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Scattering from a two-dimensional array of flux tubes:
A study of the validity of mean field theory
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Mean Geld theory has been extensively used in the study of systems of anyons in two spatial
dimensions. In this paper we study the physical grounds for the validity of this approximation by
considering the quantum mechanical scattering of a charged particle from a two-dimensional array of
magnetic flux tubes. The flux tubes are arranged on a regular lattice which is infinitely long in the

y direction but which has a (small) finite number of columns in the z direction. Their physical size

is assumed to be infinitesimally small. We develop a method for computing the scattering angle as
well as the reHection and transmission coefBcients to lowest order in the Aharonov-Bohm interaction.
The results of our calculation are compared to the scattering of the same particle from a region of
constant magnetic Geld whose magnitude is equal to the mean Geld of all the flux tubes. For an

incident plane wave, the mean field approximation is shown to be valid provided the Hux in each
tube is much less than a single flux quantum. This is precisely the regime in which mean Geld theory
for anyons is expected to be valid. When the flux per tube becomes of order 1, mean field theory is

no longer valid.

PACS number(s): 03.65.Nk

I. INTRODUCTION

There has been much interest in recent years in the
phenomenon of fractional statistics in two spatial dimen-
sions. Particles possessing fractional statistics, known
as anyons, in addition to being interesting in their own
right, have found applications in the quantum Hall ef-
fect [1] and have also been investigated in the context of
high-T, superconductivity.

Anyons are often studied in the framework of "Chern-
Simons" theory in which they are modeled by "attaching"
an inBnitesimal tube of "statistical" flux to each particle
in the system. In order to calculate various properties of
the anyon gas it is often assumed that each anyon "feels"
as if it were traveling in the mean magnetic field due to all
of the other anyons in the system. This "mean field the-
ory" has been quite successful at describing many proper-
ties of anyon systems including anyon superconductivity
[2] and the fractional quantum Hall e8'ect [3]. In fact in
Chem-Simons Beld theory, the mean field approximation
can be shown to be valid when the statistical flux per
particle is a small fraction of a flux quantum. Classically
this mean field (MF) idea seems absurd since the mag-
netic Geld is zero except at isolated singularities and so
there is no Lorentz force. Quantum mechanically how-

ever the vector potentials themselves attain importance
[4]. Thus it seems at least plausible that a particle mov-

ing in a region populated by flux tubes would in some
respects behave as though it were in a mean magnetic
field. It is this idea which we investigate in this paper.

It is quite straightforward to see that mean field theory
is at best valid only when the fIux per particle is not too
large. Assume that a given anyon "feels" a mean field
and hence travels in a circular (Landau) orbit. If the area
enclosed by the orbit contains, on average, many other
anyons then the approximation may be valid. Proceeding

in this way one finds both for models based on bosons [5]
and on fermions [6] that the MF approximation is self-
consistent only when the flux per particle is much less
than a single flux quantum.

It is our goal in this paper to examine the physical
ideas implicit in the above argument in more detail. One
question of interest in this context is the following: To
what extent does a particle traveling in the presence of a
number of infinitesimally small flux tubes really behave
as though it were in some mean magnetic Beld? In other
words, to what extent does the presence of the gauge
Beld mimic the efFect of a spatially constant statistical
magnetic Geld? Ideally we could consider an array of
infinitesimally small flux tubes and study the quantum
mechanical motion of either a charged particle or another
flux tube in the presence of this array. This however turns
out to be a very difficult problem to solve [7]. We choose
instead to consider a specific configuration of flux tubes
consisting of a lattice which is of infinite extent in the y
direction but which contains a (small) finite number of
columns in the z direction. A related problem (in which
the array is random) has been considered previously in
Ref. [8] in which scattering from the array was consid-
ered as an incoherent sum of the scattering ofF each flux
tube. In this paper we consider the coherent scattering
of a charged particle incident on a lattice of flux tubes.
The method which we develop is a variation on first-order
scattering theory. Our main objective will be to compute
the scattering angle and to compare the result with scat-
tering from a strip of constant magnetic field.

We thus begin in Sec. II by calculating the scattering
angle of a plane wave incident on an infinitely long strip
of constant magnetic field. In Sec. III, after calculating
some analytic results, we develop a formalism, similar in
spirit to the approach conventionally used to compute the
index of refraction fmm the microscopic scattering am-
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II. SCATTERING FROM A STRIP OF
CONSTANT MAGNETIC FIELD

In this section we briefly review the result of scattering
a charged particle from an infinitely long magnetic strip
in two spatial dimensions. We thus consider a situation
in which the magnetic field 8 is constant, in the region
0 & z & d. It is convenient to work in a gauge in which
A =0 and

Bd/2— if I&0

plitude [9, 10], to study scattering of a charged particle
from a lattice of flux tubes. We then use this formalism
to find an expression for the scattering angle to first order
in the interaction, which we then compare to the analyt, ic
results. (Note that while exact solutions are available for

scattering from one [4] and, more recently, two [ll] flux

tubes, the problem of scattering from an infinite array of
tubes cannot be completely solved analytically. We will

find however that it is possible to solve for the scatter-
ing angle exactly in a limited number of cases. ) In Secs.
II and III we also discuss the reHection and transmis-
sion amplitudes. Section IV contains a discussion of the
results.

