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(4,0) super-Beltrami parametrization and super-operator-product expansions
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The superconformal structure of the (4,0) supergeometry of two-dimensional harmonic superspace is

characterized by the super-Beltrami differentials. The BRST algebra including super-Beltrami variables

and matter superfields of arbitrary U(1) charges is constructed. The (4,0) locally supersymmetric matter
action in the super-Beltrami parametrization is constructed and the super-stress-energy tensors are ob-

tained. Furthermore, the (4,0) superconformal anomaly is given and the super-operator-product expan-

sion of the (4,0) super-stress-energy tensor J(Z) is derived.

PACS number(s): 11.30.pb, 11.17.+y

I. INTRODUCTION

Riemann surfaces are the basic geometric objects
which appear in conformal field theory and perturbative
string theory [1,2]. The Beltrami differentials are con-
sidered as the proper tool for describing the Riemann
surfaces [3] and the Beltrami parametrization makes the
so-called factorization property manifest at all levels

[1,4]. The generalization of these tools to super-Riemann
surfaces proves equally important for superstring theory
[5,6].

The super-Riemann surfaces can be described geome-
trically by the introduction of two-dimensional super-
gravity geometry which is subject to torsion constraints
on the superfield strengths [7,4]. The supersymmetric
version of the Beltrami parametrization is presented for
N=1 and 2 cases [8—10,4]. In Ref. [10] the Becchi-
Rouet-Stora-Tyutin (BRST) quantization is discussed for
(2,0) supersymmetry and the super-stress-energy tensors
are obtained. In this paper we study the (4,0) super-
Beltrami parametrization by using the techniques of har-
monic superspace. These latters have been used success-
fully in two-dimensional (4,4) and (4,0) supersymmetric
[11] and supergravity [12] theories. This is achieved by
simplifying the SO(4)=SU(2)XSU(2) tensor calculus at
the level of the Grassmann variables 8" -8""(p=+)
and projecting one of the SU(2)'s down to its Cartan-
Weyl subgroup U(1) as follows:

e~'+ = e~+ =e~'U+ .l

The resulting (4,0) curved harmonic superspace is
z~= (x ++,8&+, U+) called the central basis and the
corresponding curved analytic basis (z„,8"„) with

zz =(x„,x„,W+, U;+), m = + +, m = ——is obtained
from the central basis by a coordinate change [12]. In the
analytic superspace geometry we include the harmonic
differentials dg ——+

, dg which are necessary in order to
put in evidence the general coordinate transformations of
the harmonic variables

5U.+ =A, + U 7

6U; =0,

generating the superconformal symmetry [13]. Further-
more, we introduce the i

&
contraction operator along the

vector ghost superfields [14]where

dg +—+—= U —'dU; +—
,

dry
=

—,
'

( U+'d U, —U; d U;+ ) .

With this structure the general supercoordinate transfor-
mations and the SU(2) symmetry are both contained in
the superdiffeomorphisms of the analytic superspace.
The frames are parametrized with respect to the rigid
(4,0) harmonic superspace frames and the Becchi-Rouet-
Stora-Tyutin (BRST) algebra including super-Beltrami
variables, matter superfields of arbitrary conformal
weights, and U(1) charges have been constructed. These
developments allow us to derive the (4,0) superconformal
anomaly and the super-operator-product expansion of the
super-stress-energy tensors.

The organization of this paper is as follows. In Sec. II,
we formulate our background geometry leading to the
horizontality constraints on the super-Beltrami
differentials. These are independent of the Lorentz
super-Weyl connections and the superfield strengths, but
the U(1) Kac-Moody subgroup of the SU(2) local symme-
try is connection dependent. The BRST transformations
of the super-Beltrami variables and their corresponding
ghost superfields are presented by parametrizing the
frames with respect to the rigid (4,0) superspace frames.
Some super-Beltrami variables have been fixed in order to
recover the harmonic analyticity conditions of the ghost
superfields X', X +, and X+—+— corresponding to
superdiffeomorphisms. Furthermore, we determine the
BRST transformations of the conformal factors and the
superconformal spinorial connections k, +—. In Sec. III,
we present the conformal analytic superfields deduced
from analytic superfields of arbitrary spins, Weyl weights,
and U(1) charges. The superconformal covariant deriva-
tives are derived from the horizontality conditions on the
matter superfields. Therefore, we have constructed the
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(4,0) locally supersymmetric matter action in the super-
Beltrami parametrization in harmonic superspace leading
by the following to the derivation of the super-stress-
energy tensors. In Sec. IV, the (4,0) superconformal
anomaly is given, leading to the derivation of the anoma-
lous Ward identities. Therewith, the (4,0) super-
operator-product expansions of the supercurrent J(Z)
are obtained. Finally, we make some concluding remarks
in Sec. V and some technical details are given in the Ap-
pendixes.

