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Vortex dynamics in self-dual Chem-Simons-Higgs systems
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We consider vortex dynamics in self-dual Chem-Simons-Higgs systems. We show that the naive
Aharonov-Bohm phase is the inverse of the statistical phase expected from the vortex spin, and that the
self-dual configurations of vortices are degenerate in energy but not in angular momentum. We also use
the path integral formalism to derive the dual formulation of Chem-Simons-Higgs systems in which vor-
tices appear as charged particles. We argue that in addition to the electromagnetic interaction, there is
an additional interaction between vortices, the so-called Magnus force, and that these forces can be put
together into a single "dual electromagnetic" interaction. This dual electromagnetic interaction leads to
the right statistical phase. We also derive and study the effective action for slowly moving vortices,
which contains terms both linear and quadratic in the vortex velocity. We show that vortices can be
bounded to each other by the Magnus force.

PACS number(s): 11.15.Kc, 11.15.Ex, 74.20.Kk

I. INTRODUCTION

Recently, several studies of self-dual Abelian Chern-
Sirnons-Higgs systems in 2+ 1 dimensions have appeared
[1,2]. These self-dual models have a specific sixth-order
potential which has degenerate symmetric and asyrn-
metric vacua. In these systems there is a Bogomol'nyi-
type bound on the energy functional, which is saturated
by configurations satisfying certain first-order equations.
These self-dual configurations consist of topologically
stable vortices in the asymmetric phase, and nontopologi-
cal solitons in the symmetric phase. These solitons carry
both electric charge and magnetic flux, resulting in non-
trivial spin, and can be regarded as anyons, or particles
with fractional spin and statistics [3].

%hile attention has been paid to the statistics of vor-
tices in the asymmetric phase [4,6], there are many as-
pects of vortices which still need to be understood clear-
ly. One question is about the spin-statistics theorem of
vortices. Another is related to the dynamics of slowly
moving vortices in self-dual systems. In this paper, we
study various questions related to vortices in Chern-
Sirnons-Higgs systems.

Let us start first with considering the angular momen-
tum of nontopological solitons and vortices. One striking
fact is that for a given charge or magnetic flux, the angu-
lar momentum of nontopological solitons without any
vorticity has the opposite sign compared with that of to-
pological vortices [2]. The spin-statistics theorem implies
that the spin of a particle is directly related to the statis-
tics of that particle. The statistics of elementary charged
particles [5] and nontopological solitons are determined
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by the Aharonov-Bohm phase due to electric charge and
magnetic flux. Since vortices could have the same charge
and magnetic flux but the opposite spin compared with
nontopological solitons, the statistics of vortices cannot
be explained by the naive Aharonov-Bohm phase. This is
the first puzzle we will consider.

A self-dual configuration of n vortices appears to be
completely specified by the vortex positions, that is, by 2n
real parameters [1,2]. As we will see, all configurations of
a given number of vortices are degenerate in energy but
not in angular momentum. For a system of two vortices,
total angular momentum decreases from four times the
vortex spin to twice the vortex spin as their separation in-
creases from zero to infinity. The influence of this change
on the motion of slowly moving vortices is the second
puzzle we shall consider.

In order to understand the statistics of vortices, we re-
formulate the original theory in a way that makes the in-
teraction between vortices manifest. This reformulation
is called the dual formulation, where the massive vector
boson in the asymmetric phase is described by the
Maxwell-Chem-Simons rather than Chem-Simons-Higgs
terms, and where vortices appear as charged particles.
The dual formulation has been derived many times in the
past using the equations of motion or a lattice model [6].
%e present here a clearer derivation using the path in-
tegral formalism.

Some physical implications of the dual formulation of
various three-dimensional field theories have been studied
previously [7]. In the theory of a complex scalar field
with a global Abelian symmetry, a vortex in a uniform
charged background feels the so-called Magnus force,
which has more or less the same origin as the force re-
sponsible for the curved flight of a spinning ball. The
Magnus force on a curve ball is proportional to its speed
and is perpendicular to its direction, very much like the
Lorentz force. In the dual formulation, vortices are
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charged particles and the background charge density be-
cornes a magnetic field. The Magnus force on vortices
becomes a Lorentz force. The concept of the Magnus
force is important for vortex dynamics in superfluids [8].
One can also see the Magnus force for vortices in
Maxwell Higgs theories when there is a background elec-
tric charge density screened by the Higgs field. While it
is possible to see the Magnus force in the original formu-
lation, it appears more transparently in the dual formula-
tion.

In Chem-Simons-Higgs systems, vortices carry both

magnetic flux and electric charge. Because vortices feel
the charge of other vortices, vortices also feel the Magnus
force in the absence of a background charge. In the dual
formulation both the electromagnetic and Magnus forces
are combined into a single "dual electromagnetic" force.
The Aharonov-Bohm phase in the dual formalism deter-
mines the statistics of vortices and yields exactly what
one expects from the given vortex spin. The key point is
that the Magnus force can lead to a nontrivial phase be-
tween vortices as the Lorentz force can lead to the
Aharonov-Bohm phase. The physical mechanism behind
the vortex statistics is now very obvious.

The total angular momentum of many overlapping vor-
tices is equal to the vortex spin times the square of the to-
tal vorticity. When vortices at rest are separated from
each other by a distance much larger than the vortex core
size, one finds that the total angular momentum is just
the sum of individual vortex spins. The physical reason
is that any gauge-invariant local field falls off exponential-
ly to its vacuum configuration as one moves away from
any vortex core. For self-dual vortex configurations
characterized by the positions of the vortices, the total
energy is just the sum of individual vortex masses but the
total angular momentum is a function of the vortex posi-
tions. We will express the total angular rnomenturn of
vortices in self-dual models as a sum of spins and the or-
bital angular momentum in a clear way.

The behavior of the total angular momentum could be
understood as follows. Consider two noninteracting
point anyons of spin s in nonrelativistic quantum
mechanics. Two separated anyons at rest have zero clas-
sical orbital angular momentum. Quantum mechanically,
the orbital angular momentum is given by
Zs+2AXinteger, which, in turn, implies that the total
angular momentum is 4s +2%X integer. Our vortices are
extended objects and can overlap each other. If we quan-
tize the self-dual configurations of two vortices, there
would be many states whose orbital angular momentum
varies from 2s to 2s +2k X integer-0 with the same ener-

gy. The average separation of two vortices in these states
will increase as the orbital angular rnomenturn decreases.

We are also interested in how the position dependence
of the total angular momentum affects the classical dy-
namics of slowly moving vortices in self-dual Chern-
Sirnons-Higgs systems. To understand the dynamics of
vortices, in general, we derive the effective Lagrangian
for slowly moving vortices. We follow Manton's ap-
proach [9] which means for our case that for a given
number of vortices, the field configurations of slowly
moving vortices are very close to the field configurations

of vortices at rest and the effective action for slowly rnov-

ing vortices is determined by the self-dual configurations
of vortices.