( eBdl
Q(z, y) = exp i

~
k„+ — y f(z)

with

1 [
d' ( eBd

, +
~
k„+ —A„~ f(x) = Ef(x)

277l, dz ( 2

Suppose that the scattering particle is incident from the
right (positive z). The incident wave

eBdl
P;„, =exp i[k„+- [y e

)
will solve the Schrodinger equation for x ) d provided
2IE = k'+ k'.x y'

In the interior region (0 & x & d) the particle be-
haves as if it were in a potential which is a truncated
parabola. Although an explicit solution is in general not
available, it is rather straightforward to obtain a series
solution. For certain combinations of the parameters the
series truncates and the wave function is simply a Her-
rnite polynomial but in general the series is infinite. (Iii
the rase when the series truncates, the wave function is
related to that of the Landau level. ) For x(0 the wave
function is again given by a plane wave

Ay ——& Bx —Bd/2

, Bd/2

if 0&z&d

if' x) d

The Schrodinger equation for a particle with charge e
subject to the above magnetic field is given by

but now

2mE = k + (k„+eBd)

It thus follows that, for z & 0,

[V' —ieA] g(z, y) = Eg(x, y),
—e B d —2kyeBd . (8)

This equation is solved by separating the x and y depen-
dences and representing the latter as a plane wave. We
thus write

Transmission of the particle to the region L & 0 can
occur if the energy is suKciently large so that k
e2B d2 + 2k„eBd In this ca. se the solution to Eq. (2)
can be written as

x&0,
( eBd)

4' = exp &
I k, + [ y x « "'~' [cpcp(x) + ciGi(x)],

2 )
, (e ' +pc*"") .

0&x&d. (9)

where k is given by Eq. (8) and

X = Q/eB[ x —
J

"+d(ky
(eB (10)

2(l —A) s 2'(3 —A) (1 —A)

3t

(12)

is proportional to the distance from the center of the
parabola. The functions t o and Gi are given by

G (x) = i+ ( )x'+ ( — )( )x4+-
2! 4t

with

1 (k.'+ k„'
"- —1 i

2 ( [eB/ )
co, ri., p, and T are constants which are fixed by requiring
that, the wave function and its derivative be continuous
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across the two boundaries. p and w are the reflection
and transmission amplitudes, respectively. Note that the
series (11) and (12) converge for all X. (To see this note
that for the high-order terms in the expansion the ratio
of successive terms behaves like the corresponding ratio
in the expansion of exp(2X ) [12].) If the energy is small
so that k ( e B d + 2k&eBd there is no transmission
and one obtains instead a decaying exponential for x & 0
so that the wave is totally reflected.

It is quite straightforward to compute the angle by
which the particle is scattered. The simplest way to do
this is to compute the gauge invariant current density
given by

J = —Im [g* (V' —ieA) g]
1

m
(14)

Using Eqs. (5) and (9) we can compute the angle of both
the incident and the transmitted wave. We find that

kytan(P;„, ) = —",
k

ky+ eBd
~trans

Qk2 —e2B2d2 —2kseBd
(16)

The angle P which the current makes with the x axis is
then given by

J
tanP = ——.u

J

(
Gp(X) = M

l

——,—,X
2 2

(I a3
Gi(X) = XM

l

———,—,X
2 2 2

(18)

(19)

where

From Eq. (16) we can understand the physical origin
of the restriction which was imposed above for k . When
k2 = e B d + 2k&eBd the angle of the transmitted wave

Pi, „, ——+vr/2 so that for k & e B d + 2k„eBd the
particle "turns around" and is reemitted on the right.

It is evident from the above discussion that in order to
find Pi, „, given k and k„ it is not necessary to know
the detailed form of the wave function in the interaction
region. In fact all we actually used to get the scattering
angle in the above analysis was our knowledge of the
vector potential on both sides of the barrier and the fact
that k„was conserved. We shall come back to this point
later.

We now proceed to a computation of the reflection and
transmission amplitudes p and w. In general exact val-
ues can only be obtained numerically since the expres-
sions will necessarily contain the (generally infinite) se-
ries Gp(X) and Gi(X) given in Eqs. (11) and (12) and
their derivatives. It is however possible to obtain approx-
imate analytic expressions for p and ~ when the magnetic
field is small by first relating Gp(X) and Gi(X) to the
confluent hypergeometric functions as follows:

This agrees exactly with the result obtained for the scat-
tering angle in a purely classical treatment. In fact the
result simplifies significantly when leBld « k in which
case

eBd
tan (4'trans 4'inc)—

M(a, b, z) =1+—+ + . + ",+, (20)
GZ 6 2Z 6 Z

b 22! b „n!
(a)„=a(a + 1)(a + 2) (a + n —1), (21)

(a)p =1. (22)

The confluent hypergeometric functions are in turn re-
lated to the Bessel functions by

