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General spherically symmetric solutions in charged dilaton gravity
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The static spherically symmetric metric around a source coupled to an electromagnetically charged
massless dilaton is obtained in the general case. The appearance of naked singularities is displayed.

PACS number{s): 04.20.Jb, 04.70.Bw

Nowadays there is a growing body of literature about
the gravitational field of string matter coupled to an elec-
tromagnetically charged dilaton field. Black hole solu-
tions in dilaton gravity were first analyzed in some gen-
erality by Gibbons and Maeda [I]. A family of solutions
representing static, spherically symmetric charged black
holes was described in a later work by Garfinkle,
Horowitz, and Strominger [2] and recently investigated
by Kallosh et al. [3,4] in the context of supersymmetric
theories. The modification of dilaton black holes which
result when the dilaton acquires a mass was subsequently
analyzed by Gregory and Harvey [5]. In all those papers,
however, the dilaton charge is not an independent vari-
able and its particular dependence on the other parame-
ters of the theory necessarily singles out, between all oth-
ers, only black hole solutions.

In this paper we will obtain, in a simple closed form
and with all parameters free, the static spherically sym-
metric metric around a source coupled to a massless dila-
ton with both electric and magnetic charge. This general
solution covers all the cases suitable to the various re-
gions of the available parameter space and describes,
apart from the above-mentioned black hole dilaton, a
wider variety of situations where the event horizon
shrinks to the pointlike essential singularity, thus forbid-
ding the appearance of black holes.

The equations of motion of the dimensionally reduced
superstring theory with the axion field put to a constant
are, in the SU(4) version,
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The required line element in four space-time dimen-
sions will be written in the form
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where A, and R, as well as the dilaton field P, are a func-
tion of r only. The Maxwell fields are
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For future simplicity the electric charge Q„„ofthe F
field will be put equal to Qe

" and the ma netic charge

P, „ofthe G field will be put equal to Pe ",where $„
is the asymptotic value of the dilaton field.

In (I) Maxwell equations are automatically satisfied
and the other equations become
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where a prime denotes a derivative with respect to r.
Equations (5) can be combined to give
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The solution depends on the five free parameters M, X,
P, Q, and P„, where the mass M of the source and the

charge X of the massless dilaton are defined, respectively,
by the equations A, —I 2M /r and P—-P —X/r at
r —+ 00.

We will look for the solution of the equations of
motion in the following way. Equation (6) gives immedi-

ately
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Defining the quantities f=A, e " and

g =A,e ",Eqs. (8) and (9) become, respectively,
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and can be properly solved with respect to f and g.
The functions f and g have the following expressions in

the various regions of parameter space:
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where Moreover the integration constants in Eq. (10) must obey
the condition
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Physical configurations are therefore obtained in those
regions of parameter space where M +X P Q&0, — —
which is the supersymmetric positivity bound.

The functions f and g chosen, respectively, from Eqs.
(13) and from Eqs. (14) are physically acceptable only if
the reality condition in Eq. (17) is satisfied, thus forbid-
ding the simultaneous choice of those pairs of functions
for which the positivity bound turns out to be violated.

Taking care of this fact Eqs. (1) are therefore solved by
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together with the Maxwell fields in Eqs. (3) and (4).
Let us notice that taking the limit X~O in the line ele-

ment (2) makes sense, because of the first of Eqs. (5), only
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if simultaneously P Q—~0; accordingly one has the
Reissner-Nordstrom solution when ~P~ =

~Q~ and the
Schwarzschild solution when P =Q =0.

In the general case the metric behaves quite differently
in the various regions of parameter space, even if in the
asymptotic region its common behavior is

ds2- 1
2M + P +Q

dt's
R2

dR

2M+ X +P +Q
R2

—R (d8 +sin Ides'), (19)

where use has been made of standard coordinates to have
a better comparison with classical solutions.

Let us first consider the case when the functions f and
g are given by Eqs. (13a) and (14a), respectively, and so
r+ —r &0. Because of the form invariance of the
metric under shifting r by a constant, we put simply
r =0. The radial coordinate r now is bounded to vary
in the range from r+ =2+M +X P Q —to oo—, and
when it reaches its minimum value r+ one can see that A.

vanishes. The standard radial coordinate R behaves
differently at r = r+ according to the value of the quanti-
ty 2MX+P —Q .

When 2MX+P —
Q %0, R tends to zero as r tends to

r+, so the seeming horizon at r = r+ actually shrinks to
the essential pointlike singularity at R =0 where the in-
variant scalar curvature R„,R" becomes singular. We
cannot speak of a black hole dilaton, because the redshift
would become infinitely large for a radius infinitely small.
The situation was already considered by us in a previous
work [6]; the line element we found there in the case of a
scalar modified Schwarzschild spacetime, can now be
recovered from the actual metric setting to zero both the
electric and the magnetic charges of the dilaton. When
2MX+P —Q =0, which is the choice made in [1—3], R

reaches a finite value at r =r+ and one has consequently
a black hole dilaton.

Another possible choice for the functions f and g is ob-
tained by selecting either Eqs. (13a) and (14b) or Eqs.
(13b) and (14a) and this gives the previous result for the
case when 2MX+P —Q %0, i.e., the absence of black
holes. When the functions f and g are given, respective-
ly, by Eq. (13b) and by Eq. (14b), which implies
r+ r—=0, it follows also that 2MX+P —

Q =0. This
is the case of the extreme charged dilaton black holes,
which has been extensively treated in Refs. [3,4].

DifFerent conclusions can be drawn when f or g are
given by the other admissible combinations of Eqs. (13)
and (14), namely, either by Eqs. (13a) and (14c) or by Eqs.
(13c) and (14a), and consequently r+ may be equal or
greater than r but 2MX+P QWO—. In each of these
cases the radial coordinate r is bounded to vary in the
range from ro to ~, where ro is the greatest of the values
of r for which either the right-hand side of Eq. (14c) or
that of Eq. (13c) becomes infinitely large.

One can check that at r = ro, where ~ tends to infinity,
R tends to zero because ro is greater than r+. Now it
happens that there is a blueshift becoming infinitely large
for a radius becoming infinitely small. A graphical repre-
sentation of the above discussion in the (M, X) plane of
parameter space highlights the existence of continuous
regions each with its own spacetime description. Con-
ventional black holes appear only where the condition
2MX+P Q=O is—exactly verified, otherwise one
enters a neighboring region where black holes are not al-
lowed. It is apparent that however small a variation of
parameters be in the above equality it forces the surface
at r = r + to suddenly assume the topology of a point.

From the above discussion it follows that in the new
solutions we obtained in this paper there is the appear-
ance of naked singularities. Unfortunately definite argu-
ments in support of the stability of these solutions are
presently missing, and future investigations into this sub-
ject are therefore needed. As a conclusion we neverthe-
less would like to point out that consequences of charged
dilaton gravity for the cosmic censor hypothesis might
prove to be of particular interest.
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