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Coarse-grained entropy and stimulated emission in curved space-time
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We study entropy generation and particle production in scalar quantum field theory in expanding
space-times with many-particle mixed initial states. The recently proposed coarse-grained entropy ap-
proach by Brandenberger et al. is applied to systems which may have a nonzero initial entropy. We find

that although the particle production is amplified as a result of boson statistics, the (coarse-grained) en-

tropy generation is attenuated when initial particles are present.
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One of the interesting features of quantized fields in a
curved space-tine [1] is that the concept of particles be-
comes very observer dependent. For instance, in an ex-
panding universe spontaneous particle creation can
occur. One defines generally a vacuum state such that all
inertial observers in the past region agree that the space-
time looks empty of particles. As a result of the expan-
sion of the Universe, the above vacuum state looks full of
particles using modes natural to inertial observers in the
far future region. Stated differently, a no-particle initial
state can evolve to a many-particle state. However, since
one starts with a pure state, one ends with a pure state.
Thus there must be subtle correlations between the parti-
cles in the final state. In particular, there is no entropy
production in this process even if lots of particles are pro-
duced. But it may be that some of these subtle correla-
tions are very difficult to detect and/or that they may be
quite sensitive to interactions between the produced par-
ticles. One may then consider such information about
the system to be "less relevant" and either discard it alto-
gether or apply some kind of a "statistical averaging"
procedure to it. This way one can try to associate a
"coarse-grained" entropy to the final state of the system,
hopefully in as natural way as possible. There has been a
lot of work in this direction by Hu, Kundrup, and co-
workers [2].

Recently, such novel approaches have been proposed.
Brandenberger, Mukhanov, and Prokopec (BMP) dis-
cussed in Refs. [3,4], among other issues, a coarse-

graining procedure based on averaging over the so-called
squeeze angles which appear in the S matrix of particle
production. On the other hand, Gasperini and Giovan-
nini [5], together with Veneziano (GGV) [6] related en-

tropy generation to an increased dispersion of a
superfluctuant operator. Both groups were especially in-
terested in the entropy generation related to the produc-
tion of gravitational waves and density fluctuations in
inflationary universe models.

In this Brief Report, we study the coarse-graining pro-
cedure based on averaging over the squeeze angles, which
we shall call the BMP approach. We investigate the en-
tropy generation starting not from an initial vacuum state
with zero entropy, but allowing the system to be initially
in some generic many-particle (mixed) state with nonzero

entropy. If one starts with many bosons it is known [7]
that the particle production will be amplified as a result
of boson statistics, as one would expect. So, in general,
one can ask whether or not the entropy generation (in the
coarse-grained sense) would also be amplified. Indeed, as
a consistency check it is necessary to investigate if
definitions of coarse-grained entropy will lead to a grow-
ing entropy even if the initial state is allowed to be an ar-
bitrary many-particle state with initial entropy. In Refs.
[5,6] the GGV entropy was shown to be growing at least
in certain classes of initial states. Interestingly, it was
found that their entropy generation did not depend at all
on the number of particles or entropy of the initial state.
Here we will attempt to investigate the BMP entropy in
similar situations. At least in the case of an initial densi-
ty matrix where particles appear as pairs of opposite mo-
menta and the initial entropy depends on the average oc-
cupation number per mode, we can show that the BMP
entropy grows, though the entropy generation is at-
tenuated. The BMP entropy does depend on the initial
number of particles in a nontrivial way. In the end we
comment briefly on the case of an initial thermal density
matrix.

A scalar field in a D-dimensional curved space-time is

described by an action

5=f d x& —g —jg"'B„pt3,$ [m +JR(x)]t—I) ], (1)
1

where R(x) is the Ricci scalar curvature of the metric
and g is a coupling constant. Assume that the metric de-

pends explicitly on time and that it is asymptotically flat
in the far past and far future: g„,(x, t)~C+rl„„, as
t ~+ cc. In this case there are two natural ways to quan-
tize the field P in the Heisenberg picture [1]. One can ei-
ther use modes which look like plane waves in the far
past region or modes which look like plane waves in the
far future region, respectively. One then associates two
sets of annihilation and/or creation operators to these
modes, the "in" and "out" operators. These in turn
define two vacua: one for the "in" annihilation operators
and one for the "out" operators.

