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The equivalence of correct Hamiltoniau aud naive Lagrangian (Faddeev-Popov) path integral
quantization (Matthews s theorem) is proven for gauge theories with arbitrary effective interaction
terms. ER'ective gauge-boson self-interactions and effective interactions with scalar and fermion fields
are considered. This result becomes extended to e8'ective gauge theories with higher derivatives of
the fields.
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I. INTRODUCTION

Gauge theories with arbitrary (non-Yang-Mills) effec-
tive interaction terms have been examined in order to
parametrize possible deviations of the self-interactions
of the electroweak gauge bosons [1,2] and of the glu-
ons [3] from the standard model predictions with respect
to experimental tests of these couplings. Such effective
I agrangians usually are quantized within the Faddeev-
Popov formalism [4], which yields the generating func-
tional [path integral (PI))

z[J] = 8'4 exp i d x 2+ l.GF + Cgh, t+ J4'

(1.1)

where 2 is the effective Lagrangian, EGF and Egh, t are
the gauge-fixing (GF) term and the ghost term which
are obtained in the standard manner. (4 is a short-
hand notation for all fields in the quantized Lagrangian
2+EGF+Zsh„i.) The generating functional (1.1) is very
convenient for practical calculations because it is mani-
festly covariant (if a covariant gauge is chosen), it does
not involve the generalized momenta of the fields, and
it directly implies the Feynman rules (i.e. , the quadratic
terms in 2+ l'.GF + l.gh, & yield the propagators and the
other terms yield the vertices in the usual way). However,
(1.1) is derived from a naive Lagrangian PI ansatz [4],
while correct quantization has to be performed within the
more elaborate Hamiltonian PI formalism [5—8]. Thus, to
justify the (Lagrangian) Faddeev-Popov PI (1.1) for effec-
tive gauge theories one has to derive it within the Hamil-
tonian PI formalism; i.e. , one has to prove the equivalence
of Hamiltonian and Lagrangian PI quantization, which is
known as Matthews's theorem.

' E-Mail:knet ter Qphysw. uni-bielefeld. de
'Originally, the name "Matthews's theorem" simply denotes

the statement that the Feynman rules directly follow from
the effective Lagrangian in the usual way [9]. (Of course for
a gauge-invariant Lagrangian 2, the Feynman rules do not
follow from C alone but from 8 -+ CoF + i"sh~, t, .) Reformu-
lated within the PI formalism, however, this means that an
arbitrary Lagrangian can be quantized by using the naive La-
grangian PI ausatz [10—12].

Matthews's theorem has been proven for Yang-Mills
theories without additional effective interaction terms
by Faddeev [5) and for massive (and thus gauge nonin-
variant) Yang-Mills theories without efFective interaction
terms by Senjanovic [6]. For arbitrary interactions of
scalar fields, this theorem has been derived by Bernard
and Duncan [10] and for arbitrary interactions of massive
vector fields by myself [11]. In [12] I have generalized
these results to effective interactions which also involve
higher derivatives of the fields. In this article I will com-
plete the proof of Matthews's theorem for arbitrary in-
teractions of the physically most important types of par-
ticles by considering effective Lagrangians with massless
vector fields and with fermion fields.

Massless vector fields necessarily have to be under-
stood as gauge fields. A Lagrangian with massless vec-
tor fields but gauge noninvariant interactions of these
would make no physical sense because without a gauge
fixing term, which only becomes introduced for gauge in-
variant Lagrangians (within the Hamiltonian PI as well
as within the Lagrangian PI), the operator occurring
in the quadratic part of the Lagrangian has no inverse
and therefore it is impossible to obtain a propagator for
the vector fields. Thus I will prove Matthews's theo-
rem for gauge theories with additional arbitrary (non-
Yang-Mills) self-interactions of the gauge fields, with ar-
bitrary couplings of the gauge fields to scalar fields and
to fermion fields and with arbitrary interactions among
the scalar and fermion fields. All effective interaction
terms are assumed to be gauge invariant. The proof also
applies to the case of spontaneously broken gauge the-
ories (SBGT s), i.e. , gauge theories with massive gauge
fields, because one can assume that the scalar fields that
are coupled to the gauge fields have a nonvanishing vac-
uum expectation value. Matthews's theorem for SBGT's
in which aLL gauge bosons are massive has already been
derived in [11,12]. There, an SBGT was rewritten as
a gauge-noninvariant model by applying the Stueckel-
berg formalism and then Matthews's theorem for gauge-
noninvariant Lagrangians was used. In this article I will
present a more direct proof of this theorem that does not
use the Stueckelberg formalism and that also applies to
SBGT's in which not all gauge bosons are massive (hke
electroweak models) .

