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General spherically symmetric solutions in charged dilaton gravity
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The static spherically symmetric metric around a source coupled to an electromagnetically charged
massless dilaton is obtained in the general case. The appearance of naked singularities is displayed.
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Nowadays there is a growing body of literature about
the gravitational field of string matter coupled to an elec-
tromagnetically charged dilaton field. Black hole solu-
tions in dilaton gravity were first analyzed in some gen-
erality by Gibbons and Maeda [1]. A family of solutions
representing static, spherically symmetric charged black
holes was described in a later work by Garfinkle,
Horowitz, and Strominger [2] and recently investigated
by Kallosh et al. [3,4] in the context of supersymmetric
theories. The modification of dilaton black holes which
result when the dilaton acquires a mass was subsequently
analyzed by Gregory and Harvey [5]. In all those papers,
however, the dilaton charge is not an independent vari-
able and its particular dependence on the other parame-
ters of the theory necessarily singles out, between all oth-
ers, only black hole solutions.

In this paper we will obtain, in a simple closed form
and with all parameters free, the static spherically sym-
metric metric around a source coupled to a massless dila-
ton with both electric and magnetic charge. This general
solution covers all the cases suitable to the various re-
gions of the available parameter space and describes,
apart from the above-mentioned black hole dilaton, a
wider variety of situations where the event horizon
shrinks to the pointlike essential singularity, thus forbid-
ding the appearance of black holes.

The equations of motion of the dimensionally reduced
superstring theory with the axion field put to a constant
are, in the SU(4) version,

Ve ¥F)=0, V(e *G*)=0,

M
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The required line element in four space-time dimen-
sions will be written in the form

ds2=kdtz—%drz—Rz(dt‘}zﬂLsinzﬁd(pz), 2
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where A and R, as well as the dilaton field ¢, are a func-

tion of » only. The Maxwell fields are
2
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2

]
F= dt Ndr , (3)

- 2¢
G=P e dINde . (4)

For future simplicity the electric charge Q. of the F
field will be put equal to Qe and the ma§netic charge
P agn Of the G field will be put equal to Pe ~~, where ¢,
is the asymptotic value of the dilaton field.

In (1) Maxwell equations are automatically satisfied
and the other equations become
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where a prime denotes a derivative with respect to r.
Equations (5) can be combined to give

(R2M)"=2, (6)
R"+R¢"*=0, ¥
(26—6 )
(2R2}»¢’+Rzk’)’=4Q2£—Ez— : (8)
~2é—d )
(—2R2k¢’+R2k’)’=4P2LiT . (9)

The solution depends on the five free parameters M, X,
P, Q, and ¢, where the mass M of the source and the
charge = of the massless dilaton are defined, respectively,
by the equations A~1—2M/r and ¢~¢,—2/r at
¥ — 0.

We will look for the solution of the equations of
motion in the following way. Equation (6) gives immedi-
ately
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RXA=(r—r Nr—r_). (10)
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Deﬁnizr(lg ] )the quantities  f=Ae o=s and

=Ae %=’ Eqgs. (8) and (9) become, respectively,
RZK%] =4Q2R—fzx , (11)
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and can be properly solved with respect to f and g.
The functions f and g have the following expressions in
the various regions of parameter space:

(13a)

(13b)

2 N —

f= 1—9122—?—)— 1+tan? |arctan 21 7 +V202—(M+3)?h(r) | | for (M+2)—20%<0,
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and
1-g |’
g= [m‘m e for (M—3)*—2P%>0, (14a)
g=[1—V2|P|h(r)]7? for (M—32)*—2P*=0, (14b)

s R
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o
(M—3)
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[
where Moreover the integration constants in Eq. (10) must obey
the condition
r—r
L i | forr,—r_>0, ro—r_=2VM+32-P2—Q2. (17)
ry—r_ r—r_
h(r)= (15) Physical configurations are therefore obtained in those
—— for r, —r_=0, regions of parameter space where M2+ 32— P2—Q?>0,
Fr=r+ which is the supersymmetric positivity bound.
The functions f and g chosen, respectively, from Egs.
and (13) and from Egs. (14) are physically acceptable only if
20? 172 the reality condition in Eq. (17) is satisfied, thus forbid-
1 3 ding the simultaneous choice of those pairs of functions
A= (M+2) for which the positivity bound turns out to be violated.
202 72> Taking care of this fact Eqgs. (1) are therefore solved by
1+ |1 —
(M+3)? A=Vfg ,
- | 2p? 12 - (r—r+)(_r—r_) 18)
(M —3) vfe
B= 2p? 72 » o 172
1+ [1—-—2— PR i
(M—2) (16) §

a=2V(M+3)*—20?,
b=2V(M —3)*—2P?%.