The "in" and "out" modes can be related via a Bogo-
liubov transformation, which can be given in terms of an-
nihilation and/or creation operators as

0556-2821/94/49(4)/2122(4)/$06. 00 2122 1994 The American Physical Society



BRIEF REPORTS 2123

~i » out p» tout
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This transformation is generated by an S matrix

a-+ =Sa-~"'S
k k 7

which has the explicit form [8]

S= 1
exp [

t [&
—ip» ] a/out&gout

Qdet(az-)

(3)

In the far future region an inertial observer sees the aver-

age occupation number per mode using out modes as

rt -= Tr(Sp S i~goo'~-ttu1

k Trp f k kf
Using the cyclicity of the trace and the properties of the
Bogoliubov transformation one can derive the relation
between n and n k to be

k

+ [~
—i 1] . &gout&~ut n f =

i a&- n -'+
i pz-~ (1+n-') . (9)

t [~
—

ip] .gttutgttut ]. (4)

g f(nz)Sin&, out)(out, nziS
n =0

k

=Spf S

using (3) and (5). Suppose now that the system is initially
in an arbitrary many-particle state. In this state the aver-
age occupation number per mode (using in modes) is
given by

n -'= Tr(p;a~'"a'") .1
(7)

The factor 1/Qdet(a&-) is the in-out vacuum amplitude.
We use the convention of Ref. [9] where the coefficients a
are taken to be real. The S matrix is known to generate a
unitary transformation between the "in" and "out" rep-
resentations if the gravitational field has a compact sup-
port [10]. For Robertson-Walker-type universes the in-
out vacuum amplitude is zero and the "in" and "out"
representations are thus unitarily inequivalent.

The S matrix relates the in- and out-vacuum states in
the following way:

iO, in) =SiO, out)

1
e pI 2 [a 'p]I I-,al'"'at, ,'"'-] i0, out) .

(5)

This is the statement that an inertial observer in the far
future region sees the in-vacuum state as full of out parti-
cles. Similarly, the density matrix of the system expand-
ed using in modes (—=p;) can be related to an expression
using out modes ( =—pf ) as follows:

p;=g g f(ni, )int, ,in)(in, ni, i

n~ =0

ag-=aM~q -—=cosh~xi,p ~p p

— '~I,
PI,-=PM&& -——e "sinhr& 5&k k, —p

(10)

The parameters Ik and 8& are called squeeze parameter
and squeeze angle in the quantum optics literature, and
the S matrix is called a two-mode squeeze operator [12].
If one starts with a vacuum state, the final state (5) is
called a squeezed vacuum. In the initial vacuum case, if
one expands the corresponding Spf S ' in the "out" basis
of energy eigenstates, one finds [4] that the off-diagonal
components of Spf S ' have an oscillatory dependence of
the angles 8&. In the BMP coarse-grained entropy ap-
proach it is assumed that these angles represent irrelevant
information about the system (e.g., in the sense that they
would be very difficult to measure) and they are therefore
averaged over. After the averaging only the diagonal ele-
ments of Spf S ' survive and one then defines a coarse-
grained entropy with the resulting reduced density matrix
p„~ with the usual formula S=—keTr(p„dlnp„, d). The
result is [3,4]

This is the formula for "stimulated emission" [7]. It tells
us that even if the spontaneous creation of particles is
weak, ipse-i «1, the particle production n ~& n-'„ca—n
become arbitrarily large, if the initial average occupation
number per mode is arbitrarily large. This amplification
of particle production is a result of the boson statistics of
the particles. For fermions the particle production would
be attenuated [11].

Let us now discuss for simplicity metrics of the form
ds =dr a(t—)dx, where a(t) is a scale parameter of
the Universe. We again just require that a(t)~a+
asymptotically as t ~+~. As a result of the invariance
under spatial translations, the Bogoliubov coefBcients can
be written as

Sf 0=g sf' =ke g(cosh rz—ln cosh rz
—sinh rz ln sinh rz )

k

=keg[(n f +1)ln(n-' +1)—(n ' )1n(n ' )],
k k k k

k

where the notation n f' means the left-hand side (LHS)
k

of (9) in the case of an initial vacuum state. Now we turn
to consider initial density matrices p;, which can describe
generic many-particle states with nonzero entropy. Let
us assume that the initial density matrix has the form

P = II g f+1, rt)lni, , n q, in)(in, n-, n
k, (k )0) & =0

where the coefficients f+& n) are of the form

f+~n) =(n
q

)"/(n q+1)"+' .

(12)



2124 BRIEF REPORTS 49

That is, we start with a many-particle state where parti-
cles appear in pairs of opposite momenta, with an initial
average occupation number spectrum n k

=n '
k and

with (ordinary) entropy given by —ks Tr(p, lnp, ). Writ-

ing the initial entropy in a more explicit form, it is

X
k, (k &0)

=k~ g [(n k+1)ln(n k+1)—(n k)ln(n k)] . (13)
k, (k, &0)

(17)

ES~ —S~ Skk (18)

(19)

where (17) applies to the former case and (18) to the latter
case. As a first consistency check, we find that ask ~0,
so the coarse graining led to a growing .entropy in our
many-particle case. However, as we compare (18) and
(17) we find that