Lagrangians with gauge fields and with fermion fields
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are singular. The presence of gauge fields implies first
class constraints, and the presence of fermion Gelds

implies second class constraints. Therefore, to prove
Matthews's theorem one has to take into account the
formalism of quantization of constrained systems which
goes back to Dirac [13] and which has been formulated
in the PI formalism by Faddeev [5] and Senjanovic [6].
(Extensive treatises on this subject can be found in [7,8].)
Within this formalism, a gauge theory cannot be directly
quantized in the Lorentz-gauge or, for SBGT's, in the Bg
gauge (which are the most convenient gauges for prac-
tical calculations) because the corresponding GF con-
ditions cannot be written as relations among the fields
and the conjugate Gelds alone and thus they are not GF
conditions within the Hamiltonian framework. There-
fore, I will first derive the generating functional (1.1) in
the Coulomb gauge and then use the equivalence of all
gauges, i.e., the independence of the S-matrix elements
from the choice of the gauge in the Faddeev-Popov for-
malism [14,15], in order to generalize this result to any
other gauge.

To complete the proof of Matthews's theorem, one
has to take into account efFective gauge theories with
higher derivatives of the fields, which also have been
investigated for phenomenological reasons [16]. Ac-
tually, all unphysical effects that are connected with
Lagrangians with higher derivatives (higher-order La-
grangians) [10,17,18], namely, additional degrees of free-
dom, unbound energy from below, etc. , are absent within
the effective-Lagrangian formalism [12] because an ef-
fective Lagrangian is assumed to be the low-energy
approximation of mell-behaved "new physics"; i.e. , it
parametrizes the low-energy effects of a renormalizable
theory with heavy particles in which no higher deriva-
tives occur. In fact, all higher time derivatives of the
fields can be eliminated &om the efFective Lagrangian by
applying the equations of motion (EOM) to the effective
interaction term (upon neglecting higher powers of the
effective coupling constant). The (in general forbidden)
use of the EOM is correct because one can find field trans-
formations which have the same efFect as the application
of the EOM to the efFective interaction term [12,19,20];
these transformations involve derivatives of the fields. In
[12] it has been shown that Lagrangians which are re-
lated by such field transformations are physically equiv-
alent (at the classical and at the quantum level) be-
cause these become canonical transformations within the
Hamiltonian treatment of higher-order Lagrangians (Os-
trogradsky formalism [17]). Thus, each effective higher-
order Lagrangian can be reduced to an equivalent La-
grangian without higher time derivatives. Since the use
of the EOM does not affect the gauge invariance of a
Lagrangian, Matthews's theorem for efFective gauge the-
ories with higher derivatives can be proven by using this
reduction and by applying Matthews's theorem for efFec-
tive gauge theories with at most first time derivatives.
Especially the treatment of fermion fields can be simpli-
fied very much because the EOM for these fields only
depend on first time derivatives. Therefore one can elim-
inate not only higher but also first time derivatives of the
fermion fields from the efFective interaction term and thus

the proof of Matthews's theorem can be reduced to the
case of efFective interactions in which no time derivatives
of these fields occur.

In this article I will assume that the efFective interac-
tions, which are only the deviations from the standard
interactions (i.e. , from the Yang-Mills self-interactions
of the gauge fields, minimal gauge couplings of these
to the scalar and fermion Gelds, Yukawa couplings, and
derivative-free scalar self-interctions), are proportional to
a coupling constant e with e && 1. This is justified for
phenomenologically motivated efFective Lagrangians be-
cause these are studied in order to parametrize small de-
viations from the standard model [1—3]. When deriving
Matthews's theorem, I will, according to [10—12], neglect
higher powers of e and, besides, terms proportional to
b4(0) which become zero if dimensional regularization is

applied.
This paper is organized as follows. In Sec. II, I de-

rive the Faddeev-Popov path integral for effective gauge
theories (without higher derivatives) by using the Hamil-
tonian path integral formalism. In Sec. III, I generalize
this proof of Matthews's theorem to efFective gauge the-
ories with higher derivatives by applying the equations
of motion in order to remove all higher time derivatives
from the effective interaction term. Section IV contains
the summary of my results.