Z "/2
M(a, b, z) = I'(b)e'~ ( bz —az) —~ ~ ) R„— (b —2a) " Jb i+n[(2zb —4za) ],

n=O

(23)

where Rp ——1, Ri ——0, R2 ——b/2, and

R„+i ——[(n+ b —1)R„ i + (2a —b)R„2]/(n+ 1),

(24)

for n&2 [13].
We shall compute p and ~ for small eBd only in the

case k„=0. To do this we shall need the values of Gp(X),
Gi(X) and their derivatives at both x = 0 and x = d.
When x = d, X = 0, so these values are easily found by
direct substitution into (ll) and (12) and the derivatives
of these sums. When x=0, however, X=—gleBld, so we

use (18), (19), and (23) to obtain expansions for Gp, Gi,
and their derivatives in powers of the quantity gleBld.
The calculations are considerably simplified by the fact
that b in (23) is always a half-integer so that the various
Bessel functions reduce to simple trigonometric expres-
sions. Furthermore the arguments of the Bessel functions

I

are simply equal to kd. After a rather lengthy calculation
we find, for leBld2 « 1 and k )) leBld,

e B d sin kd . f sin2kd

4 (kd) (2(kd)

+O(e B d),
(kd)')

(25)

eBd f' 1 2i !
(26)

klcl'+ kl~l' =1

to the required order, O(e B2d ).

(27)

Note that the above result satisfies the conservation of
flux
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III. SCATTERING FROM AN INFINITE STRIP
OF FLUX TUBES

sinh[ ( (x —n()]
cosh[

&
(z —n()] —cos( &")

(34)

A. Analytic results

In this section we consider the scattering of a charged
particle from a regular array of infinitesimally small Hux
tubes. Our goal is to establish conditions under which
this scattering is equivalent to the scattering from a uni-
form magnetic field whose magnitude is the mean field of
all the flux tubes in the array.

To this end consider a situation in which we have an
array of infinitesimally small flux tubes in two spatial di-
mensions each with a flux 4. We take the lattice to be in-
finite in extent in the y direction with the Hux tubes sepa-
rated by a distance (, but to have X+ 1 "columns" in the
z direction with flux tubes positioned at x = 0, (, . . . , X(.
We shall often choose to have only one column of flux
tubes (X=O). (The fact that we have set the spatial
separation of the flux tubes in the x and in the y direc-
tions to be equal is simply a convenience. Our results are
easily generalizable to the case of unequal spacing. ) We
choose the gauge potential of each individual Hux tube
in a radial gauge relative to the location of the Hux tube
so that

(28)

27l p cp
(29)

1 - 1
cotvrz =—

jr n+z' (30)

for complex z. From this one can derive the formulas

(mo. —p)'+ p'

zjr

20.'Q
(p+ ip f p —ip'i

cot7r
/

—cot7r
/o.

(31)

and

(mo. —p)2+ p~m= —oo

7r p+ ip& f p —i~I
cotter

~

+ cotter
] ~, (32)

20,' o.') )
where n, P, and p are real. Applying these results to our
problem gives

sin( &" )

e( cosh[
&

(x —n()] —cos( &")
(33)

where r and 0 are the coordinates relative to the position
of the flux tube and ( provides a convenient parametriza-
tion of the Hux.

The contributions from each of the Hux tubes in the
lattice can be summed up to obtain a closed analytic
result for the full gauge potential. To do this one begins
with the result [14]

where the sum is over the N + 1 columns of the Hux tube
array. In fact when N=O the sum collapses to a single

term.
Asymptotically (for large positive and negative x) the

gauge potential becomes

mo asxm +cx:,

A„w pP((X + 1) as x m +oo .

This asymptotic value is actually reached quite quickly.

In fact the first-order corrections damp exponentially as

exp( —27r~x~/(). Not surprisingly the asymptotic value of
the field is precisely that of the constant magnetic field

B given in the previous section [Eq. (1)] with

and

2
(36)

d = (%+1)( (37)

so that B can be interpreted as the mean field of the Hux
tubes.

One of our goals in this section is to compute the a,n-

gle by which a charged particle incident from x = +oo is
scattered by the array of Hux tubes and to compare the
result with the scattering angle oK a strip of constant
magnetic field. We thus wish to compute the transmit-
ted angle P&, „, given k and k„which can be defined
asymptotically as in the previous section. In the case of'

a strip of constant magnetic field we found (in the pre-
vious section) that in order to compute the scattering
angle it was possible to ignore the behavior of the vec-
tor potential and the wave function in the region 0&x&d
and to simply use the asymptotic forms of these quan-
tities and the fact that k„was conserved. It is tempt-
ing to suggest that the same result should apply in thc
present situation, in which case the scattering angle for
the array of flux tubes would be the same as that for the
strip of constant field. This result is however only true
under certain restricted conditions. The technical prob-
lem with the argument is that in our case, due to the
lack of (continuous) translational invariance ixi the y di-
rection, the Schrodinger equation does not, separate into
.L and y pieces. The value of k„ is thus not conserved
through the "interaction" region of the potential. Thc
8iscretc translational invariance which is present in our
case does. however, lead to interesting predictions. This
will be discussed below.