together with the Maxwell fields in Egs. (3) and (4).
Let us notice that taking the limit £—0 in the line ele-
ment (2) makes sense, because of the first of Egs. (5), only
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if simultaneously P>*—Q?—0; accordingly one has the
Reissner-Nordstrom solution when |P|=|Q| and the
Schwarzschild solution when P=Q =0.

In the general case the metric behaves quite differently
in the various regions of parameter space, even if in the
asymptotic region its common behavior is

2 2
ere {1_M+!LQ i

R R?

dR?
_erM]

1
R R?

—R*d9*+sin*3d¢?) , (19)

where use has been made of standard coordinates to have
a better comparison with classical solutions.

Let us first consider the case when the functions f and
g are given by Eqs. (13a) and (14a), respectively, and so
ry —r_>0. Because of the form invariance of the
metric under shifting r by a constant, we put simply
r_=0. The radial coordinate r now is bounded to vary
in the range from r, =2V M?>+32—P2—Q? to «, and
when it reaches its minimum value . one can see that A
vanishes. The standard radial coordinate R behaves
differently at » =r, according to the value of the quanti-
ty 2M3+P*— Q2.

When 2M 3 + P?— Q?%0, R tends to zero as r tends to
r+, so the seeming horizon at r=r_ actually shrinks to
the essential pointlike singularity at R =0 where the in-
variant scalar curvature R, R"" becomes singular. We
cannot speak of a black hole dilaton, because the redshift
would become infinitely large for a radius infinitely small.
The situation was already considered by us in a previous
work [6]; the line element we found there in the case of a
scalar modified Schwarzschild spacetime, can now be
recovered from the actual metric setting to zero both the
electric and the magnetic charges of the dilaton. When
2M 3+ P?—Q?=0, which is the choice made in [1-3], R

reaches a finite value at » =r, and one has consequently
a black hole dilaton.

Another possible choice for the functions f and g is ob-
tained by selecting either Egs. (13a) and (14b) or Egs.
(13b) and (14a) and this gives the previous result for the
case when 2M Z+P2—Q2#O, i.e., the absence of black
holes. When the functions f and g are given, respective-
ly, by Eq. (13b) and by Eq. (14b), which implies
r, —r_=0, it follows also that 2M 3+ P?—Q?=0. This
is the case of the extreme charged dilaton black holes,
which has been extensively treated in Refs. [3,4].

Different conclusions can be drawn when f or g are
given by the other admissible combinations of Egs. (13)
and (14), namely, either by Egs. (13a) and (14¢) or by Egs.
(13c) and (14a), and consequently r, may be equal or
greater than r_ but 2M 3 +P>—Q?70. In each of these
cases the radial coordinate r is bounded to vary in the
range from r; to «, where r is the greatest of the values
of r for which either the right-hand side of Eq. (14¢) or
that of Eq. (13c) becomes infinitely large.

One can check that at » =r;, where A tends to infinity,
R tends to zero because r, is greater than r .. Now it
happens that there is a blueshift becoming infinitely large
for a radius becoming infinitely small. A graphical repre-
sentation of the above discussion in the (M,Z) plane of
parameter space highlights the existence of continuous
regions each with its own spacetime description. Con-
ventional black holes appear only where the condition
2M3+P*—Q?=0 is exactly verified, otherwise one
enters a neighboring region where black holes are not al-
lowed. It is apparent that however small a variation of
parameters be in the above equality it forces the surface
at r =r, to suddenly assume the topology of a point.

From the above discussion it follows that in the new
solutions we obtained in this paper there is the appear-
ance of naked singularities. Unfortunately definite argu-
ments in support of the stability of these solutions are
presently missing, and future investigations into this sub-
ject are therefore needed. As a conclusion we neverthe-
less would like to point out that consequences of charged
dilaton gravity for the cosmic censor hypothesis might
prove to be of particular interest.
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