is the counting U (1) Cartan-Weyl charge operator.
The torsion constraints of the two-dimensional (4,0)

harmonic superspace geometry can be written as

dE~~E~g~ =2E&+E~—g~ „ (2.7a)aP '

dE&+ g l E&+g~/EO'+B = —EQEag& gE& E+
2

Ea+Eo (2.7b)

gE&+E
2

II. (4,0) SUPER-BELTRAMI DIFFERENTIALS

We recall that the frames in two-dimensional (4,0) har-
monic superspace with analytic local coordinates
z =(z„,8"„)are defined by the super-one forms

dE'+E'n =0,
dE—' —+2E——B =+2E E——,
dE =E E+

Ea —Eo (2.7c)

(2.7d)

(2.7e)

(2.7fl

EA d MEA( ) (2.1) with

with 3 =(a,a, a+, ++,0). The two-form torsion is given
by

y ~=dE" yE'(II+ g iB),", (2.2)

where 0 and A are Lorentz and Weyl superconnections,
respectively, and B is the U(1) Kac-Moody superconnec-
tion (see Appendix A). The introduction of the latter is
in accordance with the analytic line integrals defined glo-
bally on super-Riemann surfaces as in the N =2 case [6].
The situation is such that T:, =0; then V and V= com-

mute with each other on scalar superfields. In fact, when
we define the analytic integral of the superfields P

+—with
E dE =0, (2.8c)

The (4,0) supersymmetric horizontality constraints on the
super-Beltrami variables are easily obtained by generaliz-
ing the exterior derivative and the frames in (2.7). These
are given by

E'dE' —2E'E +E =0, (2.8a)

E'dE +—'E dE' —E E~ E~ +E'E B
2

E'(E + E— +E E-')-=0, -(2.8b)

V, P= =0,
one can always find a scalar superfield P such that

(2.3)
4E dE +E dE+++E++dE =0,
E'dE'=0,
with

(2.8d)

(2.8e)

b. =V:P, (2.4)

d=d+s,
E~=E~~i E~

V, Q=O .

Therefore, the (4,0) supergravity constraints can be sum-
marized as

[V'+, Vy [=25;P, ,

[V+'V ]
=R+

(2.5)
[V:,V, ] =R:, ,

[V„V,I=X +V:+X V++R

and the harmonic constraints are given by

[V——,V-+ ]=V=,

[V——,V +—]=0,

gR, L gg, L~ gg, L
7

B=B+b,

(2.9)

and where we have combined the generalized equations
of (2.7) in order to eliminate the connections and

superfield strengths. i
&

is the contraction operator
along the ghost vector g =(g,g, g~, g

—+)
of the superdiffeomorphism transformations where

, g"+,g++ satisfy the harmonic analyticity condi-
tion (D+g =0) and g" is unconstrained [12]. C"'

and b are the ghost superfields for the right, left, and U(1)
transformations.

On the other hand, the horizontality constraints (2.8)
remain invariant under the redefinitions

M'=E'A,

[V——,V', ]=0=[V—+—
, V ],

[V,V
+——

] =+2V—+—,
[V++,V ]=V

(2.6) M+ E+ A ~ ~2+ E+A+

W=B+A ' (E +A EA +)+E'A"—
(2.10)

where V' ——are the harmonic covariant derivatives and V M —E A
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where A, A', and A, +—are independent local superparam-
eters. We note that these redefinitions are equivalent to
those given by Thiimmel [15] for the N =4 supergravity
theory in ordinary superspace. Consequently, in terms of
M" and W variables, the horizontality constraints (2.8)
on the (4,0) super-Beltrami variables become

M'dM' —2M'M M =0,
M'(d+ W)M +—'M dM' —M *M~+M~

2

allows one to obtain

D—M'= 2M—
a a a (2.15a)

D+-+-M +(a —M a —a M )M '——M— —+—D:M'
a a a a a a a a

—M —+— D+M'=0 .a a (2.15b)

Moreover, the second and third equations in Eq. (2.11)
with (2.12)—(2.14) and the convenient choices

M'dM'=0,

M dM =0,

—M'(M +M +M *M )=0

(2.11)

M —+=9 +—

lead to

y++ ++) a

(2.16)

(2.17)

4M dM +M dM+ +M +dM =0,
with

MA=MA+i M"=M"+X
8'= 8'+g,
i(M =0,
M =dg.

