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Helicity conservation in the Aharonov-Bohm scattering of Dirac particles
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%e show that the helicity operator A for a particle in the presence of an infinitely thin magnetic Aux

tube requires, as the Hamiltonian H, for its complete determination as a self-adjoint operator, the
specification of boundary conditions (BC's) that have to be chosen out of a four parameter family of ad-
missible ones. To each value of the parameters there corresponds a self-adjoint operator with eigenfunc-
tions and eigenvalues determined by the associated BC s. For each choice of the dynamics H we investi-

gate under which conditions the corresponding BC is also admissible for the helicity A. When this hap-

pens, and only when this happens, it is possible for H and A to satisfy identical BC s. Although their ac-
tions formally commute before specification of boundary conditions, only identical BC s will ensure
effective commutativity, in the sense that they will have a complete set of common eigenfunctions and
that A will be a conserved quantity. We show this to be the case only for a special {but large) class of
BC s. Our results imply that helicity conservation, although imposing some restrictions on the choice of
the dynamics, does not solve the problem of the indeterminacy in the choice of BC's in the Aharonov-
Bohm scattering of Dirac particles. Our results also show that it is possible to choose BC's such that
both helicity is conserved and the Aharonov-Bohm symmetry ($~d+1) is preserved, where P is the
magnetic flux in natural units.

PACS number(s): 03.65.Bz, 03.65.Ge, 03.65.Nk
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This Hamiltonian (1.1) decomposes into two uncoupled
operators acting on two component spinors, but we shall
use the four-component spinor representation, so that we
can accommodate the helicity operator given by

(1.4)

where X is the spin operator which is given by
X=(X,, X~),

0 0 o2

o2 0

The Hamiltonian for a charged Dirac particle of mass
m )0 in the presence of an infinitely thin magnetic flux
tube is

The two operators H and A are only formally dined by
(1.1) and (1.4) and, at this level, they commute as one
easily verifies. One should, however, be warned against
hasty conclusions concerning the possibility of their
simultaneous diagonalization and of helicity conservation
in the dynamics given by H. In fact, both operators H and
A suffer from the same disease: for them to become self-
adjoint operators it is necessary to specify boundary con-
ditions (BC s) at the origin to be satisfied by their eigen-
functions, since the usual assumption of regularity at the
origin is not compatible with the requirement of self-
adjointness if P is not an integer. In contrast, for integer
P, regularity at the origin is not only acceptable but is the
unique BC leading to self-adjoint operators H and A. For
the Hamiltonian H, this fact was first recognized by Ger-
bert [1] who at the same time provided a description of a
class of admissible boundary conditions to be imposed on
the eigenfunctions, so that for each one of them H be-
comes a self-adjoint operator. In fact, he completely
solved this problem with the extra restriction that the re-
sulting operator remains decomposable as a pair of un-
coupled operators acting on two-component spinors (see
also Ref. [2] for a complementary discussion).

In this paper we first show that, indeed, the helicity
operator A also requires a specification of BC's for it to
be realized as a self-adjoint (SA) operator. Next, we de-
scribe the class of admissible BC's for this to happen. It
turns out that both H and A have each a four parameter-
family of self-adj oint realizations in one-to-one
correspondence with BC's to be satisfied by the eigen-
functions at the origin.

The next relevant question is, then, "Is it possible to
choose the same boundary conditions for both H and A
so that the corresponding SA operators will have com-
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( —x2,x, ), r &R,
eA& r

0, r&R . (1.6)

With this replacement the operators Hz and Az so ob-
tained are essentially self-adjoint, since regularity at the
origin is the only admissible BC for their eigenfunctions.
Self-adjoint realizations of H and A are then obtained by
taking the limit R ~0 on the wave functions of H„and
Az. Let us call Ho and Ao the SA operators, so obtained.
Notice that [H xA a]=0, i.e., Hx and Ax do commute
for R )0 and this implies that the two limiting SA opera-
tors Ho and Ao will have common BC's and will com-
mute with the usual implications. In particular, the heli-
city operator Ao is a conserved quantity in the dynamics
defined by Ho. This was actually implicit in [5,6], where
it was also implied that "helicity conservation" would re-
move the indeterminancy in the choice of BC's for H and
select the BC assigned to Ho as the physically relevant
one.

