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Catalyzed decay of a false vacuum in four dimensions
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The probability of destruction of a metastable vacuum state by the field of a highly virtual particle
with energy E is calculated for a (3+1)-dimensional theory in the leading WKB approximation in the
thin-wall limit. It is found that the induced nucleation rate of bubbles, capable of expansion, is exponen-
tially small at any energy. The negative exponential power in the rate reaches its maximum at the ener-

gy, corresponding to the top of the barrier in the bubble energy, where it is a finite fraction of the same

power in the probability of the spontaneous decay of the false vacuum, i.e., at E =0.

PACS number(s): 11.10.Jj

A number of problems in statistical physics [1,2] and in
cosmology [3,4] involve a consideration of a metastable
(false) vacuum state of quantum fields, which corresponds
to a local, rather than global minimum of the Hamiltoni-
an. Such a state can spontaneously decay into either the
true vacuum or a lower-energy false vacuum due to quan-
tum fluctuations at zero temperature [1—3,5,6] or due to
thermal ones [7,8] if the temperature is sufficiently high.

The decay proceeds through nucleation and subsequent
expansion of bubbles filled with the lower-energy phase.
The expansion is possible only for bubbles of suSciently
large size, for which the gain in the volume energy com-
pensates the energy associated with the surface of the
bubble. Thus the problem of the calculation of the decay
rate is reduced to a calculation of the probability of nu-
cleation of the critical bubbles, which in the quantum
case is a tunneling process [1—3]. The rate of the spon-
taneous nucleation of critical bubbles due to tunneling is
exponentially small in the inverse of the difference e of
the energy density between the metastable vacuum and
the lower one. Thus it is especially interesting to look for
mechanisms that would enhance the decay rate.

If there are particles present in the false vacuum, they
can facilitate nucleation of the bubbles, thus catalyzing
the decay process. The presence of a massive particle is
known [9,10] to enhance the tunneling rate since the tun-
neling proceeds at an energy equal to the particle mass
rather than zero, whereas the problem of the catalysis of
the false vacuum decay by collisions of particles thus far
has been addressed either only for theories in two dimen-
sions [11—13] or purely phenomenologically [13,14].

In this paper, for a (3+1)-dimensional theory, the ex-
ponential power F(E) is calculat—ed in the probability
of the nucleation of critical and subcritical bubbles in the
presence of a highly virtual field P:

I & B(E)1/10 & I exp[ —F(E)],
with ~B (E) ) being a state of a bubble with energy E.
The calculations are done within the so-called thin-wall
approximation, which assumes that the size of the bub-
bles is much larger than the thickness of its wall and
which is applicable at small e. The result of this calcula-

tion is that the induced nucleation rate of critical bubbles
is exponentially small in e ' at any energy E. As calcu-
lated by the WKB technique, the probability reaches its
maximum at the value of energy E, corresponding to the
top of the barrier, which separates the critical and sub-
critical regions. However, at that point the factor F in
the exponent differs only numerically from that at E =0.
The value of the ratio is found to be

F(E, )/F(0)=0. 160 .

This behavior is different from the one derived [12,13] for
a two-dimensional theory, where the exponential suppres-
sion in e ' disappears at and above the top of the barrier,
leaving only a possible exponential suppression in the in-
verse of a coupling constant g in the theory
exp( —const/g ). As will be shown, the leading contribu-
tion to the critical bubble nucleation rate at an energy
below the top of the barrier is a product of two factors:
one being the probability of excitation of a subcritical
bubble with energy E and the other given by the tunnel-
ing rate at the same energy. At the top of the barrier the
suppression due to the tunneling disappears; however, the
excitation factor is already exponentially small. The
difference with the two-dimensional case arises from the
fact that in the two-dimensional problem there is no sub-
critical region for the bubbles in the thin-wall approxima-
tion (the barrier starts at the zero size of the bubble);
hence, the excitation factor there is not related to the pa-
rameter e ', but rather, possibly, to g

It should be noted that the exponential decrease of the
probability beyond the critical energy E, is an artifact of
the approximation in which only the collective degrees of
freedom describing the bubble are taken into account. In
reality, if the initial energy is above E„it can be reduced
down to E, by perturbative emission of one or few parti-
cles at the cost of an additional factor in the probability
with the coupling g in a power of order one. Therefore,
as far as the exponential factor is concerned, its relevant
value at energies above E, stays constant and equal to
exp[ F(E, ) ]. At energies bel—ow E„where the probabil-
ity of the bubble nucleation is exponentially growing,
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e= e(P+ )
——e(P ) =2av+0(a ) . (2)