The simplest way to see that the above argument
would lead to false conclusions is to consider the case
when the flux in each flux tube is an integer. In this ca.se
the corrections to the "mean field" result are large since
the beam is in fact totally undeflected. This follows from
thc fact that the interaction can be completely "gauged
away" by a nonsingular (except possibly at the centers
of the flux tubes) single-valued gauge transformation. In
fact when g is an integer thc wave function
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N

vP = e'( "**+"" exp ii', arctan
'~ (x—nt) (2wy) )

sin( &")

i(xy
(38)

is single valued and solves Eq. (2) with A given by Eqs.
(33) and (34). The resulting current has tan+ = k„/k
everywhere (except possibly at the singularities). In cases
where ( is not an integer the wave function (38) is multi-
valued and is therefore not an admissible solution to the
Schrodinger equation. These results were, of course, al-
ready noted in the original paper of Aharonov and Bohm
[4]. It is thus clear that replacing the flux tubes by a mean
Geld will in general give an incorrect answer. We shall
study below the circumstances under which the mean
Geld result is correct.

As one might expect from the fact that there is no
scattering when ( is an integer, the current (and hence
the deflection angle) is a periodic function of (. To see
this, suppose g~ is an exact solution to the Schrodinger
equation with 0 & ( & 1. Let p be an integer and perform
a gauge transformation with the gauge function

(
y = —) arctan ~

i

�n=0
2&( g)~ (z —nt) (2nv) )

) e(

&-f(*,y) = f(~ y+ ~(). (4o)

Since our Hamiltonian [with the vector potential defined
in (33) and (34)] is invariant under y -+ y + nf, we have
the operator identity

[T„,H] = 0. (41)

This now gives an admissible solution for the case ( m
p+ (. The current is of course unchanged by the gauge
transformation. Thus the scattering angle is periodic in

( with a unit period.
It turns out that for certain values of k, k„, and ( we

can solve for the scattering angle exactly without know-
ing the form of the wave function in the scattering region
[15]. The solution depends on the periodicity of the lat-
tice in the y direction [16). Following the usual discussion
of Bloch's theorem [17], one can define a unitary trans-
lation operator T„as:

Furthermore, the T„'s form a representation of the group
of translations by ( so that

Tn Tm Tm Tn Tn+m ) (42)

which means that eigenstates of H may be chosen to be
simultaneous eigenstates of alit of the T:

Hg =Eg,
T„g =c„Q,

(43)

(44)

ky( ((N + 1)
2 2

(46)

To the far left of the scattering region we again seek a
plane wave solution, so we set

@(& y) 7.es[kz rm(N+i)l(lw—e
—'i&-~ z ~

The fact that c„=exp(2irinh) then gives

k/ k
2&fD

y
— y+ (48)

Energy conservation then determines k:
/2n. i

k.' —
]

—
[ [((N+1) —m]'

4~k„
- 1/2

"(((N + 1) —m] (49)

so that if k is real the angle of the beam of transmitted
particles is determined by the equation

with c„c =c„+ . Thus c„=exp(2irinh) for some real
parameter b, which will be related to k„ in this case.

We now consider the form of the wave function as x -+
oo (the incoming wave). In this region we may take [see
Eq. (9)1

(~ y ) e [k y g (N +1) / (j y
(e k +pe k

)

(45)

so that

k„—'& [j(N + 1) —m]

{k& —(~~) [((N+ 1) —m]~+ "[((N+ 1) —m]) ~
(50)

Comparing the above equation with Eqs. (16), (36),
and (37), we see that agreement with the MF result is
achieved when en=0.

We now restrict ourselves to the case where N=O and
consider plotting tanPt, „,versus (. The "critical points"
(i.e. , the points for which k =0 ) are given by

(51)

1If (k~ + k~) ~(&s., the scattering angle is well defined in
the intervals ((, , (+) and is given by Eq. (50). In the
intervals ((+,( +i), all the k are imaginary and the



2086 KEN KIERS AND NATHAN &KISS 49

beam of particles is backscattered by the lux tubes. If
(k + k„)2()ir, there are regions of the j axis for which
more than one scattering angle could be defined. Had
the incident beam been characterized by a wave packet
in our calculations, the scattered particles would have
split (asymptotically) into several wave packets with dis-
tinct directions in space, given by (50). Since our iiici-
dent, beam is characterized by a plane wave the scattered
wave can never be separated into its various pieces and
the scattering angle is not well defined. If we view the
situation from the perspective of difI'raction theory, we
see that the "circular v aves" being emitted frorri each
of the scattering centers are interfering constructively iii
more than one direction.

A similar result holds for any value of X. There inay
be certain values of the parameters for which there is
no value of m with real k . In such cases the beam of
particles is totally reflected by the flux tubes. If there
is only one integer m for which A:"" is real the scattering
angle is well defined and is given by (50). If, in addition,
vi=0, t, he angle agrees exactly with the MF case. Finally.
it is possible that there exists more than one integer sn,

for which k is real. This situation corresponds to the
"diffraction" case which was coiisidered above.