We approach the problem from the Lagrangian point
of view. We imagine that the motion of slowly moving
vortices is a generalization of the nonrelativistic limit of
the Lorentz transformation. This means that the field

configurations of vortices in motion satisfy the field equa-
tions to first order in vortex velocities. We evaluate the
field-theoretic Lagrangian to get a low-energy effective
action as a functional of vortex positions and velocities.
We show that the orbital angular momentum for vortices
at rest calculated from the effective action is identical to
that calculated from the field theory.

The contents of this paper are as follows. In Sec. II,
we briefly review vortex configurations in self-dual
Chem-Simons-Higgs systems. We show that the total an-

gular momentum of vortices at rest can be expressed as a
sum of spin and orbital angular momenta. We then
present a numerical analysis for two vortices at finite sep-
aration. In Sec. III, we present the dual transformation
of Chem-Simons-Higgs theories in the path integral for-
malism. Here we include external currents and fields in

the transformation. In Sec. IV, we study various aspects
of the dual formulation. We relate the statistics of vor-
tices to the Magnus force. We also discuss the effect of
external currents and fields in the dual formulation. In
Sec. V, we derive and study the effective Lagrangian of
slowly moving vortices. We show that vortices can be
bounded to each other by the Magnus force. In Sec. VI,
we conclude with some remarks. In Appendix A, we

present the dual formulation of the theory of a complex
scalar field with a global Abelian symmetry and discuss
the Magnus force. In Appendix B, we present the dual
formulation of Maxwell-Higgs theories. In Appendix C,
we derive the effective Lagrangian for slowly moving vor-
tices of self-dual Maxwell-Higgs systems using the dual
formulation of Appendix B. This effective Lagrangian
has been studied in detail both numerically and analyti-
cally by various authors [10].

II. MODKI.

(2.1)

Gauss's law constraint obtained from the variation of Ao
is

~F,2+f (0+ Ao) =0, (2.2)

where a dot denotes the time derivative. Gauss's law im-

plies that the total magnetic flux 4=Id rF, 2 and the to-

tal electric charge Q = f d rf (0+ Ao ) are related by

(2.3)

We consider the theory of a complex scalar field
P=fe' /&2 interacting with a gauge field A„whose
kinetic term is the Chem-Simons term. The Lagrangian
for the theory is given by

'e~ ~A„a.A, + ,'—(aP)'+ ,'f'(a-„e+A„)' -U(f) . —
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Here we concentrate on the self-dual model where the po-
tential is chosen to be

f=0,

U(f) — f2(f 2 u2)21

8' (2.4)

d f+e;,f(d, 8+ A, )=0,

8+AD+ (f —v )=0,
2IC

(2.7)

For this self-dual model we use Eq. (2.2) to express the
energy functional as [1]

E=f d r f +—,'[d;f—Te;f(d 8+ A ))

and Gauss's law (2.2). In the remainder of this section,
we will consider only the positively charged
configurations.

If there are vortices of unit vorticity at points
q„a= 1, . . . , n, the phase variable can be chosen to be

8= g Arg(r —q, ),
a=1

(2.8)

+—,'f (8+ Ao)+ (f —u ) +rnrg,

(2.5)

which satisfies e,"B,B 8=2m. +,5(r —q, ). Equation (2.7)
implies that the total magnetic flux is given by 4= —2~n
for this configuration. Equations (2.2), (2.7), and (2.8) im-

ply that the f field satisfies
where m = u /2~ is the mass of charged particles in the
symmetric phase. As the integral in Eq. (2.5) is positive,
there is a bound on the energy functional:

8;1nf — f (f —v) =4m—+5(.r —q, ) .2 1 2 2 2

K a

(2.9)

E&m, /g/ . (2.6)

This bound is saturated by the configurations satisfying

Assuming that vortices are not overlapping, we can ana-
lyze the behavior of the f field near q, . In the complex
coordinate of positions, Eq. (2.9) implies

1nfs=ln~z —q, ~
+c+b&(z —q, )+b2(z —q, ) +b3(z —q, ) +b&(z —q, ) +b f(z' —q,')

2

+b2 (z*—q,') +b3 (z' —q,') +b4 (z' —q,') — 2e'~z —q, ~
+O((z —q, ) ),

K
(2.10)

where real c[q, ] and complex b, [q, ] are defined with
respect to q, and functions of the positions of other vor-
tices.

As the system is invariant under spatial rotation, in ad-
dition to the magnetic flux and the energy there is the an-
gular momentum which characterizes a given
configuration. The angular momentum functional
J= Jd x e; r'T J is given by

J= —f d re; r'[fd f+f (8.+Au)(B.8+A )]

= —f d re; r'[fd f aF&2(dj8+
—AJ)] (2.11)

2~(n+a) .— (2.12)

The angular momentum of the solution can be calculated
from Eq. (2.11) [2] leading to

with Gauss's law (2.2).
As studied in detail in Refs. [1,2], there are vortices in

the asymmetric phase and nontopological solitons in the
symmetric phase. The rotationally symmetric
configurations of these solitons of a given vorticity n are
described by the ansatz, f (r), 8=ng, and
A, =e, rj[a(r) n]/r . In the sy—mmetric phase where

f ( ao ) =0, the solution becomes a nontopological soliton
with vorticity n In this case it .is shown in Ref. [2] that
a ( ~ )= —a, where a & n +2. In the asymmetric phase
where f( ao )=u, a( ao ) =0 and the solution becomes over-
lapped vortices. The total magnetic flux of this ansatz is

J =ma(a n) . — (2.13)

Since we have used just Gauss's law, Eq. (2.13) is applica-
ble to theories with a more general potential than the
self-dual one (2.3). Nontopological solitons in the sym-
metric phase have the energy per charge identical to that
of elementary charged particles, implying that they are at
the verge of instability. Vortices in the asymmetric phase
are, however, stable for topological reasons.

In the symmetric phase elementary particles have spin
s = 1/4n. v and nontopological solitons have spin
s g Qn. Since tota—l charge would be quantized in in-

tegers, the Qn part would be an integer. The statistics of
elementary charged particles and nontopological solitons
is given by the phase change of the wave function for two
identical objects when they are rotated by 180' counter-

2n.is Qclockwise around the center of mass e ~, and is iden-
tical to half of the Aharonov-Bohm phase e' ~ . On the
other hand, vortices of unit vorticity would carry spin
s = —m.a and the correct statistics would beV

2n.is„—2m-is Q
e "=e ~, which cannot be the naive Aharonov-
Bohm phase.

The self-dual configurations of vortices seem to be
parametrized only by positions q, . The energy is in-
dependent of vortex positions and so derivatives of fields
with respect to vortex positions would become 2n zero
modes of self-dual equations. For self-dual
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configurations, the total angular momentum (2.11) be-
comes

J=~Jd r e„r'(tI,O+ Ai)F, ~ . (2.14)

It would be interesting for the total angular momentum
to be expressed explicitly in terms of the field
configuration rather than as an integration over a space
of its density. To find such an expression, we note first
from Eq. (2.2) that F,2 vanishes at points q, 's because f
vanishes there. Without changing the value of J, we can
then subtract these points from the integration in Eq.
(2.14). In the subtracted region, F,z=8, A2 —t)~A, with

3, = A, +8, t9. Noting that

e;, 'A, frit)kAi=B;[ —,
' '(A )

—A, ( A, )]

(2. 15)

and A, being transverse from Eq. (2.7), we can write the
angular momentum as a boundary integration [2]:

FIG. 1. Plot of the f field in units of U on the x-y plane for
two vortices of mutual distance d =6 with spatial distance unit
V /K.