The bubbles in the false vacuum are droplets of the
phase P embedded in the phase P+. The transition re-
gion between the phases (bubble wall) is of the thickness
—1/(v'A, U), and throughout this paper only the bubbles
whose characteristic size is much larger than this scale
will be considered (thin-wall approximation). The energy
E of a bubble, as measured in the false vacuum, consists
of a negative part proportional to its volume, —e V, and a
positive part, associated with the surface energy density
p. For a small asymmetry parameter a the surface densi-
ty can be taken as that of the domain wall in the symme-
trical limit:

(3)

processes with the emission of additional particles are ex-
ponentially suppressed, which justifies ignoring other de-
grees of freedom of the field rather than those describing
the dynamics of a bubble. '

The problem under discussion in this paper is closely
related to the one of multiparticle production in high-
energy collisions in theories with weak interaction (for a
recent review see, e.g., Ref. [15]). Like some of the recent
papers on that subject [16—20], the present calculation
uses the Landau-WKB technique [21,22] for evaluating
matrix elements between strongly different states of a
quantum system.

The simplest model, in which there is a false vacuum
state, is the theory of one real scalar field P with the La-
grangian

X=—(8 t))) ——(P —v ) —aP2 ~ 2 2 2

2 ~ 4

with A, , v, and a being constants. In the limit of the van-
ishing asymmetry parameter a the field has two degen-
erate vacuum states, corresponding to (0~/~0) =+v. For
small positive a the state (()+ at +v becomes a local
minimum (false vacuum) and the one near —U((() ) be-
comes the true vacuum. The difference e in the energy
density between these states is given by

der to minimize the appearance of factors of m in subse-
quent formulas.

According to Eq. (4) the potential energy of a bubble is
given by the sum of the (negative) volume term and the
(positive) surface term:

U(r):H(—r,p =0)=Pr e—r

Thus, as shown in Fig. 1, at an energy E such that

0 & E & E, = —,', (p /Z )

there are two classically allowed regions for a bubble with
energy E: the subcritical region to the left of the barrier
and the critical region to the right of the barrier. The
bubbles in the subcritical region oscillate and relatively
slowly [23] dissipate their energy by emission of particles.
The bubbles in the critical region infinitely expand thus
destroying the false vacuum. At an energy above E,
there is no distinction between the subcritical and critical
bubbles, and nucleation of a bubble with such energy
would automatically imply destruction of the false vacu-
um.

A semiclassical quantization of the effective theory
with the Hamiltonian determined by Eq. (4) enables one
to calculate the rate of the spontaneous decay of the false
vacuum [3], and the same approach is used in what fol-
lows to calculate the matrix elements (8(E)~$~0) by
means of the Landau-WKB technique. According to
Landau [21,22], for a system with the coordinates q, the
matrix element of an operator f(q) between two strongly
different states ~X(E, )) and

~
Y(E2)) with energies E,

and Ez, ( Y(E2 ) ~f~X(E& ) ), in the leading WKB approxi-
mation is given by

I & Y(E2) lflx(E& ) & I -exp Re i f p(q; E )dq

q&+ij,p(q;E2)dq
q

In the tunneling process the lowest-action path is provid-
ed by spherical bubbles, which have the maximal volume
to surface ratio. Thus in the leading WKB approxima-
tion it is sufBcient to consider only spherically symmetri-
cal bubbles whose dynamics in the thin-wall approxima-
tion is described in terms of only one collective variable:
the radius r. The classical equations of motion are deter-
mined by the following relation [3] for the Hamiltonian
H:

where q' is the (generally complex) "transition point, "
i.e., the point of stationary phase of the expression

(H+Z'r ) p=(pr )— (4)

where p is the canonical momentum conjugate of r and
the notation Z=(4n/3) and P =4m@ is introduced in or-

'I am thankful to Valery Rubakov for insisting on emphasizing
this point. FIG. 1. Potential energy of a bubble vs its radius.
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qy
exp i p(q;Ei)dq+i „p(q;E )dqq*

p (q, E i ) [p (q, E2 ) ] are the momenta on the classical (gen-
erally complex) trajectory with energy E, (E2), which
runs between the points q& and q* (q' and qr), and,
finally, qz and qz are points, correspondingly chosen
somewhere in the classically allowed regions for the
states X and Y. The particular choice of each of the
latter points in a simply connected domain of the classi-
cally allowed region does not affect the real part of the in-
tegrals in Eq. (6). The interpretation of the Landau for-
mula (6) is straightforward within the approach con-
sistently pursued in the Landau-Lifshits textbook in con-
nection with the WKB calculation of various transition
amplitudes: the amplitude is given by the exponent of the
truncated classical action on the trajectory, which runs
from the initial state to the final through a (complex)
"transition point. "