The super-Beltrami differentials M are invariant un-
der Lorentz and super-Weyl symmetries. Their BRST
transformations corresponding to (4,0) superdiffeomor-
phisms can be derived from the horizontal conditions
(2.11) (see Appendix B). The last constraint of (2.11)
expresses the dependence of the harmonic super-Beltrami
differentials M++ and M . Furthermore, it is known
that the N =4 SU(2) conformal structure can be solved
by the harmonic analyticity condition which leads to the
formulation of the superconformal field theory on the an-
alytic subspace [13]. In order to establish this result at
the level of the ghost superfields X', X +, and X+—+—we
make the choices

M +ct+ 0 M
—ct-

I3

dM +M I ++ =0,
dM'+M'I', =0,
where

ra E{0)Aa Ma a ya
a a A a

r"-=—E'""a M + —a r +
a a A a

I +—+*+= —E"'"D*+-M+' —D-++-r+ *
A

r'= —E'""a M'„—a x'.
a a A a

(2.19}

The BRST transformations of the superconformal factors
can be obtained by combining (2.18), (2.8), and the
decomposition (Cl) —(C6). This leads, in a first way, to

The horizontality conditions (2.11) can be rewritten
under other compact forms which are useful for the
knowledge of the BRST operator action on the supercon-
formal factors: namely,

dM'+M'r. '—2M +M =0,
(d+ w)M +-+-,'M '-r'. +M'r. -+

—M"M+-+-&M~*M'=0,
(2.18}

M + =5=M
8

M +'=0=M +',
M-+++ =0=M- +

@ P

leading to

D+X +=O=D+X**
8 8

D+ X'=0,

D X'=2X~* .

(2.12}

(2.13a)

(2.13b)

(2.13c)

0"+d ink; —I', =M'y, +2 M +A,, +M A.,+

(2.20)

n, +a, inc,'=q, , (2.21a)
r

0"+8 ink'+8 M'=M'g +2 M +A, +M 1, +

where y, is a function of the allowed superfields which
can be obtained from the ghost number zero equation of
(2.20) as

On the other hand, the degrees of freedom carried by
X——can be fixed by the harmonic constraint equations

D++X++ =O=D (2.14)

which are obtained by setting M + =0=M . The ghost
number zero equations of (2.11) show that the super-
Beltrami variables are not all independent. For instance,
the first equation of (2.11) by the use of the choices (2.12)

n'++D+lna =+ -+
a a a

D—+—+lnga+g Ma a

=M ——'y +2 M —— +A, +M +—— V+a a a

(2.21b)

(2.2 lc)

(2.21d)

We note that the Eqs. (2.21a)—(2.21c) are already given
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in Ref. [15j for % =4 supergravity with SU(2) XSU(2)
symmetry. In our formalism we see that aside from
(2.21a)—(2.21c) additional equations (2.21d) appear show-
ing the dependence of the superconformal factors in har-
monic variables. Thereafter, the ghost number one equa-
tion of (2.20) gives the BRST transformation of the super-
conformal factor 5':
s in';= —C —8 X'+X'y +2(X +A, +X' A, "+) .

dB=dB=d(W M —
A,, +M +A,, ) . (2.31)

The formalism developed earlier allows us to obtain the
constraint

What remains is the BRST transformation of the U(1)
Kac-Moody connection W. For that purpose we use the
horizontal constraint imposed on the gauge superfield 8:
namely,

On the other hand, we obtain in a second way,

0 +d ink' —l'=M'y

(2.22)

(2.23)

d~+M r.+ —M +r. +M'a, =o,
with

(2.32)

which leads in the same way to

0 +8 ink'=y, ,

0, +c},ink;+B, M,'=M,'y, ,

Q +D*lnh;+B, M*' =M*-'y
8 8 a a t) P

nga+g Ma a a

(2.24)

Consequently,

sW= —gg+y g M ++M g y + —y +

—M +a.r -+r.'a. W+M'a. q

and

sq=r -a.r + —r +a.r -+r'a. ~.