(2.16)

where the sum is over the positions of vortices and the
line integral is around a small counterclockwise circle
around q, . There is no spatial infinity term in the asym-
metric phase. (For nontopological solitons the boundary
at spatial infinity contributes and this contribution does
not depend on the position or shape of solitons. )

So far we have reviewed what is known in Ref. [2]. Let
us pursue further along this direction. Let us evaluate
the integral in Eq. (2.16) at each vortex position q, . Near
q„wecan put r'=q,'+E;J1,' and Eq. (2.16) becomes

&= —
ling fdl,'e; [ ,'qj(Ak)i —A —(q,"Ak)]

Kg ddt, 'E,
~ [ 2 eptg ( Ai ) A~(ekil Ak ~)] . (2. 17)

We use Eqs. (2.7) and (2.10) to expand A; near q, :

A, = —e,,B,lnf

(2.19) would change from s„n to s„n as vortices get
separated from each other. The self-dual vortex
configurations are degenerate in the energy but not in the
angular momentum. The orbital part of the angular
momentum is explicitly expressed in terms of self-dual
configurations in Eq. (2.19).

Let us now consider the system of two vortices located
at points qi=q/2 and q2= —q/2. The symmetry of the
configuration tells us that

b, =qS(q), (2.20)

where q =lql. The total angular momentum (2.19) be-
comes

which, in turn, implies bi(q)= —bi( —q)= —bz(q). In
addition, Eq. (2.9) is parity invariant and so the f
configuration does not change under the reAection which
exchanges two vortices, implying that

IJe+—bj+0(l ) . , (2. 18)

where b& =b& =ib, . We perform the integration in Eq.
(2.17) with Eq. (2.18) to get the total angular momentum
as

(Z. 19)

with the total vortici+y n. The first term of the right-
hand side of Eq. (2.19) represents the orbital part and the
second term represents the spin part.

There is only one length scale U /~ in the problem. As
the distance between vortices goes to infinity, the field
around each vortex position would approach to the rota-
tionally symmetric ansatz exponentially, which with Eq.
(2. 10) means that b, [q, ]* vansish exponentially with the
mutual distance. Thus, the total angular momentum

FIG. 2. Plot of the magnetic field F» in units of U /4~' on
the x-y plane with d =6.
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2
0

FIG. 3. Plot of the total angular momentum in units of —ma

as a function of mutual distance d.

—e"'~A 8 A +—'(8 &)p v p 2

+ ,'f —(3„8+A„+A„'"')—U(f)+ A„J". (3.1)

The generating functional is

z=(r~ -' '~1)

=f [df][d8][dA„]gf(x)~Pzexp i fd'xZ
X

(3.2)
where there is a nontrivial Jacobian factor because we use
the radial coordinate for the scalar field. The initial and
final wave functions +F I give necessary boundary condi-
tions.

A given field configuration in the path integral could
contain vortices and antivortices and the 8 field could be
multivalued. We can, in principle, split the 8 field into
two parts,

8(r, t)=8(r, t)+rt(x, t), (3.3)

1 +const
2

(2.22)

near q =0.
We have studied the configurations of two vortices by a

numerical analysis. Although the existence of multivor-
tex solutions is proved [11],no exact solutions are found.
Figures 1 and 2 show the magnitude of the scalar field
and the magnetic field at d =6a./v . In Fig. 3, we show
the total angular momentum as a function of the separa-
tion distance. The total angular momentum decreases
from 4nato ——2n.a.., supporting the argument in the
previous paragraphs.

J= 2nxq—2$(q) 2mx —.
This angular momentum should approach that of the two
overlapped vortices when q ~0, which implies

=g( —1)' 1, 5 (r—q, (t))
dt

dq,"=g ( —1)'fdr 5'(x"—q,"(r)),
d7.

(3.5)

which satisfies the conservation law, B„E"=0.Integra-
tion over the 8 variable becomes

where the first term describes a configuration of vortices,

8( r, t }=g (
—1)'Arg[r —q, (t)], (3.4)

a

with vorticities ( —1)' and locations q, (t},and the second
term g represents single-valued fluctuations around a
given configuration of vortices. From the multivalued 0,
we can construct the vortex current

K"(x)—= e"'i'5 5 81
v p

III. DUAL FORMULATION [d8]= [d8][dri) = [dq,"][de], (3.6)

To understand the interaction between vortices, let us
consider transition amplitudes of a Chem-Simons-Higgs
system in the path integral formalism. For a generality
we include an external gauge field A„'"'and an external
current J". The Lagrangian is then

which means that we sum over single-valued fluctuations
around a given configuration of vortices and then sum
over all possible configurations of vortices, including an-
nihilation and creation of vortex pairs.

Let us now linearize the third term of the Lagrangian
(3.1) by introducing an auxiliary vector field C":

T

g f(x) exp i fd x[ ,'f (8„8+A„+—A„'"')] =f [dC"]exp i f d x
X

1

2f 2 IJ IJ P P
(C") +C"(5 8+5 ri+ A +A'"')

(3.7)

where the nontrivial Jacobian is essential. As q is single
valued, one can integrate over g in the standard way,
leading to

Now we introduce the dual gauge field H„to satisfy

f [dc~]5(a„c~). . ~

f [dg]exp i fd x C"B„rt =5(d„c"). (3.8) =f [dc~][da ]5 c~— ~~"~ag1
P 2m-

(3.9)
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where the ellipses denote the integrand. There would be
an infinite gauge volume which can be taken care of later,
but there is no nontrivial Jacobian factor as the change of
variables is linear. By using the fact that

K K

(3.16)
1 e"'~(B 8)B~ =K"H

p p p (3.10)

up to a total derivative, we can integrate over C", result-
ing in the Lagrangian, which is

The relation between the original fields and the dual
fields in the classical level can be seen from the equations
one would get from the Lagrangians at various steps.
They are related to each other by

f (d„9+A„+A„'"')=C„= e„„&d'H~.
1

(3.17)

+ &"'PH a W'"+W J"+1

2' (3.11)

where H„„=d„H„8+I„—and the ellipses indicates f
dependent terms.

The exponent is quadratic in A„and so the integral
over A„is easy. The equation of motion for 3„is

Another relation between the original and dual fields is
given by Eq. (3.13). The original U(1) charge is then
given by

Q= fd r[f (8+ A + A'"')+J
]

=fdr H +J

~e""~d„A = — e""~d+ —J",1

2m

whose solution is formally

(3.12)
= f d r 2m~K + 8, Ho; +aF;*2' . ,

.K 1
(3.18)

H„+V„,1

2'lTK
(3.13)

where the dual transformed Lagrangian is

&,=-,'(ag)' —U(y)—,, H„',—,~~"~H„a~,1 2 1

16m. f " Sex. .