II. MATTHEWS'S THEOREM FOR EFFECTIVE
GAUGE THEORIES

In this section I quantize a gauge theory with an addi-
tional arbitrary efFective interaction term in the Hamil-
tonian PI formalism [5—8] in order to derive the Faddeev-
Popov PI (1.1).

The effective Lagrangian is given by

F
DAF„

D„g
D„g
D~p~

Du 4'a

cr„A —8 A„gfs,A„A'„, —

BpF„—gf g,A„F„',
B„g+ i gA'„t, @g,

(D~&-)
t9 y +igA t blab,

(D~~-)'.

(2 2)

(2.3)

(2.4)

(2.5)

(2.6)

(2-7)

(Higher covariant derivatives are defined analogously. ) g
is the gauge coupling constant, f g, are the structure con-
stants, and t and t are the generators of the gauge
group in its representation in the fermion sector and
in the scalar sector respectively. V(vP, g, p, p ) con-
tains derivative-&ee interactions of the fermion and scalar
fields, viz. , Yukawa couplings and scalar self-interactions.

8 = Cp + el:I = Ff "F„„+i—Q—p"D„g
+(D"v.') (Dpv -) —V (0-, 0-, p-, ~.')

(2.1)

The field strength tensor and the covariant derivatives
are
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The eH'ective interaction term el.l, which parametrizes
the deviations from the minimal gauge theory, contains
arbitrary interactions of the fields which are governed by
the effective coupling constant e with ~ (( 1. As pointed
out in the Introduction, an efFective Lagrangian such as
(2.1) only has a physical meaning if the efFective interac-
tion term is gauge invariant. This means that the gauge
fields A„donot occur arbitrarily in Zl but only through
the field strength tensor and through covariant deriva
tives. Furthermore, in this section I assume that Cl does
depend neither on higher time derivatives of the fields nor
on first time derivatives of the Ao and of the fermion
fields Q and Q . The case of interactions with higher
derivatives will be treated in the next section.

From (2.1) one finds the conjugate fields (generalized
mome nta)

..b
7l ~f —

t
—Dp'p + e

&

——p + igApt, pb +
t9(p~ 0(p~

(2.13)

The relations (2.8), (2.10), and (2.11) do not contain r
terms due to the assumption that l.l does not depend
on Ao, Q, and Q . These relations cannot be solved
for the velocities; they are constraints. The remaining of
the above equations can be solved for the velocities; they
become (in the first order of e)

A' =~, —BA, +gfb, A, A o
—e . +O(e ),

OA2 F„
a

Dp (p —+ 7rt

Dp g& —l 7r

7l
A'o

BA'

=0,

= Fp+~
OA'

(2.8)

t &I= 7C + igApt (pb
(p P p~fl'

Dpg ~7r a

+O(e ),

(2.14)

=A'+or, Ao —gf b, A, Ao+eb, 0
BA'

(2.9)

(2.10)

Dpi/a -&7f

(2.15)

0$

= Dp(p +E
(pa (pa

(2.11)

= (p —igAot lpb + E
&pa

(2.12)

~. =~, —igA;t, Pb —~
(pa

One obtains the Hamiltonian

E~ip i

Dp&p ~mt

+~ t

+ O(e ).

(2.16)

'R = z „A"+ 7r~ Q~ + Q sr~ + 7r (p~ + ~,p

2 2
= —7r, ir, —vr, Q, AO + gf b,n, A, Ao+ F, F, —igA—ot, (7r~gb —Q 7r~) +i/ p, D,Q

+~, vr —igA'()t, (7r pb —p ir i) + (D, (p )(D,(p~) + V —edi(A, Ma~ @a~(Pa P~, 7rI', sr~, 7r i) + O(e ), (2.17)

with

Cl(A, , g, g, p, pt, n, , u, m i)—:2,
D p &p ~ 7T

a

Dpya —+7r

I

to rewrite those expressions in Cl, in which time and
spatial covariant derivatives act on the fields, such that
the time derivatives are applied first. Remembering the
discussion of the paragraph preceding Eq. (2.8) one can
then easily see that Ci depends on the Ap only through
the expressions

(2.18) Fa DpF, -, Dp(pa ~ Dplp (2.22)

One can use the identities

[D„,D„]g =igF„'„t,gb,

[D„,D„]p =igF„'t, &pb,

[D„,D ]F„i— gf b,F„„F„'q—
(2.19)