(2.33)

(2.34)

and to the BRST transformation of the superconformal
factor 6': namely,

Furthermore, the information contained in the extended
equations of (2.7fl with the decomposition (Cl) —(C6) lead
to the equations

s ink'= —C —8 X'+X'g (2.25)
W+ ~ r+++ + (Ma —pa+ Ma+ga —)+MD M+ +~a -t-

2 Q a

Finally, Eqs. (2.8b) and (2.8c) with the use of Eqs.
(2.7b) and (2.7c) allow us to obtain the equations

(d+ w)k, +——
—,'A.,+—I', +r, —

= —Mao~++-'M~+-y +k~+M+—+
aa a a

—
—,'A, , +—(M'y, +2M )

and the resulting equation

-'(r++ -+r--++)=M-- ++ —M++--
2

(2.35)

(2.36)

with

—M'S +——2A,
+—

A,~+M~
a a

G += —a X+—-'~+-q —M'S +-
aa a a 2 a a a

(2.26)
This latter equation and the choices (2.14) allow us to fix
the values of the functions g—+—to zero. Therefore, the
ghost number one equations of (2.35) and (2.36) imply

—-'D++X-- —(Z -X + —X +X -)=0
2 a a

Sa+
( ga )1/2/aXa+

a

(2.27)

giving at ghost number one the BRST transformations of
the spinorial superfields k, +—: namely,

SA, +=a X + —-'A, +(a X +X y )+A..+X+++-X.+y

+-X +- —2X +-X~ r~+- —r'S +-
'I a a a

D++X +D X++=0,
where we have taken (see Appendix B)

M'=aq'.

+r'(a. X:-+-,'X:-q. +M:S +-) . (2.28)
III. (4,0) SUPER-STRESS-ENERGY TENSORS

AA gDf A

with fD the superconformal factors given by

fa —QQ fQ —QQ
a a

f +P— Qgafig f—P+

f++++ 1 f00

(2.29)

{2.30)

We note that in these developments we have used the
decomposition (Cl) where the matrix A in (C4) is rewrit-
ten as

(d+r fl +lA +qB)yq=E V'„yq (3.1)

we deduce the BRST transformation of the matter
superfield g~: namely,

In this section we will examine if it is possible to de-
scribe the (4,0) locally supersymmetric matter action in
the super-Beltrami parametrization. For this reason we
consider a matter superfield q&~, carrying a U(l) charge q
and of weights (r, l) with respect to right and left trans-
formations in the (4,0) super-Beltrami parametrization,
and we try to define the (4,0) superconformally covariant
derivatives. However, from the horizontal condition
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sgq=X "7 yq —rC"y~ —IC (p~ —qby~ . (3.2)

qq=pq(5; )"(&;-)', (3.3)

In order to obtain (4,0) superconformally invariant
theories, one has to express the covariant derivatives in
terms of the super-Beltrami variables. Thereby, we

redefine the yq superfield by

where P» is a superfield of U(1) charge q, carrying zero
weight, and is inert under Lorentz and super-Weyl trans-
formations. We note that if the superfield y is defined in

the analytic subspace, i.e., V+yq=p, then the second

member of (3.3) must be analytic. This fact restricts the
local superparameters A and A' and consequently the su-
perconformal factors 6, and 5' to be analytic. However,

with the change (3.3) the horizontality condition (3.1) be-

comes

Zrtl»+ ( r I', +l l ,'+ q W)p»

=M'g). +A,:+g):+A,:-2)+—ry. )P»+M" [S:—(2r+q)A,: ]P»+M [S+ (2r —q)A,.—+]P»

+M++K P»+M 2)++Itl»+M S Itl»+M'(2)~ —ly, )$», (3.4)

where

yq (ga )I r(ga—
)
—IV +q

sy»=r a y»+Z'a y»+(r X ++a +)L:y»

+(X++L +X L++ )Itl» (2r—q)X A—,,+p»

cg yq (ga )
—r(ga )1

—IV q +y»(ra, x'+ia r' q~) .— (3.9)

~kyq (ga )1/2 —r(ga )
—IV++»

rD++yq (ga )
—r(ga }

—IV++ q
a

cgOyq —(ga }
—r(ga )

—!VO q
a

(3.5)

are the (4,0) superconformally covariant derivatives of P».
Thereafter, Eq. (3.4) at ghost number zero allows us to
express the (4,0) superconformally covariant derivatives
as

(&,—)'
I=— dz aa 0

L

with

dz =d x d 8+d 8:dU

(3.10)

Finally, let us recall that the free two-dimensional (4,0)
supersymmetric matter action can be written in the full

(4,0) harmonic superspace [16]as

&.4»=(L. +rX. )4q

4»=(L. +IX-.)0q-—
2):ltI»=[L: +2(r+q/29, , ]Itl»,

~++]q L+*]q

2) P»=(L M+L: M— L+ )—P

(3.6) ,+ V (V, )I=— z„E (3.11)

and y+ is the analytic complex matter hypermultiplet of
weight (0,0). The (4,0) locally supersymmetric matter ac-
tion can be obtained from (3.10) by covariantizing the
derivatives and integrating over the invariant measure
dz..E

2)+p =(L+ +2rk, + }Itl»= (D++2rA, ,+
}p—» .