We revisit this problem and consider the following
questions.

(i} Is every admissible BC for H also admissible for A?
The answer is no: There are BC's that are admissible for
H and not for A, and therefore in the dynamics associat-
ed to these BC's there is no way of getting helicity con-
servation.

(ii) Is the BC associated with Ho the only one which is
also admissible for A, in other words, is this the only dy-
namics compatible with helicity conservation? The
answer is no: There is a large class of BC's for H which
are also admissible for A, and for each one of them it is
possible to have helicity conservation if we take for A and
H the same BC. Therefore, helicity conservation cannot
by itself be used to select the physical BC.

In particular, also compatible with helicity conserva-
tion are the boundary conditions obtained in Ref. [2]
through a variant of the above-described limiting pro-
cedure, where a constant potential Vz is introduced in-
side the tube:

mon eigenfunctions and helicity will be conserved?" This
question has been considered before in the literature as
follows.

A natural procedure, proposed in Refs. [3,4], to choose
BC's for H and A consists in replacing the "thread of
Aux" by a fictitious tube of radius R, with the magnetic
field concentrated on the surface of the tube, i.e., A is re-
placed in (1.1) and in (1.4) by

tonian and the helicity operators require the specification
of boundary condition at the surface of the tube. (This
should not be confused with the fictitious penetrable tube
introduced above as a mathematical tool devised to con-
trol the limit R —+0, in which case both the Hamiltonian
and helicity operators are uniquely defined for R &0.)
The two questions raised in (i) and (ii) above are again
relevant and the respective answers turn out to be exactly
the same. This shows that the relevant physical feature
of this problem is its topology which is preserved in the
limit R ~0 with fixed P.

This paper is organized as follows. In the next section
we give a precise description of the admissible BC for the
helicity operator A; they are parametrized by 2 X 2 uni-

tary matrices. We make explicit this dependence and an-
alyze the possibility of common BC's for H and A. The
more technical discussion of how to obtain these BC's is
postponed to the Appendix. In Sec. III we discuss the
impenetrable tube of finite radius and some of the impli-
cations of our results.

II. THE ADMISSIBLE
BOUNDARY CONDITIONS

which connect the two formal operators (1.1) and (1.4):

A = U(H Pm )U— (2.2)

This follows from

Uaj U '=X, j=12 .

It is important to notice that both H and A commute
with the total angular momentum operator

J3 X3/2+ 13

where

cr3 0
X3= 0 cr3

and

l3 = (X,P~ —X2Pi )

We begin by noticing that there exists a unitary trans-
formation U given by

lg3
(2.1)

Vz(r)=uii, r (R, Vx(r)=0, r &R

and uz is suitably fine tuned as a function of R. In this
case helicity conservation takes place only in the limit
R ~0 since for R )0, the two operators do not com-
mute.

If, however, one is given an impenetrable tube of radius
R &0 with a magnetic flux P confined to its interior [as
given for instance by (1.3) or (1.6)] then both the Hamil-

As a consequence, and it may be also checked by an ex-
plicit computation, the operator U leaves the subspace of
total angular momentum n +—,

' invariant.
The unitarity equivalence (2.2) substantially simplifies

the analysis, since the solution of the problem of bound-
ary conditions for A can be read off the corresponding
problem for (H —Pm }, and the latter is almost identical
to the same problem for H.

In polar coordinates (r, y), after separation of variables,
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y2(r)e'~
e in'

y3(r)

X (r)e'

V]2

V22

through the equations

(1+v»+luip)W+(I Vii+lUi2)Z

(2.8)

the eigenvalue equation for H pm—reads

h 0
(H pm —),y= 0 h

y(r) =Ex(r),
V

(2.3)

+(1+v» —iu, 2)y+(1 —u» —iv, z)x =0,
(2.9)

(I +Upi + lV22 )M + ( l Upi + lump )Z

+ ( i —+ u»
—iu 22 )y + (i —u z, iv—22 )x =0 .

where

y(r) = y&(r)

X3(r)

y4(r)

(2.4)

For the Hamiltonian, we are not going to consider the
most general possible boundary conditions, and we shall
restrict our considerations to a special class of boundary
conditions that, although not exhausting the class of ad-
missible BC's includes all previously discussed boundary
conditions in the literature. They are parametrized by
two angles 5, and 52 through

x cos5, —iy sin5, =0,
z cos52 —im sin52 =0 .