A few remarks are in order in connection with the ap-
plication of Eq. (6) in the problem discussed here. First is
that Eq. (6) is written for the case, relevant to present cal-
culation, when the classical value of the operator f is not
exponential at the "transition point" q*, so that the ex-
ponential factor given by Eq. (6) is not sensitive to the
specific form of the operator. Second is that Eq. (6) does
not require the %KB approximation to be applicable for
the wave functions of either of the states X and Y in the
classically allowed region, i.e., where these wave func-

tions are large. Thus it can be applied even if the lowest
of the two energies, for example, E„ is small, including
the case E& =0. The only condition for applicability of
Eq. (6) is that the states X and I' are "strongly dilferent"
in the sense that the matrix element, given by this equa-
tion, contains a large exponential power, i.e., that it is
strongly exponentially suppressed. Third is that the
branch of the function p(q, E) in the complex plane is to
be chosen so that the exponential power in Eq. (6) is neg-
ative. Finally, if there are several "transition points" q',
only the contribution of the one which gives the maximal
transition probability is to be retained. A detailed
justification of these statements about the Landau formu-
la (6) can be found in Chapter 7 of the Landau-Lifshits
textbook [21].

In the matrix element (8(E)1/10), the field operator
with zero spatial momentum (c.m. system) translates in
the effective theory of the thin-wall bubbles into the
operator

f [P(x)—P+]d x= ,'vrur—

Thus the whole problem can be reformulated in terms of
the effective theory as a calculation of the matrix element
(8(E)1r 10) for a system with the Hamiltonian deter-
mined by Eq. (4). Using the Landau formula (6), one can
write the exponential estimate for this matrix element as

1(8(E)1&10)1-exp —Re f" &(Pr ) (er ) dr—+ f" &(Pr ) (zr +E)—2dr
0

=exp ——Re f ' &x x6dx+ f—", V x4 (x3+—w)2dx
0 X

(9)

where instead of r and E the dimensionless variables x
and w are introduced as r=xP/ Pand E='wp, /Z and
g=Z /p is the small dimensionless constant in the
effective theory of bubbles. In Fig. 2 are shown the clas-
sical turning points for bubbles at zero energy and also
for an energy E &E,. At E=O the classically allowed
domain consists of the region x & 1 and of the point
x =0. At a nonzero energy E & E, the classically allowed
domain consists of two finite regions: to the left of bar-
rier, x (xi(E), corresponding to subcritical bubbles and
to the right of the barrier, x )x2(E), which corresponds
to infinitely expanding critical bubbles. Accordingly, the
final point x(E) of the transition trajectory in Eq. (9) can
be chosen either in the subcritical domain (path I+II in
Fig. 2) or in the critical one (path I+III in Fig. 2). The
former choice produces the amplitude of the excitation of
a subcritical bubble,

A = (B,„b,(E)1/10),

while the latter choice gives the amplitude of production
of an infinitely expanding critical bubble
A+ =(8,(E)1/10). In either case the transition path

starts at the point x =0 and with E=0, which corre-
sponds to the absence of a bubble in the initial state.
Strictly speaking, the thin-wall approximation is not ap-
plicable at r =0. However, the inaccuracy of the approx-
imation at the values of the radius of the order of the
thickness of the wall does not affect the factors
-exp( —const/g) which are being considered in this cal-
culation. In other words, the expression in Eq. (9) re-
ceives the dominant contribution from the region of large
r, and therefore is calculable within the thin-wall approx-
imation. From the paths shown in Fig. 2 it is clear that
the amplitudes A + and 3 are related as

where

I exp[ b(E)4], (10)

r~(E)
b(E) lg= f 1p (r;E)1dr

x2(&)
+x —(x +w) dx

x((Et

is the exponential power in the barrier penetration rate at
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FIG. 2. Classical turning points and the transition path in
the Landau formula for the bubbles. x =1 is the turning point
on the right of the barrier at zero energy. x1 and x2 are the
turning points on the left and on the right of the barrier at ener-

gy E. The transition trajectory starts at x =0 and goes with en-

ergy E=0 to the "transition point" x (the link I), then it goes
with energy E either to the subcritical region (the link II) or to
the critical one (the link III).

energy E. The relation (10) can thus be interpreted as
stating that the production of the critical bubble at
E &E, proceeds through excitation of a subcritical one
with subsequent tunneling through the barrier.