We note that the covariant superconformally analytic
condition is then given by

This latter can be expressed in terms of the superconfor-
mally covariant derivatives. In fact, with the choice (3.8)
and those fixed in the previous section, we have

E '=s detEM =6 (5; )

Xi+$»=0 (3.7) with

M +=0=M (3.8a)

and the derivation of the operators L„L,, L:,and L *—+

can be simplified (see Appendix D) if we take the follow-
ing restriction of the geometry:

6=1—M'M,'—M +M
a & a a

—(M++ —M +M:++ )Ma a a

—(M: —M +M: )M++'
a a a

M++a P M++a+ (3.8b)

and the redefinitions (3.3) and (3.4) allow us to obtain the
action

The ghost number one equation of (3.4) gives the BRST
transformation of the conformal superfield P», which we
assume to be analytic: namely,

I= ' fd ..s[e'n —(n )'c+--
+ terms in @+and Ink, ;], (3.12)
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+M+ K +M K++
)

Q Q a a

with
J++ = ——'4 (8 ) 4+

aaa 2 a

J++ = ——'4 B,(B ) 4+
a 2 a a

J+++ = '4+D—+—(8 )z4, +
aaa a a

J+ = —'C D:(a )'e+
aaa 2 a a

(3.13)

(3.14}

where

q)+ y+1

ga( )1/2
a

is a nonanalytic superfield. Therefore, the classical
super-stress-energy tensors are obtained by differentiating
(3.12) with respect to the super-Beltrami variables. The
couplings of the latter variables, which are assumed to be
nonanalytic, to the nonanalytic super-stress-energy ten-
sors deduced from (3.12) without fixing the choice (3.8a)
are given by

I=fdZ„(M 'J+++M 'J+++M +J+
aaa a aaa

+M J +M'J+M +J +M J+
aaa Q a aa a aa

tribution from the ghost superfields which appear in the
gauge fixing of the world-sheet variables. Moreover, the
properties of the (4,0) supersymmetric BRST current
algebra may also be studied by localizing the BRST
differential algebra. On the other hand, with the use
of these techniques, the derivation of the (4,0)
superdiffeomorphism anomaly and by the following the
obtention of the Wess-Zumino action associated with the
(4,0) superdiffeomorphism group can be achieved in the
same way as the (4,4} superconformal case [17].

IV. (4,0) SUPERSYMMETRIC
OPERATOR-PRODUCT EXPANSION

In this section, we derive the anomalous Ward identi-
ties generated by supercoordinate transformations lead-
ing to the super-operator-product expansion for (4,0)
super-stress-energy tensors. Before we proceed any fur-
ther, let us recall that the (4,0) superdiffeomorphism
anomaly [17] is given in the full (4,0) harmonic super-
space by the expression

A' I=a f dz„(X' D++D B,M') (4.1)
Q

where M,', which is considered to be nonanalytic, con-
tains the Beltrami variable p' as a zero 0 component:
namely,

Ma a gg+ay —aug —ay+ay
Q ~Q Q Q

J+
aa

—
—,'e D--D:a e+,

+ +—
—,'C D--a+a e',a a

Therefore, in terms of component fields, the expression
(4.1) of the (4,0) superdiffeomorphism anomaly becomes

z++= —~e D--D'+a c'
a 2 a

A' ' '=a f d x du(X'8 p'+2K 8 8++ V:
Q a

~2y +g'g ——P+ ),a

where

(4.2)

dimensions +1, + —,', 0, —
—,', and —1, respectively. The

analytic super-stress-energy tensors are obtained from
(3.14) by applying the (D+ ) derivatives: nainely,

ya
~

—pa pa+ —pa+

Note that we can add the supersymmetric partners of
(4. 1): namely,

T~+ =(D+ ) J++ T + =(D+ ) J +
aa a aaa ' aa a aaa d (X +D M'++X D++M ) .~aa (4.3)

T + =(D+ )
J++ T + =(D+ ) J+

a a ' aa a aaa

T.+'=(D+ )'j
T+ =(D ~+ )'J —, N =(D+ )'K ——

T3+ (D + )2J + N4+ (D + )2K ++
6 aa' CX Q

(3.15)

where (T,,+, T +), (T, +, T, +
), T, (T,T ), and

(N, N +
) are of dimensions +2, +—', , +1, + —,', and 0, re-

spectively.
Note that other analytic super-stress-energy tensors

with the same dimensions can be obtained from (3.12) but
they are dependent on the super-Beltrami variables.
Then when we differentiate with respect to the super-
Beltrami variables and set it equal to zero as in (3.14) all
these super-stress-energy tensors cancel. As is already
known, the superconformal properties of a general theory
are determined by properties of the super-stress-energy
tensors. These tensors have to be completed by the con-

Therefore, the Ward-identity operator acting on the gen-
erating functional Z, is given by

%(gB)=fdz, 5&M +. . .6
(4.5)

We will see at the end of this section that these terms
are necessary in order to recover the full N =4 supercon-
formal algebra [18]. But for the moment let us consider
the first term (4.1) of the anomaly.