Finally. note that the invariance of Q&, „. „, under ( m
(, + m'(which is, expected in light of the gauge invariance

arguments given above) is already included in Eq. (50)
by simply taking m —i m —m'(.V + 1).

notes that, as x ~ ~.
(53)

so t, hat the incident current density is in the negative
x direction. In fact for ~(~ ( 1, Aharonov and Bohm
(with modifications due to Hagen [18]) showed that (52)
reduces asymptotically (as r —i oo) to

(54)

where the upper (lower) sign holds for ( positive (nega-
tive). The above asymptotic expression for i!'i requires one
further crucial assumption which is that [kr(1 +coso)]'
are large. This assumption fails in the forward and back-
ward directions so that (54) is inaccurate in these re-
gions. This is fortunate since (52) is convergent and
single-valued for all 0 as can be confirmed by a direct
evaluation of (52) near 0=++. The asymptotic form (54),
however, is not single valued and it diverges when 0=+sr.

This "splitting" of the wave, in the case of a single scat-
terer, into an incident and a scattered wave is essential
for us siiice it is the starting point for surnrning iip th~

scattered waves from a lattice of Hux tubes. We cannot,
simply use Eq. (54) for t, his splitting, even though the
'scattered" wave is proportional to sin((vr) which is sinall
for small (, . since Eq. (54) is not valid for all 0. Eq»n, —

tion (54) does however suggest, a more appropriate way
to define the scattered wave. We consider the definit, ioii

B. Numerical results

The above analytic analysis is somewhat limited iii
that it only predicts the scattering angles and in that it
depends in an essential way on the periodicity of the lat-
tice. We shall now develop a numerical technique which
will allow us to examine not only the scattering angle but
also the lowest-order values of the reflection and trans-
mission amplitudes. This technique can be generalized
to a nonperiodic array of Hux tubes.

As discussed in the Introduction, we expect the mean
field result to be valid when the flux per "particle" C is

small. We thus analyze our problem for small (. Cori-
sider a wave which is incident from x = +m. This in-
cident wave will induce a scattered wave from each of
the Hux tubes in the lattice. To linear order in ( the
tot, al wave function can be viewed as the incident wave
plus the sum of the scattered waves from each individ-
ual Hux tube. This procedure is, however, significantly
more complicated than in ordinary scatt, ering theory du»
to the presence of the Aharonov-Bohm phases.

In order to proceed we shall begin by reviewing the
results for scattering from a single lux tube which we
assume is positioned at the origin. In this case, an exact
scattering solution is known [4]. It is given by

(,') 5)

(W —ieA) i!'.i = iike + if~ +j—f . (56)

where

+e (e J( i + zJ()], (57)

+e ' ''(ie * J(, + J()]. (58)

where i!'ir„ii is the full wave function given in Eq. (52)
which can be evaluated (for example) numerically. This
definition is not without problems since, of course, q~~„,„. &

is not single valued. There are however several ways to
circumvent this problem and to obtain useful results with
this approach.

The most aest, hetically pleasing approach to dealiilg
with this "multivaluedness'" problem is to work wit, h the
currents rather than with the wave functions whenever
possible. We begin by taking the covariant derivative of
(52) directly. This gives the simple result

(52)

where J is a Bessel function and the angle 0 should be
taken from —vr to 7r (where 0=0 corresponds to the posi-
tive z. axis). To see that this is a, scattering solution one

The Schrodinger equation can now be used to derive an
equation satisfied by f arid f„. Applying the covariant
derivative to (56) gives the relation
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which may be verified explicitly.
For the case of a lattice of Hux tubes the covariant

derivative of the total wave function may be obtained, to
leading order in (, by adding, to the term —iikgt t i, the
sum of the contributions of the f 's and f„'s from each
Aux tube. We shall specialize to the case when there
is only one column of flux tubes and when k„=0 (i.e. ,
normal incidence). We shall discuss the more general
case later. Let us define the vector A(x, y) as the sum of
the contributions of f and f„ from all the flux tubes in
the lattice. That is

1J = —Im[C *(V —ieA) @] (66)

(67)

array of flux tubes. Note also that to this order in (
the value of k (which is actually k ) is the same for the
incident and the transmitted wave. Also, as expected,
when (vr is small (64) is satisfied.

The next step in evaluating the scattering angle is to
compute the current. Using (62) the current is found to
be

0 (x, y) = ) f"(kr„, o„,(),

Oy(x, y) = ) f„"(kr„,8„,(),

where

[
2 + (y n()2]l/2

(60)

(61)

This expression could potentially cause us some diKculty
since it involves 4 directly whereas we have only com-
puted the covariant derivative of O'. Fortunately, to the
order in ( to which we are working, there is no ambiguity
in 4' and we can take 4' to be simply the incident wave
since linear order corrections will lead to quadratic order
corrections to the scattering angle. Thus

('V —ieA)4 = (—iik)4+ 0 . (62)

and where 0„=vr is parallel to the x axis and corresponds
to the direction of propagation of the incident wave. To
lowest order in ( the total wave function satisfies

and

0 = e '"*+ O(j~)

~C ~' = 1+0((~) .

(68)

(69)

t90 OOy—ikO~ + + —ieA~O~ —i eAyOy = 0
|9x Og

(63)

where A and A& are the total gauge potentials given in

(33) and (34). Consider the asymptotic region on the left
where Eq. (35) holds. Applying (59) to every term in the
sums in (63) gives

(64)

This is analogous to what is done in ordinary scattering
theory where the scattered waves from each individual
atom are summed to obtain the total scattered wave.