(2.10)

V
l

r
0

(2.5)

and v=n+P, n + —,
' =total angular momentum.

Analogously, the Schrodinger equation for H after the
same separation reads

h, —cr3m 0
H, , = h„+a 3m

(2.6)

As shown in the Appendix, if —1&v&0, both Eqs.
(2.5) and (2.6) require the specification of boundary condi-
tions to be satisfied 'oy the eigenfunctions y(r) in the limit
r ~0. Ilt is, in particular, impossible to stick to the usual
regularity assumption of the eigenfunctions at the origin,
as this condition is incompatible with self-adjointness of
the operators H, and A„=U(H pm )„U '.] —These
boundary conditions are to be chosen among a class of
admissible ones as follows. Let us introduce the quanti-
ties

—i62 ]62 . 152
le U22+e U2] =le

(2.11)

Notice that the boundary conditions of type (2.10) have
the special feature of preserving the original symmetry of
the Hamiltonian that allowed it to be represented by two
independent operators acting on two-component spinors.
These are the BC's of the type considered in Ref. [I], and
in the notation of that paper 5, =m /4+ 8, /2 and
5&=m. /4+82/2. A discussion with the most general ad-
missible boundary conditions will be presented elsewhere
[8].

If the V-boundary condition (2.9) for the helicity opera-
tor A is to be the same as the (5i, 5z)-boundary condition
(2.10) for the Hamiltonian H, then the two systems of
Eqs. (2.9) and (2.10) must have the same solution set. The
necessary and sufficient condition for this to happen is
that the following set of equations is satisfied:

i5 —i5 —i5
e v]] —ie U]2 = —e

i6
1 1 1

—i6 -i5
e v]] —l'e U]2 = —e

x =
—,'I (1+v)

2

y =
—,'I ( —v) V'2

V

limr "y,(r),
r~O

limr" +'y, (r),
r~O

~

—

i'll

i61 ~
—I ~1ie 'v 22+ e 'U2] = —ie

Notice that the two pairs decouple, and that the system
will have solutions if and only if

1+cos2(5, —52)%0
and under this assumption, the unique solution is

2

z ——
—,
' r(1+v) v'2

' —(]+v}

limr g~(r),
r~O

(2.7) 2i $„2i61

2i52 2i51
e

v]2 —I
2i 52 2i61

e '+e
(2.13)

iv= ' I (
—v) limr 'y4(r) .m

r O

In terms of these variables the admissible boundary con-
ditions for helicity operator are pararnetrized by a 2X2
unitary matrix V,

2i 52 2i51
. e

2] 2ig 2ib
e '+e

22 2i 62 2i 51
e '+e
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If we now impose the unitarity condition on the matrix
V given by (2.13) we obtain the condition

5,—52=2nk, (2.14)

where k is an integer. Equation (2.14) is the necessary
and sufficient condition for the (5i,52)-boundary condi-
tion (2.10) to be also admissible for the helicity operator
A. In other words, it is the necessary and suScient con-
dition for the dynamics defined by the (5„5z)-boundary
condition to conserve the suitably chosen (i.e., with the
same BC) helicity operator. A particular way of satisfy-
ing condition (2.14) is to take 5i =5z, i.e., equal boundary
conditions for the two pair of operators acting on two-
component spinors. This class includes the boundary
conditions obtained through the limiting procedure of
Refs. [3,4] but includes also much more. It includes also
those P-dependent boundary conditions discussed in Ref.
[2] which unlike the boundary conditions of Refs. [3,4]
preserve the Aharonov-Bohm symmetry /~/+1. This
means that preservation of the Aharonov-Bohm symme-

try is compatible with helicity conservation. The BC ob-
tained in Ref. [2] through the alternative limiting pro-
cedure (1.3) also satisfies 5i=52, and so they are also

compatible with helicity conservation.