(2.20)

(2.21)

Using the relation

DpF„+D„Fq+D Fq ——0

in order to to rewrite DpF, . as

(2.23)

(and the corresponding relations for g and Ipt), in order DpF,- = D~F,-p —D,.F-p (2.24)

Actually, the absence of Ao already follows from the gauge
invariance and the requirement that no higher time deriva-
tives occur in l.i.

and the definition (2.18), one finds that Cl does not de-

pend on the Ap. Thus, the gauge invariance and the ab-
sence of higher time derivatives (and of first time deriva-
tives of Ao, g, and g ) in Zl yield
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OA
(2.25)

As mentioned, the relations (2.8), (2.10), and (2.11)
imply the primary constraints

gP, = pro ——0,

P~ ——sr~

P~ ——sr~

—if' =0,
=0

(2.26)

(2.27)

(2.28)

p2 = 8,~, + gf b, m, A; —igt '(m~g, —Qs~~)

igt '(m —rp, —(pstvr'i) = 0. (2.30)

Because of (2.25), these secondary constraints do not con-
tain O(e) terms; i.e., they are independent of the form of
the effective interaction term Zl (in the first order of e).
There are no tertiary, etc. , constraints. One can easily
check that the constraints P& (2.27) and P- (2.28) are

second class and that the constraints Pi (2.26) and P2
(2.30) are first class.

Because of the presence of the erst class constraints,
the solutions of the Hamiltonian EOM contain undeter-

The requirement that these primary constraints have to
be consistent with the EOM, i.e. , the demand

j.' ={y.', II'}=0, with ~(') =X+~(')y(')

(2.29)

(where the P are the primary constraints; and the A
(~) (~)

are Lagrange multipliers), yields secondary constraints.
Actually, (2.27) and (2.28) do not imply secondary con-
straints, the relation (2.29) only determines the Lagrange
multipliers corresponding to these constraints [8]. The PT
(2.26) imply the secondary constraints

mined Lagrange multipliers. To remove these ambigu-
ities, one has to introduce additional gauge-6xing con-
ditions so that constraints and GF conditions together
form a set of second class constraints which is consistent
with the EOM [5—8]. As mentioned'in the Introduction,
the usual Lorentz GF conditions

y~ =0"A —C =0 (2.31)

(and also the R~ GF conditions for SBGT's) are not GF
conditions within the Hamiltonian formalism [5—8] be-
cause they are not relations among the fields and the
conjugate 6elds alone due to the presence of the veloci-
ties Ao in (2.31), which cannot be expressed in terms of
the momenta. Therefore I quantize the effective gauge
theory within the Coulomb gauge, i.e., by choosing the
primary GF conditions

X, =BA, —t =0. (2.32)

(Instead of the Coulomb gauge, one can alternatively
choose the axial gauge or, for SBGT's, the unitary gauge
[11].) Next, one has to construct secondary GF condi-
tions yz by demanding

h„H}=0, (2.33)

which ensures the consistency with the EOM [7,8]. One
fInds3

y2 = AAo —8;x; —gf s,8;(A, AO) + eB, = 0.

(2.34)

The Hamiltonian path integral [5—8] for this system is

given by
I

Z = 'VA 'V ~B ~27p~27&p~'V7l 'V7l y'V7F -'V7l 'V7C

where 4z„g C y„,and X denote all second class con-
straints, first class constraints, and GF conditions respec-
tively. First let me consider the determinants occurring
in (2.35). The fundamental Poisson brackets immediately
imply

Det [{e'z„d(x),C'z„&(y)}b(x —y )] = const. (2.36)

Therefore, this term can be neglected in the PI. Further-
more, one 6nds

{4i(x) Xi(y)} = o (2.37)
—{4i(x) X'(y)} = {&:(x)Xi(y)}

= [b sb, + gf s, (B;A;)
+gf b,A;0;]b (» —y).

The GF conditions (2.32) and (2.34) do not fulfill the condition {yi,y2} = 0 required in [5,6]. However, this demand is
unnecessary [7,8,21].

For convenience, I will introduce the source terms m the PI after all manipulations will have been done. (The source terms
for the ghost fields have to be introduced later, anyway. ) Actually, if the source terms would be considered from the beginning,
the subsequent procedure would not leave them unchanged. However, a change in the source terms does not effect the S-matrix
elements [15].