To further check the self-consistency of the above pro-
cedure we apply the covariant derivative to Eq. (62). @
is expected to satisfy the Schrodinger equation far away
from any of the flux tubes. (In fact in our case it will
turn out that "far away" may be as close as a few lattice
spacings. ) It will do so provided 0 satisfies the equation

We are now ready to use Eq. (67) to evaluate the scat-
tering angle Pt, ~».

tang„.„,= — +0(( ~ ) .
2(vr

k
(70)

Equations (17) and (36) can now be used to compare
this result with the scattering ofI' of a strip of constant
magnetic field. We see that to lowest order in (vr the
scattering from an array of flux tubes agrees exactly with
the mean field result [which coincides with the analytic
result Eq. (50) in this case]. This agreement provides a
good check of our numerical method.

In the previous discussion we have avoided summing
the non-single-valued scattered wave functions by sum-
ming only their covariant derivatives. It is however pos-
sible to sum the scattered waves directly without first
evaluating Dg. Using the definition (55) of the scattered
wave from an individual flux tube we note that the scat-
tered wave at (x, y) due to a flux tube located at n( is
given by

It is easy to see that the f 's are, asymptotically, of or-
der (vr. Thus the Schrodinger equation will be satisfied
asymptotically provided 0 is also of order (vr. Equation
(60) guarantees that this will be the case.

We have not been able to obtain an analytic expres-
sion for 0, even asymptotically. We have thus chosen to
evaluate 0 numerically. Some details of the numerical
work are discussed in the Appendix. We have found that
to a very high precision and for a range of k which is also
discussed in the Appendix (basically 2' & k( » 2(m)

q."...(k.„,o„,q) = [@(k.„,e„,q) e '""--—'--*~'-]

e..., = ) @,"...(kr„, o„,q). (72)

where g is the full wave function for each individual scat-
terer and r„and O„are defined as in the previous discus-
sion. To lowest order in ( the total scattered wave will
be the sum of the waves scattered from each individual
flux tube:

This result is valid provided one is not too close to the

We know of no way to do this sum analytically. We
have thus evaluated (72) numerically by summing the
terms until satisfactory convergence was achieved. For
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kr„ large and O„near +7r/2 the asymptotic form (54) for

g for each flux tube was used. In other cases the sum
(52) was evaluated directly. This sum converges fairly
rapidly for small and moderate values of kr„since, for a
large index,

(73)

The numerical work showed that to the left of the scat-
tering region and for momenta in the range 27r ) k( ))
2(x the scattered wave has the approximate form

4„,= e 'k*[e(x, y) + isin((7r)y(y)]. (74)

(75)

for oo ( n ( +so. In fact y does have some oscillatory x
dependence but it was found to be negligible compared
to the y dependence of y. The slope "—2/(" is accurate
to about 0.2%%up, and (k( —I)/k( is accurate to about I /p.

For a more thorough discussion of e and y and of t, he
limits on the momentum we again refer the reader to the
Appendix.

It is clear from our method that 4„& must have dis-
continuities along lines starting at the site of each flux
tube and extending out to the left parallel to the x axis.
This is because we have subtracted out the multivalued
incident wave exp( —ikx —i r', 0) from each (single-valued)
wave function. This brings up the difBcult problem of
what to choose as the incident wave in the multivortex
case. Although it is true that to lowest order it is simply
a plane wave we must be very careful since the scattered
wave (as we have defined it) is not single valued.

One important condition which 4;„, should satisfy is

(V' —ieA)@;„,= —iik4;„, . (76)

The form 4';„, =exp( —ikz+ ijvry/() satisfies this condi-
tion asymptotically (when x (( 0). However, because of
the form of y which has discontinuities resulting from its
multi-valuedness it is important to choose 4;„c to have
the same discontinuities. In fact

For k( not too small e was found to be negligible com-
pared to (vr and y was found to have the approximate
form

2(y —n() k( —1
g(y) — + for n( ( y ( (n+I)(

This is precisely the result which we obtained using our
previous method [see Eqs. (62) and (65)]. We thus see
that with this method as well, we recover the mean Geld

result when the flux per particle is small. Note that we

have shown that 4 is a plane wave with corrections linear
in (7r. This was assumed in our previous discussion [Eq.
{68)].

It likely that the linear correction to the plane wave
above should be exponentiated. From this point of view
the discontinuities are very useful since they allow the
perturbative corrections to Q to remain small even for
large y.

It is by now clear that the two approaches discussed
above are complementary. In the former approach it ap-
peared as though we could avoid any problems of discon-
tinuities but in fact the discontinuities were all "hidden"
in 4, The latter approach has the advantage of showing
clearly what is going on by evaluating the wave function
directly. From a calculational point of view the former
approach is advantageous (at least in lowest order) since
the derivative of 4 is found directly without having to
evaluate 4 at several points and perform a linear regres-
sion to find the slope.