III. PHYSICAL IMPLICATIONS

A few words should now be said about the possible
physical relevance of the results in this paper and of a
previous one [2] by the authors.

(1) If one wishes to assume that there is no infinitely
thin magnetic Aux tube, then the following options are
available.

(a) One may admit an impenetrable tube of radius
R )0, as prevalently assumed in the literature describing
the Aharonov-Bohm effect. In this case, as pointed out in
Ref. [2], one will have to choose among the admissible
boundary conditions that one that best suits the device at
hand. (The reader should be reminded that at least one
of the components of the Dirac spinor is necessarily
nonzero at the surface of the tube. ) In this case, it is
straightforward to repeat step by step the derivation of
Sec. II replacing x, y, z, and w of Eq. (2.7) by xti, ya, zii,
and mz given by

we obtain the same conclusions concerning helicity con-
servation: Eq. (2.14) is again a necessary and sufficient
condition. Furthermore, the low-energy asymptotics of
the resulting model will be described by the model with
R ~0 with BC's given by (2.10).

(b) Alternatively one may prefer a penetrable tube.
Then, one will have to deal with the very delicate ques-
tion involving the choice of a physically acceptable dy-
namics suppressing penetration, as much as possible, of
the electron to the inside of the tube, in the context of the
Dirac equation. In this case, as opposed to the impenetr-
able tube, absent any extra singularity the dynamics and
helicity require no additional specification of BC and hel-
icity is generally not conserved for R )0. Again, the
low-energy asymptotics will be controlled by a zero-range
tube, whose boundary conditions are strongly dependent
upon this choice. The simplified, should we say cari-
catural, models described in Ref. [2] (requiring a
nongauge, strongly fine-tuned repulsive "vector" poten-
tials) are just examples that illustrate the fact that some
helicity breaking dynamics may very well have a low-

energy asymptotics controlled by helicity-conserving
Hamiltonians. It should also be remarked that if one
chooses to control penetration through a nongauge "sca-
lar" potential, then a calculation along the lines of Ref.
[2] shows that necessarily a helicity-breaking limiting dy-
namics emerges [8].

(2) There may be contexts where the idea of an
infinitely thin magnetic Aux tube at the oustset is not
infinitely repugnant, as for instance in the description of
cosmic strings [3,9]. These are the cases addressed by the
analysis of Sec. II, where no limiting procedure was used.
However, in absence of alternative plausible physical
models, the helicity conserving boundary conditions of
Refs. 3,4 emerge naturally as the most suitable prescrip-
tion. The results are helicity conserving, but violate
periodicity in the Aux.
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APPENDIX

x, =-'r(1+ v)R 2

' —(1+v)

R 'yi(R),

V

y =—'I ( —v) — R"+'y (R)R 2

—(1+v)

z„=-,'r(1+v) — & 'y3(&),

V

w =-'r( —v) Z"+'y (Z) .R 4

Choosing for the Hamiltonian the BC(5„5z)given by

xz cos5& —iy„sin5, =0,
zg cos52 iw ~ sin52 —=0,

(3.1)

(3.2)

Technically speaking, the problem of determining the
admissible boundary is identical to the problem of deter-
mining the self-adjoint extensions of a densely defined
symmetric operator. From a practical point of view to
solve these problems we have to begin with the deter-
mination of the deficiency spaces of the two operators H
and A„when acting in a common dense domain 2)~ of
smooth functions of r that vanish at the origin. These
deficiency subspaces D+(H„),D+(A„) are defined by

H„*qr+=+imq& i+f y~ED+(H„),
A'Qg=+iAQ~ if /~ED+(A„),

where H* and A„* denote the adjoint operator of H and
A, respectively.

Next we recall the results of Gerbert [1] as adapted to
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0'y=+img .