The X =4 super-operator-product expansion can be
derived by following the procedure used in Ref. [19] for
the bosonic theory and extended to the X = 1 and 2 su-
persyminetric cases [20,21]. As we have seen, the in-

teresting (4,0) super-Beltrami variable which contains the
necessary component fields is M' and its coupling to the

corresponding super-stress-energy tensor is given by

fdz„(M'J) . (4 4)
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where the functional derivative of the generating func-
tional Z, with respect to M,' is given by

B,G, ( „z )= 5,,(,—z )5' ' '(U„U ),
where

(4.9)

5Z,

5M, M

(4.6)

and 5&M,
' is nothing but the BRST variation [the first

equation in (B4)] where the ghost superfield X' is replaced
by the superparameter P. Therefore, the anomalous
Ward identity

(2, —2) U U q U q2 q U (4.10)

The solution of (4.9) is then given by

5,, (z, —z~)=5 (x, —x~)5 (8+,—8+p)

X5 (8:,—8:~)

is the (4,0) 5 function [22] and 5' ' '( Ui, Uz) is such that

%(gr))Z, a fdz„(g D++D B,M,')

is explicitly given by

(4.7)
G (z„z )= 5'' (U, , U )

(8+i~)'(8:ip)'
a

Z12
(4.11)

5Z,
[8,—M,'8, 4B,M,'—(D+M,—')D: (D:M—,')D+ ]

a

=kD++D B,M,', (4.8)

with

z12 =x
1
—x 2

—8 28+1 —8+28

+8+,8:1—8+28:2,

where we have used the relations (2.13c) and (2.15a) and
k is an arbitrary constant. Now we introduce a Green's
function G (z„zz), which satisfies the differential equa-

tion

Multiplying (4.8) by (4.11) and integrating on the (4,0)
harmonic superspace by using Eq. (4.9), the anomalous
Ward identity (4.8) is transposed to the final result

Z. =fdz„,M,'(z, ) kD,++D,—B,G, (z„z )+[48,G, (z„z )+SG,(z„z )8, +D,+G, (z„z )D,
a

5M' zz

Zc+D i G (z i,zq )D i+ ] 5M'(, )a

which becomes, after a second variation with respect to M,',

5Z,
kr), D, D,+—+G, (z„z )+[45,G~(z„z )+5G, (z„z )r), +D+, G (z„z )D,

5M,'(z, )5Ma(z~ )

+ Zc
+D,:G,(z, ,z~)D, ]

5M~(z, )

(4.12)

(4.13)

Consequently, the use of (4.6) leads to the super operator product expansion of the super-stress-energy tensor Jwhich
reads

(8+i') (8:iq) (8+ )'(8: P
J(z„U))J(zq, Ui)=C D, D++5' ' '(Ui, Ui) —4 5' ' '(U„U~)J(z~, Uq)

Z12 Z12

+5 5' ' '( Ui, Up )a,J(zp, Ui )+2
Z12

(8:iz)'(8-'iz)
+2 5' ' '(U„U~)D~D(z~, U~) .

Z12

(8:iz)(g-'iz)'
5' ' '(U„U~)D~D(z~, U~)

Z12

(4.14)

The space-time ordinary-product expansions of the different currents constituting the zero dimension super-stress-
energy tensor, J, namely,

J—~ +g+a ~ —+g —a ~ + +g+ag+a ~ ——+g —ag —a ~ +++g+ag —a ~ +g+ag+ag —p ~ —+g —ag —ag+p ~ + +(8+a)2(g —p)2J J J Jg Jg Jg Jp Jp Jaa ~

where the currents j, j+—
, (j,+—*,j, ), j+—

, and j„are of dimensions 0, —,', 1, —,', and 2, respectively, and can be deduced in a
straightforward way from (4.14). More specifically, the expression (4.14) contains all the known operator-product ex-
pansions of the operators which make up the Ã =4 superconformal algebra given in Refs. [18] with the exception of
that having —, dimensions. However, these can be recovered by adding the expression (4.3) which corresponds to the su-
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persymmetric partners of (4.1). Therefore, the anomalous Ward identity (4.12) is rewritten under a more complete
shape: namely,