+H Z~ — H J&+ ~&PH a.~'"'
2~~ " 2~

+—e" PV8 V+V J".
p v p p (3.15)

There is no Jacobian factor in the measure. One can in-
troduce the gauge-fixing terms for H„and V„.The sign
difference between the Chem-Simons terms of the origi-
nal and dual transformed theories will be crucial in un-
derstanding the statistics of vortices. The original gauge
field is separated into two pieces: H„and V„.The vor-
tex current K" becomes an electric current for the dual
field H„.The external current is, however, coupled to
both the dual gauge field H„and reduced gauge field V„.

Now the vortex positions appear in the Lagrangian ex-
plicitly, however, without any kinetic term. The mass of
vortices arises solely from the f,H„fields. The vortex
position cannot be chosen independently from the field
configurations. The variation of Ho implies Gauss s law
constraint

where e""~B„V= —J"/v. Rather than integrating over

A„,we substitute A„in the path integral by Eq (3.13.)

and then the integration over A„becomes the integration
over V„.

The resulting path integral becomes

Z= f [f df ][dq,"][dH„)[dV„]expi fd'x &D

(3.14)

where the last equality comes from Gauss's law (3.16).
The second-to-last term gives a nonzero contribution to
the charge for the configuration of nontopological soli-
tons in the symmetric phase where the f field vanishes
only on the isolated points and the spatial infinity. Note
that the charge conservation in dual formulation is
satisfied by the topology of the field configuration, not by
the field equations.

IV. PHYSICAL CONSEQUENCES

We have obtained the dual formulation of Chern-
Simons-Higgs systems, which could be useful in under-
standing the various physical aspects of the asymmetric
phase. In the dual formalism the interaction between
vortices is more direct because they appear as charged
particles rather than topological objects. In addition, we
can see the interaction between vortices and external
currents and fields more directly. The dual transforma-
tion in general changes a weak-coupling theory into a
strong-coupling theory and vice versa. The dual formula-
tion has been widely used to understand the phase struc-
ture of a given theory. (See Ref. [12] for a review. ) If we
try to quantize vortices by the semiclassical method, the
coupling between elementary particles should be very
small, or ~&) 1 for the method to be a good approxima-
tion. In this case, vortices interact with each other
strongly as one can see from the dual formulation. How-
ever this aspect of the dual formulation will not be ex-
plored in this paper. Let us now make a few observa-
tions, about the dual formulation.

A. Massive vector bosons

There are two ways to describe a massive vector boson
of spin one in three dimensions: the Maxwell-Chern-
Simons terms or the Chem-Simons-Higgs terms. This
observation led to the original derivation of the dual
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transformation [6]. From Eqs. (3.1) and (3.15) with f = v

we have two equivalent Lagrangians:

e—@~PA 8 A + &v2A2
1 p

(4.1)

Both describe a particle of mass m =v /~a~ and spin

B. Quantum Magnus phase

%e know how a spinning baseball curves. Let us con-
sider a two-dimensional version. When a ball is moving
to the negative x direction with clockwise rotation in a
fluid, the wind velocity (at the ball's rest frame) on the
positive y part is faster than that on the negative y part,
resulting in the pressure difference. The net force on the
ball is then pointing the positive y direction. The magni-
tude of the force is proportional to the ball velocity and
so this force is somewhat similar to an effective Lorentz
force due to a constant magnetic field. When the moving
object is a vortex, it is called the Magnus force [8].

The simplest example in field theories is the theory of a
complex scalar field with a global Abelian symmetry.
%hen global vortices in this theory move in a uniform
charge background, it feels this Magnus force. As one
can see in Appendix A, the charge density appears as a
uniform magnetic field and vortices as charged particles
in the dual formulation. The Magnus force is given ex-
actly as a Lorentz force

Let us consider now vortices in the asymmetric phase
of a Maxwell-Higgs theory. A vortex with nonzero speed
moves in a straight line because it is just Lorentz boosted.
If we introduce a uniform external electric charge, a vor-
tex moves differently. The background charge will be
shielded by the counter charge carried by the Higgs field.
There is also a rest frame of charge. As shown in Appen-
dix B, vortices now feel the Magnus force due to the
shielding charge carried by the Higgs field, quite similarly
as global vortices feel the force due to the global charge
carried by the complex scalar field. In Appendix B, we
show that in the dual formulation vortices again appear
as charge particles and the shielding charge appears as
the uniform magnetic field. The Lorentz force due to this
effective magnetic field is again the Magnus force in dis-
guise.

Vortices in a Chem-Sirnons-Higgs theory carry both
magnetic flux and charge around their core. %hen vor-
tices are close to each other, they would feel the elec-
tromagnetic force, which leads to an Aharonov-Bohrn
phase at a large distance. Because vortices carry charge,
there would be also the Magnus force between vortices.
The Magnus force is like a Lorentz force in nature and
would lead to an additional Aharonov-Bohrn phase. The
total Aharonov-Bohm phase mould then be a sum of
those from these two forces. As we have seen in the pre-
vious section, the dual formulation of Chem-Simons-
Higgs systems has the dual gauge interaction between
vortices. Thus, one would say the original electroraa-
netic force and the Magnus force come together as a sin-

gle dual gauge force. Vortices are charged particles in
the dual formulation and so their statistics should be
given by the Aharonov-Bohrn phase coming from the
dual Lagrangian (3.15). The Aharonov-Bohm phase is a
long-distance effect and determined only by the Chern-
Simons term. The sign of the Chem-Simons term in the
dual Lagrangian is opposite that of the original Lagrang-
ian, which makes the real Aharonov-Bohm phase be-
tween vortices exactly the inverse of the naive
Aharonov-Bohm phase. This implies that the Magnus
force is two times larger than and has opposite sign to the
original electromagnetic force. The statistics from the
dual Aharonov-Bohm phase is consistent with what we
expect from the vortex spin. Although the dual formula-
tion has been discovered many times [6], this aspect of
the vortex interaction has not been noticed before. Of
course, one should be able to derive the statistics between
vortices from the original formulation. This is done in
the next section.

C. External current and Seld

%e have derived the dual Lagrangian which is valid
even with external currents and fields. Let us see first the
effect of an external point charge. In the asymmetric
phase of a Maxwell-Higgs theory, any charge will be
completely screened and the net total charge is zero. In
the asymmetric phase of a Chem-Simons-Higgs theory,
the charge of vortices cannot, however, be screened be-
cause Gauss's law (2.3) or (3.16) implies that the total
charge is nonzero when there is a nonzero magnetic flux.
If there is no external field and vortex, there cannot be
any net magnetic flux for any finite energy configuration
and so the total charge is zero, implying that external
charges are totally screened. For a given external point
charge, the screening charge will surround this charge
with the length scale given from the Higgs boson mass.