The factors h(x —y ) in the arguments of the determinants sre missing in [5—8]. However, they neccessrily have to be
present because Det {4i,t(x), X (y)} [where 4'i, ~, (x) and X (y) are taken at equal times] has to be introduced for all times
and Det [{4i,t (x), X (y)}b(x —y )] is the "product" of this expression over all times. [The same is true for the other determinant
in (2.35).]
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The absence of O(e) terms in (2.38) is again a conse-

quence of (2.25). This yields

Det [(4„,(x), X (y))h(x —y )]
= Det ([8 bA + gf b, (g; A' ).

+gf b, A;0, ]d (x —y)). (2.39)

The following steps are very simlar to those made ei-
I

ther within the Hamiltonian PI quantization of a Yang-
Mills theory without effective interaction terms in [7,8] or
within the treatment of gauge noninvariant effective La-
grangians in [10,11]. Therefore, I will discuss them only
very briefly. First one observes that '))l (2.17) contains a
term AogPz. Because of the presence of h((t)2) in the PI,
this term can be omitted. Then one integrates over xo,
7r&, and 7r- and finds

Z = 'DA„17$ 'DQ 'D(p 17(pt'D~, 'D~ 17~,

x xp z d z ——7r;w; +sr;A' ——F, .F;-+s p —s p;D; —vr m t+vr p +7r &pz a

(D;p—t)(D;p )
—V+efe(A;, e). , e)), p. , p,e,e, e, e, ) )

»(4l)h(X )h(~l) D«[(c'l.t(x) X'(y))h(x' —y')] (2.40)

with

p2 = B,~, + gf b,~, A;+ gQ p t 'Q,

igt (7C—(PD
—(Pb&~i ).

After rewriting

(2.41)

[where Ao is the solution of the differential equation

(2.34) with the boundary condition that Ao vanishes for
—+ oo], one can also integrate over Ao. Because of

(2.25), the argument of the determinant in (2.42) also
does not contain O(e) terms and, besides, the integra-
tion over Ao does not affect l.l. Next one reintroduces
the variables Ao by using

h(y2) = b(A() —A()) Det '([h bA+ gf b, (c),A;)

+gf~b, A;0, ]b (x —y))
(2.42)

b(g;) = 'VAe exp( i d eAep;—)
and gets

(2.43)

Z = DA„D$ 'DQ 'D(p D(pt'D7r, 'D~''D7r i

x exp i d x ——&; ~; + w; F;0 ——F,~F;~ + ~ p D„—~~~~t + 7r~ao&pa+ 7r~tDop
4 2 2

(D, (pt)(D, (p )——U+ el:I(A, , @,Q, (p, (pt, ~, , 7r, 7r i)

xh(0*A, —C ) Det([h bA+ gf b, (B,A;) + gf b, A;0,]h (x —. y)) . (2.44)

In order to obtain expressions quadratic in the momenta, one rewrites this as

Z = DA„'DQ 'Dg 'D(p 17(pt exp ir. d xl:I A, , g, g, (p, (pt,

1

I

+i/ p"D„Q —7r vr, +7r D()(p +. 7r iD0(p —(D, (p )(D, (p ) —U

K,. =K =K ) ——0

x6(ct'A; —0 ) Det ([h bA+ gf b, (B,A;) + gf b, A;&, ]& (x —y)) . (2.45)

Now one can do the Gaussian integrations over the momenta. With l:() given in (2.1) one finds
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8= BA„'8 B 'Vy Bpt exp i d

halo

xexp i d x —K,-K,. +K K t+K, I";o+K~Dop~+ t op~
K =K =K t

—0
a

xb(8*A, —| ) Det ([b' i,b + gf~b~(B;A;) + gf s,A,'0;]8 (~ —y)) . (2.46)

This expression can be simplified in complete analogy to
the procedure described in [10,11]. Thus I only present
the result which is found after some calculations [by ne-

glecting O(e ) and 8 (0) terms], viz. ,

Z = BA„'V B B& B&t exp i d x l-o+«I

I

from the first ones by making a point transformation
(which does not affect the Hamiltonian PI [5—8]) in order
to rewrite the scalar sector nonlinearly [11,12,14,22,23]
and then taking the limit MH ~ oo [1,11,12,23]. Thus,
for an arbitrary effective gauge theory (without higher
derivatives) the simple Faddeev-Popov PI can be derived
within the correct Hamiltonian PI formalism.