The subspaces D+ [H„]are generated by

0
0

(A 1)

0

~(2) — 0

where the two component spinors 4+ are given by

K,(v'2mr )

+ ) ~ + him/4K (i/'2 )

our four-component spinor formalism. Since this four-
component equation decouples into two two-component
equations of the type already discussed in Ref. [1] we can
immediately determine the subspaces of solutions of

Therefore, the deficiency indices d+(H —pm)„ i.e., the
dimensions of D+(H —pm)„are both equal to 2, if
—1 & v & 0. The unitary equivalence (2.2) implies that the
deficiency indices for the helicity operator A are also
d+(A) =2. Moreover, D+(A) is generated by Up'+' and
U~(2)

Now, from the general theory (see Ref. [7], Vol. II), the
admissible boundary conditions for a given symmetric
operator A to be expanded to a self-adjoint operator with
equal deficiency indices d+ ( A ) =d ( A ) =n are obtained

by the following procedure L.et fJ+, fJ, j= 1, . . . , n be
normalized and mutually orthogonal vectors in D+(A)
and D (A), respectively, i.e., A'f 1+ =+if'+ The. ad-

missible boundary conditions for the vectors 4 in the
domain of the self-adj oint extensions of A are
parametrized by n X n unitary matrices T through the set
of equations

n

A* f'++ g Ui f
k=1

where N is a normalization constant. For —1 & v(0 the
asymptotic behavior at the origin,

fj + y Ukf", A'4 =0, j=l, . . . , n .
k=1

K„(~)=(—,
' )r( — )( —,'~ )',

K„,(x)=(-,' )r(1+v)(, & )-i'+', (A2)

(A7)

Therefore, the admissible boundary conditions for H„
can be parametrized by a 2 X 2 unitary matrix W,

implies the crucial fact that the singular functions g+ and
A, + are square integrable:

W11 W12

W21 WP2

f rg (r)y(r)dr & oo,

(H —Pm)'p=+iAq . (A4)

It follows that the deficiency subspaces D+[(H —pm )„]
are generated by the normalized functions

0

this implying that the starting operator H was not essen-
tially self-adjoint, thus the need for BC specification.

REMARK. If we look at H„, as in Ref. [1],as a pair of
uncoupled operators acting on two-spinors then
d+ (H „)= 1 for each operator of the pair.

In analogous way we determine the deficiency sub-
spaces of (H pm )„,by solv—ing the equation

through the formulas

W(cu„coz) =
expico2

(A9)

and use the asymptotic behavior of y+, i =1,2 together
with (2.7) we obtain the special class of (5„5z) BC's de-
scribed by (2.10) where

r( —v) 1
tan6, = i=1,2 .2'+ ' I'( 1+v) tan( co; /2 )

—1
(A10)

hm[y+(r)+wiiy (r)+wizen (r)] a]q(r)=0,
r~O

(AS)
limr[y+(r)+wziy —(r)+wzzy (r)l aii))(r)=0 .
r~O

If we take 8'to be a diagonal matrix,
T

expE co1

0 (2) — 0) + )

0+

0
(1) 0 (2) 0

0

I K„(kr)
&+(")=~ +K

where P+ are the two-component spinors given by

(A5)

(A6)

These are the BC's described in Ref. [1]; more general
BC's for the Hamiltonian will be discussed elsewhere [8].

In an analogous way we pararnetrize the admissible
BC for (H —Pm) by 2X2 unitary matrices V through
the equations:

limr[y+(r)+u»ip' (r)+
& pe z(r)] a&g(r)=0,

r~O
(Al 1)

limr[g+(r)+uz, q&' (r)+uzzy (r)]ta&P(r) =0 .
r~O

Using the unitary equivalence (2.2) it translates into the
admissible boundary conditions for the eigenfunctions of
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the helicity operator A„:

limr[Utp+(r)+u&t Uq' (r)+u&z UqP (r)] X&g(r)=0,
(A12)

limr[UqP+(r)+uzt Uy' (r)+ u22UqP (r)] X&g(r) =0 .
r~0

In order to simplify the comparison of the BC's for H and
A we take A, =v 2m. Using then the asymptotic behavior
of tP'+, i =1,2 the explicit action of U given by (2.1) and
(2.7) we obtain the BC of formula (2.9) which exhausts
the class of admissible BC's for the helicity operator A.
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