
reparametrization, 7,,(7, ) for the ghost (antighost)
fields for the Weyl symmetry, and B,, By, for
Nakanishi-Lautrup auxiliary fields. S, is the sum of the
gauge-fixing term and Faddeev-Popov ghost term.

Now we apply the variational principle to the action

functional, and obtain

a.L i
-5¢'
90,6 ¢

8s=[d*z 3, , (26)

where we have used the Euler-Lagrange equations. ¢ are
localized fields.
For the action (24), 8S can be expressed as [8]

Lo
09 x*

oL oL
=[ 42 u g B 8
85 =[d*z 3, Sxh+ Fom°+ aaanwsnw ,

99,1

27)

where L, L, are the Lagrangian densities of S and S,
respectively.

On the other hand, the variation of the gauge-fixed ac-
tion under the BRST transformation (25) is given by
(8,14]

88 = [d?Z d,(1°L,) . (28)

However, because of the Weyl anomaly [6,7], the above
equation should be modified as [8,13,14]

88 = [d?Z 3,(n°Ly)+8yS (29)
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with

—2
sws =220 [a'zv =g R gy, (30)
where we have included the ghost contribution to the
Weyl anomaly. R (g) is the curvature for the two-
dimensional g ,g.

Combining (27) with (29) and (30) and taking the
boundary conditions of the closed string we are led to

8yS =dQ 31)

with

27 oL
Q=f0 pdxH—n’Ly+——-87P+ Sy

99,1 93,7 w
(32)

Equation (31) is similar to the descent equation (3.4) in
Ref. [5].

Under the rotation back to the Minkowski space §,S
picks up the factor —i [14]. And (31) can be expressed as

D=2 7o, -
(== [[d*ZV=gR @y =0, (33)

where the variable 7 should be integrated out but this
operation will be carried out below.

By virtue of the BRST transformation, Q can be writ-
ten as

27| 1 2 1 N2 —
Q=f0 TP =X +g. | (4

with

(35)

The explicit form of g, depends on S,, which consists of

the ghost fields. As a matter of fact Q is nothing but the
BRST operator [8,13].

According to the basic equation (22) satisfied by Q, one
has

(0,0} =250 =i2—g4_—ﬂ_2deZZ 5[V —gR(gmy]. (36)

Under the BRST transformation (25), (V' —g R7) can
be put into the form [13,14,16]

8(V =g Rny)=0,(n"nyV —g R +V —gg®nydmy) .
(37)

By making use of the boundary condition of closed
strings and integrating out the variable 7, we obtain

.26—D ™
{Q,Q}=lm—f02 do(n’nyV —gR

+V'—gg%nydgmpy) . (38)

In the orthonormal gauge, the above result agrees with
that in Refs. [14,16]. To see this we insert the orthonor-

mal gauge conditions (g,5=1,5) and the “safe” equation
of motion which are not affected by the Weyl anomaly
(16],

Tw=—3.m% 3= =0,

(39)
(ai=afiav’ ﬂizﬂoi’?l) ’
into (38) to obtain the known expression [14,16]
_;26—D ror a3 4+ a3 —
= - . (4
(0.0} =i~ fo do(n™3nT—9~37). 40

In the orthonormal gauge, the BRST operator becomes

27 - —
Q= fo do(Lyn™+L_q *n"n"aan"—n‘n"aaﬂl;
[Li=3p+x"P,L_=4(p—x)],
where we have chosen g, = —7°9°9,7°—7'9°9,m' as in
Ref. [8].
Inserting (39) into (41), the BRST operator can be
rewritten as

27 _ _ — —
Q=f0 do(Lyn*+L_n +7"3m n =77 3m n7).
(42)

This expression is of the same form as that in Ref. [9].
And the ghost fields ", 7~ satisfy the fundamental
canonical anticommutation relations [8,9]

(o), 5 (0"} =i8(c—0a'),
{T]i(o‘),nx(a')}=0.

In order to derive the Virasoro anomaly from the value of
Q2 we should Fourier decompose the BRST operator.
And L just become

(43)

| —i
L (r,0)=7— 3 L,e ilotrn,
L 1 nl;w 7 L —ilo—7)n “
_(T,a)—ZnEwL,,e .
For the ghost variables, we get
nt(r,0)= Eo preitotnn
L (45)
7—71(7_,0)=§n=2_w1-73:e—i(0i7)n,
with
(oM} =80, > (T2 } =0 . (46)

Using (44) and (45), we get a decomposition of Q:
Q=3 I, L,+n>,L,)

1 = _ N
__E 2 (n _m)[n;-:_%—mninntm-*_nn +m17-n77—-m] .

47)

Under Fourier decomposition, the right-hand side (RHS)
of (40) becomes
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D —26 o
(0.0}="1=3 ns, _,(nE,mE, —n,mT,.) .

(48)
Inserting (47) into the LHS of (48), we obtain
(Lo Ly )=(n =mL yp+ 2o200%,
[En’zm]:(n _m)in+m_-l%n38n.*m ’ (49)

where we have included the ghost contribution to the

central extension of the Virasoro algebra, since we do not

consider the normal ordering of the ghost part in (47).
Note that redefining L, and L, as

1
(=Ly+=—(D—26),
Ly=Lo+-( )

f(’)=LO—§(D—26)

leaves the structure of the Virasoro algebra (49) un-
changed, but the central extension is modified to the stan-
dard form

15 3
12(D 26)(n°—n)s, _,, -

(51)
This result shows that the piece of the Virasoro anomaly
proportional to n* is topological in origin and cannot be
eliminated.

In summary, we have evaluated the value of Q? and the
central extension of the Virasoro algebra out of the Weyl
anomaly by virtue of the basic equation satisfied by the
BRST operator, which can be derived from the method
of coadjoint orbits.
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