What is the interaction between external currents and
vortices'? The dual Lagrangian (3.15) leads to the answer.
Both of them are charged currents of the dual gauge field
and so there would be a nontrivial phase when the exter-
nal charge goes around a vortex in a full circle. This
phase is determined by the dual Lagrangian and is given—i2~Q „tby e '"' with an external charge Q,„,. If the charge is
fractional, the phase is nontrivial because the Higgs field
carries a unit charge and can screen only integer charges
completely. From Gauss's law (3.16) we see that a uni-
forrn external charge density is screened by a uniform
dual magnetic field. A single vortex moving on this back-
ground would feel the Magnus force which appears as a
Lorentz force.

What is the interaction between two external point
charges? They are interacting through both gauge fields
H„and V„.At a large distance, the Aharonov-Bohm
phases due to two gauge interactions would cancel each
other, and there is no nontrivial phase between them.
Since the screening charge has a finite core size, at a short
distance external charges would see the nontrivial statis-
tics.

We can ask whether the external currents and fields
could have a dynamical origin. In Sec. III we have not
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used the conservation of external currents explicitly. The
key aspect is that external currents and the gauge field

A„couple linearly. There seems to be two simple exam-

ples where external currents arise dynamically. The
matter could be made of fermions, in which case A„J"
would be replaced by

=&y7 "(a„+&e A„)q+ (4.2)

where the ellipses denotes the mass and Yukawa interac-
tion terms. Or, the matter field could be made of a sim-

ple gauge field, in which case the additional Lagrangian
would be

Xii, =ee""~A„B„W+ (4.3)

where the ellipses indicates the kinetic terms for the 8'„
field. The external field A„'"'can be made dynamical by
replacing A „'"'in Eq. (3.1) by a gauge field W„with some
kinetic term. It is trivial to see how these dynamical de-

grees couple to the dual gauge field, which we will not
bother to write down.

One may wonder whether there is any dual formula-
tion of Maxwell-Chem-Simons-Higgs theories. One can
follow a similar procedure as in Sec. III and Appendix B
and will end with a dual formulation with two gauge
fields even when there is no external currents and fields.
In the case where the f field is fixed as a constant, a dual
formulation with a single gauge field was obtained in Ref.
[13]with a different approach.

V. I OW-ENERGY EFFECTIVE LAGRANGIAN

I.=—g R,'b(q, )q,'qb+g q,'H,'(q, ) .1

ab ij a, i

(5.1)

We want to derive this Lagrangian from the field-
theoretic consideration. The linear term would represent
the "dual magnetic" interaction between vortices. The
effective action also should somehow take into account
the fact that vortices are not degenerate in angular
momentum. At the moment, we are interested in the
classical picture. For this classical picture to be con-
sistent, quantum fluctuations should be very small, which
means ~ && 1 and vortices interact with each other strong-
ly as argued in the previous section.

There are considerable works [10] for the effective ac-
tion for slowly moving vortices in self-dual Maxwell-

We now consider the dynamics of self-dual vortices
with the specific potential (2.3). Vortices at rest are de-
scribed by the configurations satisfying the self-dual
equations (2.7). As they are degenerated in energy, there
are no attractive or repulsive forces between them even
though there may be velocity-dependent forces. We ask
then what is the effective action for slowly moving vor-
tices? As there are no massless modes in the system, the
slowly moving vortices would not dissipate their energy
to other degrees of freedom and would be described by a
nonrelativistic action of interacting particles. This action
would consist of terms quadratic and linear in vortex ve-

locities. The most general Lagrangian for the n slowly
moving vortices with positions q, (t) would then be

From the Lagrangian (2.1), we get the field equations

—Bg+(B„6—A„)f U'(f)=0, —

~F,2+f (8+ Ao)=0, (5.3)

xe; Fo +f (d;8+ A;)=0 .

The field equation for the 8 field can be obtained from the
Jacobi identity for the gauge field equations. We demand
the field equations are satisfied to first order in the vortex
velocities by the field corrections bf, b,8, b, A„. We
choose the gauge where 68=0. From Eq. (5.3), we get
the first-order field equations

d;elf+[A

—(8;8+ A;) )hf+2f A (6+5 A )

2f( d, 6+ A, )b, A, —U"(—f )bf =0,
ae, B,AA, +f (6+hA )+2fA bf =0,
Ke,,(A. —B,hA )+f b A, +2f(d, 6+A;)bf =0

(5.4)

where f, A„aregiven in zeroth order. We do not know
at the present moment the solution b,f, b, A„ofEq. (5.4)
in terms of f explicitly. If there is a unique solution of
Eq. (5.4) for a given trajectory of vortices, we have
definite configurations for slowly moving vortices of the

Higgs systems. Their approaches are either geometrical
or numerical. Here we take a somewhat different tactic
which seems to work also in the Maxwell-Higgs case as
shown in Appendix C, where we use the dual formulation
even though the original formulation would work equally
well. For self-dual Chem-Simons-Higgs systems, the
dual formulation seems cumbersome for our present pur-
pose and we start from the original Lagrangian (2.1).

Consider n vortices with a uniform velocity u and the
total mass M=m. v n. The field configuration for this case
can be obtained from that of vortices at rest by a Lorentz
transformation. We are interested in the slow motion or
the nonrelativistic limit. The f field would transform
trivially and the gauge field as a vector would have a
correction linear in u. The gauge fields would satisfy the
field equation to first order in u. We can calculate the
Lagrangian L = f d rX with this transformed

configuration and get the expected result
1. =Mu l2 —M.

For the field configuration of slowly moving vortices of
a given trajectory q, (t), we imagine a generalization of
the nonrelativistic limit of the Lorentz transformation.
For consistency, we will assume that there are first-order
corrections to both scalar and gauge fields, and require
that they satisfy the field equations to the first order in

the vortex velocities, q, (t). The zeroth order f field

would be f(r; q, (t) ) which satisfies Eq. (2.9). The
zeroth-order 8 field would be 8=+,Arg[r —q, (t)]. For
a given zeroth-order scalar field, the gauge field in the
same order can be obtained from Eqs. (2.3) and (2.7):

Ao(r;q, (t))= — (f —
U ),1

(5.2)
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self-dual Chem-Simons-Higgs system. For the vortices of
a uniform motion, the solution of Eq. (5.4) is trivially
given taking the nonrelativistic limit of the Lorentz
transformed fields.