According to the expression (7) the "transition point"
x ' is determined by the solution of the equation

&x'—x' —&x'—(x '+ w )'=0 . (12)

The solutions to this equation are given by the values of
the cubic root ( —w/2)' . A simple inspection shows
that one can choose either of the complex values of the
root in the right half plane as the appropriate "transition
point" [choosing one instead of another gives the same
result after proper redefinition of the branches of the ex-
pressions in Eq. (9)]. the integrals in Eq. (9) were evalu-
ated numerically to determine the functions c(E) and
b (E), appearing in the amplitudes A and A+.
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c(E)= — (w »1) .3&3 w

4 2
(14)

For w « 1 the expression in Eq. (9) is determined by the
region of x near the classical turning point x i (E). In this
region one can neglect in Eq. (9) x in comparison with
x and also neglect x in comparison with w. Then c(E)
can be found as

c(E)=J x dx —f +x —w dx
0 v'w

w =0 0g74w (w «1),g—„r-,
6 I —,

' (15)

FIG. 3. The barrier penetration function b(E) (dashed), the
excitation function c(E) (dotted), and their sum (solid) vs

2 3w=EZ /p . At the point w, =
27 and beyond the barrier disap-

pears, hence b (E)=0 and the sum coincides with c (E).

~

A -exp c(E)

c (E)+b (E)
A+ -exp

(13)

where both integrals run along the real axis and L is a
cutoff parameter. L »v'w. The difference of the in-
tegrals is determined by the region x -&w, which sub-
stantiates the approximation, leading from Eq. (9) to Eq.
(15). The full exponential power in the excitation ampli-
tude A for small w is thus given by

The results of the numerical calculation are shown in Fig.
3. At the critical energy E„corresponding to the top of
the barrier, the barrier penetration term b(E) vanishes.
However, the excitation term c (E) at this energy has a
finite value

c(E, ) =0.0314=0.160b (0),
where b (0)=n./16 is the value of the barrier penetration
term for the spontaneous false vacuum decay. [In fact,
c (E, ) can be found exactly in terms of elliptic integrals,
but the final expression for the result is unusually
cumbersome. ]

The function c (E) can be found analytically in the lim-
it of large w as well as small w. For large w one can
neglect x in comparison with x and with (x +w ) in
Eq. (9) and thus find

c(E)//= const XEv'E/p,

which coincides with the result for the amplitude of exci-
tation of a bubble with energy E in the case of degenerate
vacua obtained in Ref. [20]. (Clearly, in that case only
subcritical bubbles exist. ) One should, however, keep in
mind that the region of small w is limited from below by
the condition of applicability of the thin-wall approxima-
tion, which implies that the characteristic size of the bub-
bles in the relevant region r -&w p, /Z is larger than the
thickness of the wall. In terms of E this translates into
the condition [20] E »p' . The latter condition justifies
the use of the effective Hamiltonian (4) throughout the
calculation, since in this case the contribution of the re-
gion of small radius r of the bubble, where the effective
Hamiltonian is inapplicable, can be neglected.

It can be also noticed that at a small energy the barrier
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penetration term

b (E)= —w+o(w)
16

(16)

decreases faster than the tU' growth of the c (E).
Therefore, the probability of the induced decay of the
false vacuum grows with energy in this region. As is seen
from Fig. 3, this behavior continues up to the top of the
barrier, where b (E) vanishes.

The behavior of the induced tunneling amplitude cal-
culated in this paper is similar to the one observed [18,19j
in the quantum-mechanical example with the double-well
potential (x —1), where at the top of the barrier the ex-
ponential power in excitation probability is a finite frac-
tion, namely, one-half, of that in the tunneling probabili-
ty at E=0. That the ratio of the exponential powers in
that case is exactly one half is a consequence of the
reQection symmetry of the potential and of the standard
relation of the Hamiltonian to the kinetic and the poten-
tial energy. Neither of these features hold for the prob-
lem discussed here; hence, the particular value of the ra-
tio of the exponential powers is different, and is approxi-

mately equal to 0.160.
As a final remark one can note that the Landau formu-

la (6) is not sensitive in the leading exponential approxi-
mation to the particular form of the operator f (q), pro-
vided that the function f (q) by itself is not exponential in
the parameters in the problem. Therefore, though for
definiteness the catalysis of the false vacuum decay by the
particular operator P has been discussed, the same results
should be applicable for destruction of the false vacuum
in any few-particle process at energy E. Also, one can
notice, the particular form of the Lagrangian in Eq. (1)
was used only to give the parameters e and p a particular
expression in terms of the underlying theory. The rest of
the calculation is based on the relation (4) for the Hamil-
tonian of the effective theory, which is a general relation
for the dynamics of spherical bubbles in the thin-wall ap-
proximation. Therefore, the results of the present calcu-
lation are applicable whenever the latter approximation is
valid.
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