6Z,
dz„,M'(z, )

—kD,+ +D, i), G (z, ,z ) + D—
,
+M , D,+ G (z„z )+ D—

, M ,
+ +D,:G (z, ,z )

Q 2

+[413,G (z, ,z )+5G~(z, ,z )8, +D,+ G, (z„z )D,

6Z,
+D,:G,(z„z2)D,+ ] 5M'(z, )

(4.15)

where we have used relations (2.13c) and (2.15a). Therefore, the final expression of the super-operator-product expan-
sion is given by

J(z 1, Ui )J(z2, U2 ) = C (D, D,++ —1)+
Z 17

2(~—12)(~—12) ~—2~ —1+~—1~—2

Z12

Z12

(g
— )2D++ (g+ )2D

——
1

2
5" -'1(U, , U, )

(&+12)'(&:12)'—4 5' ' (U, , U2)J(Z2, U2)+5
Z12

( &:12)(&+12)'
+2 " " 5(2 2)(Ui, U2)DZ-.J(Z2, U2)

Z12

( &+12)'(&:12)'
5 ' '(U„U2)13,J(Z2, U2)

Z12

Z12

5' ' '(U, , U )D+J(Z, U ) .
2Q

(4. 16)

The expansions in terms of component fields will be presented in more details elsewhere.

V. CONCLUSION

The (4,0) super-Beltrami parametrization has been
studied by using the techniques of harmonic superspace.
This study has been done by considering the general su-
percoordinate transformations and the SU(2) symmetry
as contained in the superdiffeomorphisms of the analytic
superspace. The constraints on the torsions of (4,0) su-

pergravity supplemented by the constraints of the har-
monic covariant derivatives which represent a super-
Beltrami parametrization in harmonic superspace have
been modified by the introduction of the U(1) connection.
This is compatible with the analytic line integrals defined
globally on super-Riemann surfaces. Such formalism al-
lows us to obtain in addition to the super-Beltrami
diff'erentials (M', X'), (M —+, X' +—

), the harmonic super-
Beltrami differentials (M —+—,X——). The transformations
of (4,0) super-Beltrami variables are obtained by
parametrizing the frames with respect to the rigid (4,0)
harmonic superspace frames. Some suitable choices for
the components of the super-Beltrarni differentials have
been done in order to recover the harmonic analyticity
condition leading to the formulation of the superconfor-
rnal field theory on the analytic subspace. Furthermore,
the frames are rewritten as the product of a super-
Beltrarni form and a matrix scale factor which can be
decomposed in terms of the conformal factors. These
latter are shown to be dependent on the harmonic vari-
ables. Therefore, the (4,0) locally supersymmetric matter
action is constructed in the super-Beltrami parametriza-

APPENDIX A: CONVENTIONS

A covariant derivative on the harmonic superspace is
given by

VM 0M+0M& + AMX+Bm Y (Al)

with M=(m, m, iM+, ++,0). It is convenient to convert
the world index of the covariant derivatives into the
Lorentz index by using the inverse of the zweibein:

tion and the super-stress-energy tensors are derived. We
note that some of these super-stress-energy tensors are
nonlocal and we hope that this nonlocality disappears at
the level of field components. On the other hand, the
anomalous Ward identity is derived and the super-
operator-product expansion of the (4,0) super-stress-
energy tensor J(Z, U), which contains all the necessary
operators constituting the N =4 superconformal algebra
[18], is obtained. Finally, we note that our formalism of
the super-Beltrami pararnetrization in two-dimensional
(4,0) harmonic superspace is fundamental since it allows
us in a more convenient way to know all the N=4
super-stress-energy tensors which are characterized by
conformal dimensions and U(1) charges. The knowledge
of the super-operator-product expansions of the super-
current J(Z, U) generating the N =4 superconformal
algebra [18] can be used in order to generate an N =4
super 8', algebra. This subject is under study.
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V =E„V =13„+Q„Af+A„2)+B„Y (A2} APPENDIX C: CONVENIENT DECOMPOSITION

with A =(a,a, a+, ++,0). Jkf,is the Lorentz generator
which has the diagonal form The parametrization (Bl), which can be rewritten as

(A3} E A E(0)BMcA A
C 7 (Cl)

[u, y~]=0,
where q is the U(1) charge. This latter is usually taken in
the upper position and Y is the U(l) generator counting
the Cartan-Weyl charge:

[Y 4.*-]=+4.-

allows, with the choices (B3) and (2.12)—(2.14), to identify

g —a+ —(ga }1/2g a g +a
p a p p

(A4)
[Y 0'1=qf'.