We imagine the field sum in the path integral to be re-
stricted to these configurations for slowly moving vor-
tices. The field-theoretic action for slowly moving vor-
tices then becomes the effective action as a functional of
these vortex trajectories. There will be terms linear and
quadratic in the vortex velocities, but no terms which just
depend on the vortex positions. We do not need to con-
sider the second-order corrections to the fields because
their contribution vanishes due to the field equations
satisfied by the zeroth-order fields. By using Gauss's law
(2.2), let us write the Lagrangian density (2.1) as

,'f a8—Fi2—— E; A;A ——
—,'(8;f)

' f (8—+—A ) ——' f (8 8+ A )'—U(f) (5 5)

The zeroth-order term in the effective action can be
calculated trivially and becomes negative of the rest
mass. In Eq. (5.5) the last four terms can be put into a
sum of two squares plus the rest mass term as shown in

K~8F — E AA. .
1 12

(5.6)

where the fields are given in zeroth order. From this La-
grangian, it is not clear how to separate the effect of the
electromagnetic interaction from that of the Magnus
force. With Eq. (5.2}, the second part of the right-hand
side of Eq. (5.6) is proportional to

2e;& A; AJ = —A;8;koln

g2 2= —8; A;Bain" +(8;A;)3 ln (5.7)

with the obvious understanding of g. Since the zeroth-
order gauge field is transverse and the boundary terms
lead to no contribution to the effective action, Eq. (5.7}
does not contribute to the effective action. With
8=+ e,~q BJlnIr —q, I, the first part of the right-hand
side of Eq. (5.6) is proportional to

Eq. (2.5) and so yields only the second-order terms.
Thus, the first-order term h,X for the self-dual system is
given by

8Fi2 =E Eklq .(i) lnlr —q, I )a, A,

=q'8;( AJB lnIr —q, I) —q,'BJ( A&B;lnIr —q, I)+q,'(8 A )8;inIr —q, I

—q,'8 (A;B.lnIr —q, I)+q,'A;8 lnIr —q, I,
(5.8)

where e,1eki =5 k5Ji5;i5Jk is used and the sum over the index a is assumed. Now we can get the first-order term of the
effective Lagrangian from Eqs. (5.6) and (5.8),

h, L =f d rb, ,X= —2m' g q,
'

A, (q, ), (5.9)

where B, lnIr —q, I
=2m.5(r —q, } is used and the boundary terms are dropped as they make no contributions to the

efFective action. There is another way to see that Eq. (5.9) is the only contribution from Eq. (5.8) even though many
terms in Eq. (5.8) seem singular at vortex positions. Because 8-1/5 and F,z-5 with 5=r —q„8F,2 vanishes at vor-
tex positions, which allows us to subtract these points from the integration in Eq. (5.9). Then we can calculate the in-
tegration with boundary contributions at vortex positions, getting the same result. From Eqs. (2.7) and (2.10), we get

q,' —q]
A, (r=q, )= —e; bJi(q )+ g

bAp I q. —
q~ I'

The second-order term in the Lagrangian would be

bQ=ab AobFi2+ 'aE; (hA; AJ+ 3;hA—~)+.2f —~~(B;bf ) —
~ U"(f)(b f ) + 2f (&+DAO)

—
—,'f (hA;) + ,'(bf) Ao —

—,'(bf ) (i);—8+A;) +2fhfAO(8+6 Ao) —2fbf(B, 8+ A, )b A; .

(5.10)

(5.11)

First note that E'j ALA Aj E' jA;AA up to a total time derivative, which does not affect the effective action. We use
Eq. (5.4) to remove U" and the Chem-Simons part up to total derivatives. The resulting second-order term is

bQ= ,'f + ,'f (8+EA0) + ,'f (h—A;) +—fhfAo(8+AA—O)+fbf(B;8+A;)bA; . (5.12)

Hence, we have obtained the effective action for slowly moving vortices. From Eqs. (5.9) and (5.11), we can see that
the effective Lagrangian for slowly moving vortices is given by

I.,ir(q„q,)= Jd ref + ,'f ((8+CIAO) +(b A,—) ]+fhfAO(8+CIAO)+fhf(d, 8+A, )b A, J

—2~~ g q,
'

A; (q, } . (5.13)
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Here f, A; given by Eqs. (2.9) and (5.2) and functions of
q, 's. hf and b, A„aregiven by the first order field equa-
tion (5.4). The effective Lagrangian is made of the usual
quadratic terms and the linear terms which describe the
magnetic interactions between vortices.

We made some reasonable assumptions to derive the
effective action for slowly moving vortices. A
configuration for moving vortices is specified by f +b,f,
A„+AA„.The energy functional for this configuration
consists of the rest mass and terms linear and quadratic
in the vortex velocities. From Eq. (5.4), one can easily
show that A,E= jd r KE;~B&[AQUA;], whlcll vaillslles.

The quadratic terms in the energy functional are not
identical to the quadratic part of the effective Lagrang-
ian. The difference is

62E —62L= d r 6 Ao 0+DAO

+fb f(8;8+ A; )b A;+ ,'(8; Af )—

+ —,'(bf ) Ao

+ ,'(b,f ) (8, 6—+A;) ], (5.14)

which does not seem to vanish. We believe that the
quadratic part of the effective action is given by 52L rath-
er than 62E because the linear part cannot be obtained
from the energy point of view. For uniformly moving
vortices, the first-order correction (5.4) of the fields would
be given by the nonrelativistic limit of the Lorentz
transformed fields and the effective Lagrangian becomes
the total kinetic energy of the system.

We can use Eq. (3.13) to express the linear term in

terms of the dual gauge field. As there is no external
charge, we can choose the gauge where V„=O and
A„= H„/2mir. T—he linear term (5.9) becomes then

biL =g j,'H;(q, ), (5.15)

which is exactly what we get from the dual formulation
and need for the statistics of vortices. The linear part
(5.6) implies the "dual magnetic" interaction between
vortices. In Sec. IV, we argued that dual magnetic in-

teraction originates both ordinary magnetic and Magnus
forces. This linear interacting term (5.14) leads to the
statistical phase between vortices. In Ref. [14],Eqs. (5.6)
and (5.7) have been examined to get the statistics of vor-
tices at a large separation but was not put into a simple
form as Eq. (5.9) or (5.14), let alone its physical meaning.

From Eq. (2.2) we can see the original gauge field

strength F,2 vanishes at r=q, . This does not mean that
the field strength felt by vortices vanishes. The reason is
that the gauge field A„(r;qb) as a function of q, when

r=q, is different from that as a function of r. From Eq.
{5.10), we can get the field strength felt by the vortex at

qa

Similar consideration would apply as well to the cases
studied in Appendices A and B.

There is an interesting check of the linear term. Let us
consider the total angular momentum of vortices from
the low-energy effective Lagrangian (5.12}:

= —2m'. g e;,q,
'

A, {q,)+O(q,') . (5.17)

With Eqs. {2.10) and (5.2), one can see that

J,„~;,= —2m a g q, b, [q, ]+O(q,' ), (5.18)

which is identical to the orbital part in Eq. (2.19) for vor-
tices at rest. Our effective Lagrangian for slowly moving
vortices is consistent with the field-theory Lagrangian.

Let us briefly study the dynamics of slowly moving two
vortices. First consider two overlapped vortices with a
small initial kinetic energy. The initial angular momen-
tum would be very close to 4s, . If they can escape form
each other to spatial infinity, their angular momentum
would be the sum of spins and the orbital angular
momentum, 2s„+uob, where uo is the asymptotic speed
and b is the impact parameter. As we can choose the
kinetic energy, or u o, arbitrarily small, the angular
momentum conservation says that the impact parameter
becomes arbitrary large, which is impossible because the
force is short ranged. Rather, we think that two vortices
are bound together by the mutual magnetic field. By
turning around this argument, one can also see that two
vortices from the spatial infinity with very small kinetic
energy cannot make a head-on collision, rather they will

always veer off from each other. By a similar argument,
one can see that two vortices of a finite separation and a
very small kinetic energy would not escape to the spatial
infinity nor overlap each other.