It is a simple matter to extend the above results to the
case where k& is nonzero. A subtlety which one encoun-
ters numerically is that the wave functions (or their co-
variant derivatives) due to each flux tube must be multi-
plied by appropriate phases in order that the plane waves
incident at each site are in phase. Our two methods again
give complementary results so we describe here only the
"first' method in which the covariant derivat, ive or 4 is
taken first. The appropriate generalization of (62) is

(7' —ieA) 4 = (
—iik, + jik„)C + 0, (8o)

where 0 has been studied numerically and is approxi-
mately given by

i(key —k x) + 0(( ) (82)

We then find

„./2k„.0 = ——sin((vr)e'~""y "**)
~

"i+j
l k.

in the asymptotic region on the left. We refer the reader
to the Appendix for more details of the numerical results.
Generalizing from the result for k& ——0 we take

tan(Pg, „,—Q;„,) = — + 0(('vr').
k

(83)

+inc + +scat & (78)

we can compute the covariant derivative of the total wave
function 4. To linear order in (vr,

(77)

also satisfies Eq. (76) asymptotically but only to order
(vr. Setting

This result again agrees with the mean field result [Eq.
(17)] and with the exact result, since "m"=0.

The extension of our results to the case where there
are several columns is also a simple matter provided the
perturbative analysis remains valid. Suppose we were
to add a new column positioned at x=(. In the local
coordinates (x', y') of that column an incident plane wave

exp(ik„y' —ik x') gives rise to

{V' —ieA)4 = —iik4 —j—j7re (79)
2i . , k k r'2ky.A' = ——sin(jar)e' "~" " )

~

"i+j
l k
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Ot~t ——0+ e '"*~A' = 20 (85)

so that

Since y'=y and x'=z —( the wave incident on the column
at x=( must be multiplied by the phase exp( —ik () to
obtain the correct phase of the plane wave at the loca-
tions of the two columns. Thus

mean field result. We now argue that this naive interpre-
tation is incorrect and that to order (vr we must be more
careful in defining the reHection and transmission ampli-
tudes. Physically this is due to the fact that the angle of
the wave has been changed to order (m by the scattering.
This change in angle should not a8'ect the transmission
amplitude. More concretely recall that to the left of the
scattering region the scattered wave has the form

tan(y„.„.—y;„,) = — + 0(('7r') @«« ——isin((vr) y(y) e (92)

for %=1. In general, for X+ 1 columns,

tan(4'trans 4'inc) = + 0(( m ) ~

2(N + 1)(~
(87)

The net e8'ect is that our perturbative expansion is now
in (N + 1)(vr rather than in (vr. Thus even for multiple
columns the scattering angle agrees with the exact result
and thus with that obtained from the mean GeM analysis
provided the flux per particle is sufficiently small. Again
this agreement provides a good check of our numerical
method.

So far we have concentrated on comparing the scatter-
ing angle for the lattice of flux tubes with that obtained
in the mean field analysis. We now describe a comparison
of another quantity of interest, namely the transmission
and reHection amplitudes ~ and p, for which there are
no exact results available. We shall discuss only the case
k„=0 for which we shall compute numerically the sum in
Eq. (72).

In the previous section we computed p and v for the
mean Field case. In terms of the "flux parameters" ( and

( and in the limit when (x is small and k( &) l(le they
are given by [see Eqs (36), (37), (25), and (26)]

(e is negligible for large k() and that y(y) is a "sawtooth"
with discontinuities whenever y=n(. We have discussed
previously that y must somehow exponentiate to give the
correct plane wave in the y direction. It is thus incorrect
to read oH' the transmission coefficient naively &om Eq.
(92) which would give

rFT = 1+ i(~g + 0((2~2) . (93)

ls»l + -lr»l

In fact the contribution of ( is simply to modify the plane
wave to take into account the "bending" of the particle
in the magnetic field and the correct 7 to this order is
one. Thus the apparent 0((x) correction to the trans-
mission amplitude is best understood as an artifact of
our approach and the difficulties which the Aharonov-
Bohm phases cause when one tries to add up the scat-
tered waves.

Once we realize that r is one to order (7r it is clear
that p must vanish to this order. This follows from flux
conservation. The fact that the pFT which we naively
calculated is of order (vr is a direct consequence of the
fact that the "naive" rFT has a piece which is linear in
(~ since

sin k( . /sin2k(

. (k&)' 2(k()'

+0(('~s),

(k&)'&.
(2~2 ( 2(2~2 ) (' (2~2 )=
k2(2 +

I
1 —

k2(2 I I
1 + k2P I

—1, (94)
)

(88) where we have used the fact [from Eq. (75)] that

(89)
1

X(y) = X(y= 05() = ——.
k

(95)

(The extra factor of e'"~ has been added to compensate
for the positioning of the mean Geld relative to the flux
tubes. ) Note that to order (7r we have the simple result
that p=0 and 7=1. To this order the wave is entirely
transmitted in agreement with the classical result. We
now describe the calculation for p and ~ for the lattice of
Hux tubes.

We begin by summing (72) numerically. When k( )&
2l(l7r and x & 0 we Find

It may of course happen that rFT has real pieces
quadratic in (x (to which our calculation would be insen-
sitive). In this case these should be included in ]rFT] . In
fact the above argument used numerical results and it is
thus just valid in an approximate sense. In any case it is
evident that the apparent discrepancy between the form
of p and ~ in the "Hux tube" and the mean Geld case is
simply an artifact of our approach.