2) is the dilatation generator acting on the indices
(a, a, a+):

l»4. 1=4.
(A5)

and

a--++ =1=a++--,

F00

(C2)

APPENDIX B: BRST TRANSFORMATIONS

The parametrization of the frames E with respect to
the rigid (4,0) superspace frames E' ' is

E ~=E(0)B (Bl)
The substitution (2.10) allows us to obtain the local super-
parameters A, A, +—

, A„and A' in terms of the superfields

MB=
ga '

a

MB=

6 +——M'6 +—

Ma+ B B a

(ga )1/2
a

M++ g++
B B

(C3)

Aa+ —
( ga )

—3/2ga+
a a a

(B2)

The matrix A which constitutes the parametrization
around the rigid (4,0) harmonic superspace is given by

2(ga }
—2g8 —g8+

a

with the choices
M'=1=M,' M++ =1=Ma a'

M —=0=M +—+— M =dg
(B3)

0 pa+
a

0 5' 0

A= 0 0 (b, ')' 5a a

ga-
a 0

0 0

0

(ga )1/2gp 0a a

(C4)

0 0

where 1 is the identity in the sector of harmonic super-
Beltrami variables. Furthermore, it is convenient to
decompose (C4) as follows:

AA —gDf A
(C&)

where fD are the superconformal factors given in (2.30)
and the matrix A, is then expressed as

1 0 A,
+

A. 0
(B4) 0 1 0 0 0

o o (C6)0 0

0 0 0

0 0 0

o

0 Isx a

8', =O=B, ,

suitable for the derivation of the BRST transformations
of the (4,0) super-Beltrami variables and their corre-
sponding ghost superfields. These are obtained by the ex-
pansion of the constraints (2.11) at ghost number one and
two:
SM'= —(d —M'8 )r' —r'8 M'

+2(M'+X +M X +),
SM = (d+ W -M'a—.)r + —r'a. M +-'—M +a.X'---

1 pa+a Ma+ pa-+M+++ @++Ma+ + Ma+

SM +——= —(d M + D+ )X+———X+—+—D— —M—+——

SM'= —(d —M'a ir —r'a M'
a a

Spa gag pa+ 2ya+ ga-

st += —r'a r + —-'r +a x'
a 2 a

+X +X+—+—+qX +—,
sy++ y++D + +y++
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APPENDIX D: OPERATORS L„L,, L:,L **,L
These operators are expressed, with the restriction (3.8), as

L, =—[[1—M++M ' —M: M++' —(M ++A,, M')(M —M ++M ' —M M++')](a, —Ia M;)

—[M; I—,,+(M —M:++M ' —M: M++')]((), +qW, —rr), M,')

—[A,, (1 —M,++M ' —M,:M++') M;—(M, ++M,'A, ,+ )](D:+ W: I r),—M )

+[M'(M++ —M +M:++ )
—

A, +(M —M: M +')M+ —
A, +M:++ (1—M'M' —M: M++')]

a a a a a a a a a a a

X(D +qW —IB,M '),
+ [M;(M: —M +M: )

—
A, +(M —M:++M ')M: —A.,+M: (1—M'M; —M++M ')]

X (D+ +q W++ —it) M++') ],a

L, =—
[ [(t), +qW, rd, M,'—) —M,'((3, 1rJ,M;—) M, +(—D: +qW: —It),M )

(D 1)

—(M++ —M +M ++ )(D +qW lr) M —') —(M: M+M— )(D+++qW++ I r) M+—+')]
I

(D2)

L:=—[(1—M'M; —M++M ' M: M—++')(D: + W: —IB M )

—(M „'—M:++M '—M: M++')[(t) + W —rr), M~) —M~(B, —It),M;)]

+ [(M —M: M++')M++ —M:++ (1 M'M; —M:M+—+')](D + W IB M —')

+ [(M M++—M ')M: —M: (1 M'M' —M++M— ')](D+++ W++ —IB M++')]
a a a a a a a (D3)

L-—=—[[1 M'M' M— +M ——(M:——M +M —+-)M +'](D ——++ W ———IB M +——')
a a a a a a a a

—M —' —'(t) +qW, rr), M')+—M +'M,'(r), ——I rl M;)+M—+'M, (D:—+—qW: —IB M )

+M + '(M+ —M— '+M———++ )(D + +--W ' —IB M +')],
a a a a

L =(D +qW ),
with

+M - ~ —(M++ Ma+M:++—)M ' (M M—+M )—M++a
a a a a a a a a a

(D4)

(D5)

(D6)
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