More specifically, consider two vortices at rest whose
locations are qi= —q/2, qz=q/2. From Eqs. (2.10) and

(2.20), we see the linear part of the effective Lagrangian
{5.9) can be written as

1
b, ,L = 2nire;, j 'q~ S(—q)— (5.19)

1 dJ(q)
dg

(5.20)

which is smooth due to Eq. (2.2). The naive Aharonov-
Bohm phase from the electromagnetic interaction would
come from the Lagrangian Q, j'A; with the vortex
charge Q„=2m.x, which has the opposite sign as that of
the above equation. The magnetic field felt by the re-
duced one body is

2~~ d (qX)&,2 q)=—

~bi[q. ]
27TK

elf
(5.16}

with J in Eq. (2.21). The magnitude of the angular
momentum decreases with the separation between vor-
tices. The sign of the magnetic field is then opposite the
sign of the angular momentum, which tells us the direc-
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tion to which the vortex trajectories bend. When the vor-
tex spin is positive, or, ~ (0, vortices in a two-vortex sys-
tem turn right. For the negative spin, vortices turn left.
From this one can easily obtain a qualitative picture of
the dynamics of two vortices which are either bounded
closely or starting and ending at the spatial infinity.
However, the detailed pictures seem to be complicated
and will not be pursued here.

Somewhat similar behavior has been observed numeri-
cally in another kind of self-dual system with global
charge and topology in three dimensions [15]. Our ap-
proach may shed some light on the physical understand-
ing of the interaction between those solitons.

Finally, let us consider the meaning of the effective La-
grangian (5.11). We do not have any geometric deriva-
tion of the quadratic term, but we can take the quadratic
term as a metric on the moduli space, the self-dual
configurations of vortices. The linear term could be in-
terpreted as a magnetic field in the moduli space. Vor-
tices are then moving along geodesics determined by the
metric and magnetic field. Vortices carry spin and may
feel the spin connection of the metric on the moduli
space. Since the spin connection could be also interpret-
ed as a sort of gauge field, the linear term in our effective
Lagrangian may be interpretable as the spin connection,

making the effective action fully geometric. To see this,
we need a better understanding of the quadratic part of
the effective action.

VI. CONCLUSION

We understand now various aspects of vortex dynamics
in Chem-Simons-Higgs systems. We have the dual for-
mulation in the path-integral formalism, where the in-
teraction between vortices manifests. The statistics of
vortices comes from the Aharonov-Bohm phase of the
dual gauge interaction, which combines the usual elec-
tromagnetic and Magnus forces. In the dual formulation,
we included the external field and current, which could
be dynamical. In self-dual models we studied the proper-
ties of static vortices and presented an effective action for
slowly moving vortices.

There seems to be some interesting directions to take
from here. One direction is to find further use of the dual
formulation. We can ask whether the perturbative ex-
pansion is possible in the dual formulation. For vortices
moving on a curved surface whose typical length scale is
much larger than the size of vortices, there could be a
force on vortices via spin connection because vortices
carry spin. Maybe our approaches would shed some light
on that. It would also be interesting to find whether
there is a dual formulation of the nonrelativistic limit of
the theory in the symmetric phase. Another is to under-
stand better the effective action for slowly moving vor-
tices and its dynamical consequences. In addition to the
statistics, we have not studied the quantum aspects of
vortex dynamics. Quantum aspects of vortices in the
field theoretic and effective action levels need further in-
vestigation.

ACKNOWLEDGMENTS

This work was supported in part by the Korea Science
and Engineering Foundation (Y.K.), the NSF under
C'rrant No. PHY89-04035, Department of Energy (Y.K.
and K.L.), the NSF Presidential Young Investigator pro-
gram (K.L.) and the Alfred P. Sloan Foundation (K.L.).
K.L. would like to thank the organizers of the Cosmic
Phase Transition Workshop at ITP, U.C. Santa Barbara,
the Center for Theoretical Physics of Seoul National Uni-
versity, and Aspen Center for Physics where a part of this
work was done.

APPENDIX A

Here we derive the Magnus force in the simplest exam-
ple. Consider the theory of a complex scalar field in three
dimensions with a global U(1) symmetry. The Lagrang-
ian is given by

z=)a„y['—U(y) .

The generating functional is

(A 1)

Z=(F~e ' ~I)= f [dP][dP']exp i f d xX . (A2)

With P=fe' /P2, the Lagrangian becomes

X=—'(Bg) +—'f (8 8) —U(f) . (A3)

The conserved current for the global Abelian syrnme-
try is j„=fB&e. Suppose we are interested in the
minimum energy density configuration for a given uni-
form charge density j =pz. The phase becomes O=wt
with a constant w and the f field is fixed by the minimiz-
ing the energy density:

U.s(f)=,Pa+U(f) .1

2f2
(A4)

Z= J[f df][dH„][dq,"]exp i fd'xXD (A5)

(A6)

with IC& given in Eq. (3.5). There is no Jacobian factor in

There could be a global vortex with this background.
The ansatz will be f (r) and H=wt+nq& These .vortices
carry logarithrnically divergent energy and quadratically
divergent angular momentum when the charge density is
nonzero.

Let us consider the motion of vortices and antivortices
with some background charge. For example, one is imag-
ing some bosonic superfiuid or Q matter. In the same
way as in Sec. III, we introduce an auxiliary field C" to
linearize the second term of the Lagrangian (A3).
Separate the phase 0 into a part for vortex configurations
and a part for single-valued fiuctuations as in Eq. (3.3).
Integrate over the fiuctuation to get a new gauge field 0„
for C". After some further steps, similar to Sec. III, we
arrive at the dual formulation of the generating function-
al:
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measure as in Sec. III. In the dual formulation the Gold-
stone boson is described by the massless vector field with
the Maxwell kinetic term. Vortices become charged par-
ticles and the logarithmically divergent self-energy comes
from the divergent Coulomb energy.

In the dual formalism, the conserved current for the
global symmetry becomes

APPENDIX B

Here we present the path integral derivation of the
dual transformation for a Maxwell-Higgs theory in three
dimensions. For some earlier related works see Ref. [16].
The Lagrangian for a complex scalar field P=fe' /&2
coupled to the gauge field A

„

is

j"=f 8"e=e"'~"r}~ (A7) F +—'(ag) +—' f (a e+ A + A'"')1

P& 24e P P P

The uniform charge density background becomes a uni-
form magnetic field background. Vortices moving on a
uniform charge background would feel the Magnus force
as a Lorentz force in the dual formulation.