IV. DISCUSSION

4„s = ——sin(7re'"
k 7 (90)

to an accuracy of about 1% in the coefFicient of "—i/k(. "
A naive interpretation of this result would imply

pFT = — +0(g vr ), (91)

which is linear in (vr. This, of course, doers from the

In this paper we set out to understand the validity
of mean field theory when applied to scattering &om
infinitesimally small flux tubes for which there is no
Lorentz force except possibly at the location of the flux
tubes. We considered the scattering of a plane wave rep-
resenting an incident charged particle from an array of
flux tubes with infinite extent in the y direction. By
computing the current of the wave beyond the scattering
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region we found that the incident beam was bent by the
array of flux tubes. When the flux per tube is small the
angle by which the beam is bent is given precisely by the
mean Beld result.

Caenepeel and MacKenzie [8] have recently shown that
no bending occurs when scattering from a single flux tube
unless an additional interaction besides the Aharonov-
Bohm interaction is present [19]. From our calculation
one can see that even in the absence of an additional
interaction there is precisely the correct (MF) amount
of bending from an array of flux tubes. Although our
calculation was done (for essential technical reasons) for
a regular lattice, it seems very likely on physical grounds
that the main results will persist for a random array of
flux tubes.

Despite the absence of a Lorentz force for a lattice of
flux tubes there is a way to understand how such bend-
ing can occur classically. Imagine first taking each flux
tube to be of finite but small size, computing the scat-
tering, and then letting the size become very small keep-
ing the mean Beld, and thus the flux per tube, constant.
One finds that the charged particle will have to travel
an increasingly large distance before scattering but, after
many interactions, the mean impulse it receives from all
the tubes from which it scatters is precisely that which it
would have received from the mean field. There is how-
ever a catch. This only works when the flux tubes are
larger than some critical size at which the magnetic field
inside the flux tube becomes so large that the radius of
the path of the particle is equal to the radius of the flux
tube. Beyond this critical size, the average deflection
which the particle receives becomes too small. It is only
quantum mechanical scattering to which the mean field
result truly applies when the flux per tube is small.
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APPENDIX: COMMENTS ON THE NUMERICAL
WORK

In this appendix we describe several interesting fea-
tures of our numerical work which were not mentioned
in the text.

We begin by discussing the numerical work leading to
Eq. (74) for 4„ t. Recall that for k„=0 we claimed that
our numerical results lead to a scattered wave of the form

with

(A2)

numerically until satisfactory convergence was achieved.
For very small k( this involved adding the contributions
from up to a million flux tubes in order to obtain a slope
in y accurate to about 0.2%. As one might expect from
the fact that the vector potential approaches the MF re-
sult exponentially [cf. Eqs. (33)—(35)] the above formula
becomes valid within a very short distance of the scat-
tering region (i.e. , within a distance of about 4 * ().

For k( very large compared to (vr, e was negligible.
For k( closer to (x the maximum value of ]e] was found
to be approximately proportional to (7r and to have an
approximate 1/k( dependence. From (A2) y is also dom-
inated by a 1/k( dependence for small k(. For all cases
investigated (we examined ( as low as 0.0001 and k( as
low as 0.005) it has been found that

IF
I
(( sin(j7r) (A3)

for small k(.
The growth of y with small k( has an interesting in-

terpretation. From a MF point of view we would expect
the particle to be totally reflected for k((2~(~m. From
our perturbative approach we see that the results be-
come nonperturbative when (very becomes of order 1, i.e. ,
when k( ](~7r. In a loose sense our approach predicts the
correct "critical" point.

Numerical work was also required for evaluating 0 de-
fined in Eq. (60). In order to determine 0 for the case
k„=0 the exact forms of f and f„were used for small
kr For larger .kr approximate forms [easily derived from
(57) and (58)] were employed. As in the previous cal-
culation it was necessary to sum up to 1000000 tubes.
For k( very large compared to 2(vr and slightly less than
2x the form quoted for 0„ in (65) was accurate to about
0.2%. Similarly, 0 /O„was "zero" to a magnitude of
about 0.002.

For the more general case where k„ is nonzero, things
are much the same. A small difference was that some
precision was lost in 0 when k„« k . The reason is
that the number which was expected was proportional to
k„/k and thus became very small.

For large momenta it was found that 4„ t and 0 de-
viated from the forms quoted in the main body of the
paper due to diffraction effects. Recall that diffraction
occurs when circular waves "emanating" from neighbor-
ing sites add up coherently. For small momenta there is
only one angle at which this occurs and only the "for-
ward peak" is observed. For higher momenta it becomes
possible to have coherence in more than one direction.
In eKect, the transmitted wave becomes the sum of more
than one plane wave. As discussed near the end of Sec.
III A, the scattering angle then becomes ill defined.

One can derive the limit on k and k„by using Eq. (51)
for the "critical" fluxes. Since our numerical approach is
only valid near (=0, we shall for convenience set (=0 for
this derivation. Diffraction then starts when either (+~
or (,+i is equal to zero so that the limit on the momenta
is easily seen to bp.

in the region to the left of the flux tubes. The result
(Al) was obtained by summing the series in Eq. (72) (A4)
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