When we expand the resulting final density matrix

SpfS ' (6) in "out" energy eigenstates, we find that, in

this case, also, the off-diagonal elements have an oscilla-
tory dependence on the angles 0k. Therefore, following

the BMP approach and averaging over the angles, only
the diagonal elements will survive. Thus the reduced
density matrix of the final state has the form

p„d= g g f+kn)~nz, n k, out) (out, nk, n

k (k &0) n=0

(14)

i.e., the entropy generation is attenuated if one starts with
many particles present in the mode k. The equality holds
if and only if n k

=0. This result is easiest to see in the
following way. Consider the difference hs- —hy-. Sub-

k k'
stitute (16) and (13) to (18), and (11) to (17). Then substi-
tute n f as a function of n

&
and

~ pk ~

= sinh rk by using
k

(9) and (10). The difference ask b,oak dep—ends then

symmetrically on n z and
~ pk ~

. By drawing a three-
dimensional (3D) plot one can see that it is always non-
positive and it decreases monotonically as either variable
increases. Further, as both variables approach infinity,

where As-- —b,g-~ ln2 —1 = —0.31
k k

(20)

fk(n)=(nk, n k, out SpfS ' out, n&, n k) .

After some effort, one can show that the coeScients have
the form

f+zn)=(n -)"/(n +1)"+',
k k

where n is the LHS of (9) with the n k of (12). Thus,
k

the final coarse-grained entropy is

sf—=
k

k, (k, &0)

=k g [(n -+1)ln(n -+1)—(n f )ln(n -)] .
k k k k

k, (k &0)

asympotically. This finite value is the maximum
difference between the generated entropies per mode.
Thus, unlike the GGV entropy, the BMP entropy genera-
tion is not independent of the number of particles in the
initial state, but has some "memory" about the initial oc-
cupation numbers. Since entropy is a measure of loss of
information, it would appear that more information
about the initial state of the system is conveyed to the
fina1 coarse-grained state when stimulated emission dom-

inates the spontaneous particle production (since the en-

tropy generation is attenuated).
The next case to be investigated would be an initial

thermal density matrix

(16)

The entropy depends only on the occupation number

spectrum of particles in the final state. This result is in

agreement with a similar formula given in Ref. [3] by a

more heuristic argument to define entropy of a statistical
system with a definite spectrum which is valid both in

and far out of thermodynamical equilibrium. Let us now

compare the entropy generation per mode in the initial
vacuum and initial many-particle cases. Denote

This situation is somewhat trickier to deal with for the
following reason. Initially, the particles of opposite mo-

menta are uncorrelated. However, in the expansion of
the Universe the particles are produced in pairs of oppo-
site momenta. This induces correlations between the op-
posite momenta in the final density matrix. It would

have the form

SpfS '= P g fH&n, nm', )m~n mk&, out)(out, nk, m'
k ~,

k, (k & 0) n, m, n', m'=0
z

where

f+zn, m;n', m')

(21)

1
nk, m k, out exp —cu-'" o'ka~k'"' —ka'"k +kayak"'

— a '"' + k —k out, nk, m'
k . 22

k —k
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p„a= g g f+kn )f +km)Ink, m k, out)
k(k )0) nm =0

X (out, nk, m (23)

which is of the same type as the initial density matrix.
Now the final entropy would be given by

Sf= —kate g f+kn}lnf+kn ) .
k

(24}

Again, one can see that the nAn' or

mmmm'

components
have an oscillatory dependence of the squeeze angles and
they vanish in the coarse graining. However, the diago-
nal coefficients (those of the reduced density inatrix) will
have a form f+zn, m ) where the dependence on n and m

does not factorize. Hence the opposite momenta have ac-
quired correlations through the particle production and
the reduced density matrix is not of the same type as the
initial one. As advocated in Ref. [6], one would like to ig-
nore the correlations between different modes. Further,
one should not do this by replacing the two-mode squeeze
operator by a one-mode squeeze operator, since the parti-
cles are then not created in the correct way as pairs of op-
posite momenta. We would like to propose that the
correlations between opposite momenta could be ignored
by proceeding to define f+& n ) =g f+k n, m ) and

f +km)=g„f+kn, m). Then we would define the final

reduced density matrix to be

Unfortunately, at the present we do not have explicit for-
mulas for the coefficients f+zn) or the final entropy. It
would be very interesting to see if the resulting expres-
sions could depend on the final average occupation num-

ber in the same fashion as in the earlier case. We hope to
be able to return to this question in the future.

Finally, let us clarify that even if we found a different
result as in the GGV approach, that the entropy genera-
tion depends on the number of particles in the initial
state, we are not arguing that it would mean that the
BMP approach is "better" than the GGV approach. As
stated in Ref. [2], it is good to have different definitions of
entropy, corresponding to loss of different information
about the system. Both the BMP and GGV approaches
have the virtue of giving the correct average occupation
number of particles in the final state. Otherwise the
GGV approach appears to discard information about the
system a bit more generously, since it leads to a greater
growth of entropy.
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