Let us now do a little bit of the Quid dynamic approach
to the Magnus force to figure out the direction. For the
positive w and n, the momentum density fiow

T"= f d—'r[j a,f+f'ea, e)

around the vortex is clockwise, resulting in the negative
angular momentum density. Let us consider a vortex

moving to the negative x axis. This is very similar to the
case where the two-dimensional baseball moving in the
same direction with the same rotation, feeling the net
Magnus force in the positive y direction. This direction
of force is exactly that of the Lorentz force one would get
from the dual Lagrangian (A6).

—U(f)+ A„J",
where J" is the external current and A„'"'is the external
gauge field. As in Sec. III, we introduce the vortex
current K" and integrate over the fluctuation part of the
0 field, resulting in a dual gauge field H„.The effective
Lagrangian becomes

1

4e 2 P~
X'=

—,'(Bg) —U(f) —H +H K&—1

+ e" ~H F + e" l'H F'"'+A J"1 1

4~
(82)

In order to treat F„,and A„to be independent from
each other, we introduce a vector Geld N„sothat

f [dF„„][dA„]5(F„,—(B„A,—B,A„))

1 qp= f [dF„,][dA„][dN„]expi f d x e"'~N„[F,—(B„A —8 A„)] . (83)
4~

The F„integration is just a Gaussian integral and so
trivial. The A„integration leads to a factor

5 E"'~"r}+ —J"1

2m.
(84)

which is consistent only if the external current J" is con-
served explicitly. Thus, unlike in Sec. III, the external
current could have a dynamical origin only for the case
when A„J"is replaced by

Z= f [f df )[dH„][dq,"][dg]5(e""~r}+ 2mJ")—

Xexp fd'xZ, (8g)

where

point external charges of integer charge are vortices in
the g variable.

Putting it together, the generating functional after the
dual transformation becomes

X~=e""~A„B„W+kinetic terms . (85) XD =
—,'(Bg) —U(f ) H„„+H—„K"1

The external gauge field can be made dynamical by sim-

ply replacing A „'"'by, for example, W„in Eq. (85).
Let us consider a single-valued scalar field g such that

2

+ (H„+N„+B„g)+ e" ~H„F'"'
8 2 P P P 4~ P ~P (89)

N =N„+8g,
where

e""~OP =2mJ"
P

(86)

(87)

and 8 X =0. A uniform external electric charge density
corresponds to a uniform magnetic field in the vector po-
tential X&. If we put N =8 g for a point current of unit
charge, g becomes multivalued with shift 2m. , which can
be absorbed into g. This allows an interpretation that

with K given in Eq. (3.5). There is an obvious Abelian
gauge symmetry in the dual Lagrangian. The point
external currents of integer charge could appear as vor-
tices in the g variable. The massive vector bosons of spin
+1 are described by the Maxwell-Higgs terms in both
formalisms.

If there is a uniform electric charge density back-
ground, we know that there should be a uniform charge
density background of the opposite charge carried by the
Higgs field to have a finite Coulomb energy. In the duai
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formulation, there is a uniform external magnetic field
carried by N which should be balanced by the uniform
magnetic field of the opposite sign carried by H„for a
finite energy density as one can see in the dual Lagrang-
ian (B9). In the dual formulation vortices moving on the
uniform charged background are equivalent to charged
particles moving on a uniform external magnetic field and
vortices feel the Magnus force as an effective Lorentz
force.

APPENDIX C

Here we study the effective Lagrangian for slowly mov-

ing vortices in self-dual Maxwell-Higgs systems in the
dual formulation of Appendix B. The self-dual model is
fixed by choosing the potential

2

U(f) — (f2 v2)i
8

(Cl}

The energy functional of the dual Lagrangian (B9) can be
rewritten as

For slow moving vortices with vortex positions q, (t),
we assume that the fields transform like a complicated
version of the Lorentz transformation. The scalar field
would be given simply as f(r;q, (t)). There would be a
correction to the gauge field linear in the velocity. We re-
quire that the Maxwell equation is again satisfied to first
order in velocity. Note that the velocity of vortices
would appear explicitly in the Maxwell equation by the
current K'=g, j,'5(r —q, ).

In zeroth order, only Ho is nonzero as one can see
from Eq. (C4). The first-order part of Eq. (C6) is

8; i d;WHO +e bHO=O,1

(C7}
1 1—8 d;H +e; 8, hH, +e b,H, =4m. K'. .

The first part of Eq. (C7) implies that COHO =0. For the
second part of Eq. (C7), we apply both 8; and ei, B&, lead-

ing to
2

E=fd'r —'j'+ ' H'„+ '
(H, +N, +a,.g)'. .

Sm f Sn
a, aH, =~ay',

(C8)

+— d f+ Ho;
1 + 1

2 1
8', b,H» e'EH»=—4~'ge, ,p.'d, 5(r q. ) —.f 0

2

+ [Ho+ No+ Bog + n.(f —v ) ]

+AU 7l (C&)

where the vorticity n =fd rK appears because of
Gauss's law:

1
Ho; +e (Ho+dog)+4m K =0. (C3)

Ho=km(f —u ),
Hu; = Wed f (C4}

and Gauss's law (C3). Two equations in (C4) are con-
sistent to each other. Equations (C3) and (C4) can be put
together into an equation for f:

d, lnf e(f v}=4m.+—5(r—q,—) . (C5)

Let us try to derive the low-energy effective Lagrang-
ian in the dual formulation. We know how the fields
transform under the nonrelativistic limit of the Lorentz
transformation of all vortices. The scalar field will be in-
variant but there is a nontrivial correction iH„to the
gauge field. The gauge field satisfies the Maxwell equa-
tion in the first order of vortex velocity q, :

, H"~ +e'a~+4~'SC~=O.1
(C6)

The energy is bounded, E )suing As t.here i.s no exter-
nal charge and field, we choose the gauge where N„=O
and (=0. The energy bound is saturated by the
configurations satisfying f=0, H; =0:

As we know the divergence and curl of hH;, in principle,
we can find hH; explicitly.

Before we consider the effective action, let us ask
whether the f field satisfies its field equation to first order
in the vortex velocity. One can be easily convinced that
the first-order correction bf can be put to be zero con-
sistently.

We now discuss the field configuration of slowly mov-

ing vortices for a given trajectory. Let us calculate the
field-theory action from Eq. (B9) for these configurations.
The zeroth-order term is minus the rest mass. There is
no first-order term. The second becomes the effective ac-
tion for slowly moving vortices. The field equation (CS}
is essential in this derivation. The effective Lagrangian is

L,s(q. ,q. ) =fd'r f'+ (EHii)—'
Sn f

2

+ (AH;)
8m.

(C9)

=B,Bolnf —e; BJO (Cl 1}

in the Ao =0 gauge. With this identification, our
effective Lagrangian (C9) can be shown easily to be iden-

tical to that of Samols in Ref. [10].

Let us see what happens in the original formulation. The
field equations in the intermediate Lagrangians imply

e""~d+ =2nf (8"6+3"),
(C10}

HI'=2~e I'

which implies that
2

hH;=e, - A.
2&
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