xb(t9*A, —|") Det([b bA+gf s.(B,A;)
+gf i„A;8]b(x —y)),

(2.47)
III. EFFECTIVE GAUGE THEORIES WITH

HIGHER DERIVATIVES

where l'.I turns out to be

F'0

-+D0ya t

TI' t MD0+~

(2.48)

(2.47) with (2.48) is identical to the result obtained in
the Faddeev-Popov formalism by choosing the (Coulomb)
GF conditions yi (2.32) because the change of gi under
infinitesimal variations of the gauge parameter nb is

a
= [b sA+ gf s, (O, A;) + gf b, A;0;]b (z —y).

bag y

(2.49)

To derive the form (1.1) of the generating functional one
has, as usual, to construct the GF term by using the
b function and to rewrite the determinant as a ghost
term. Finally the source terms have to be added. It
is essential for the derivation of this result that, due to
(2.25), no O(e) terms occur in the argument of the de-
terminant in (2.47). Thus the ghost term is independent
of the form of the effective interaction term as in the
Faddeev-Popov formalism. Because of the equivalence of
all gauges [14,15] the result (1.1) can be rewritten in any
other gauge which can be derived within the Faddeev-
Popov formalism, e.g. , in the Lorentz gauge or in the Rg
gauge (for SBGT's).

The gauge theory given by (2.1) is spontaneously bro-
ken if the vacuum expectation value of the scalar fields
(implied by the scalar self-interactions in V) is nonzero;
this does not afFect the above proof. Actually, this proof
holds for both SBGT's with a linearly realized scalar sec-
tor, which contain (a) physical Higgs boson(s) [2], and
gauged nonlinear cr models, i.e., SBGT's with a nonlin-
early realized scalar scalar sector and without physical
Higgs bosons [1],because the latter ones can be obtained

In this section I generalize the results of the preceding
one to effective gauge theories with higher time deriva-
tives.

Each effective Lagrangian like (2.1) can be reduced to
a Lagrangian without higher time derivatives (and also
without first time derivatives of the Ap, g, and Q ) be-
cause the equations of motion following from Ep in (2.1)
can be applied in order to convert the effective interaction
term Zl [12] (upon neglecting higher powers of e). This
statement is nontrivial because, in general, the EOM
must not be inserted into the Lagrangian. However, one
can find field transformations which have the same effect
as the application of the EOM to the effective interaction
term [12,19,20]. Actually, a field transformation

C m 4+eT (3.1)

(where C may represent any field occurring in 8 and T is
an arbitrary function of the fields and their derivatives)
applied to (2.1) yields an extra term

~
+ O(e')(Wp „Bdp

(3 2)

to the effective Lagrangian. Lagrangians that are re-
lated by field transformations such as (3.1) are physically
equivalent (at the classical and at the quantum level) [12]
although these transformations involve derivatives of the
fields (contained in T) because they become point trans-
formations (and thus canonical transformations) within
the Hamiltonian formalism for Lagrangians with higher
derivatives (Ostrogradsky formalism [17]). The reason
for this is that in the Ostrogradsky formalism for an
¹h-order Lagrangian all derivatives of the fields up to
the order N —1 are treated as independent coordinates,
and the order N can be chosen arbitrarily high without
aff'ecting the physical content of the theory [8,12].

An arbitrary efFective gauge theory can be reduced
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to one of the type considered in the previous section as
follows: Because of gauge invariance, derivatives of the
fields occur in the effective interaction term only as co-
variant derivatives or through the field strength tensor.
Using the identities (2.19), (2.20), and (2.21) (and the
corresponding relations for g and Ipt) one again rewrites
all expressions in l.l such that the covariant time deriva-
tives are applied to the fields before the covariant spatial
derivatives. Then, higher time derivatives (and first time
derivatives of Ao, g, and g ) occur in l:l only through
the expressions

B4 exp i d x l-re& + ~cF + ~ghost ~ 3.8

Z = 'DC exp i d el.„g (3.9)

(3) Going reversely through the Faddeev-Popov proce-
dure one can rewrite (3.8) (after introducing an infinite
constant into the PI) as

DpI'0, ,

Dol. ,

DpDpF, . ,

DODO pa ~
DD(pt,

(3.3)

(4) Within the Lagrangian PI (3.9) the field transfor-
mations (3.1) applied in step (1) are done inversely in or-
der to reconstruct the primordial effective Lagrangian.
One obtains

Z = 'VCi' exp i d xC (3.10)

and even higher derivatives of these terms. After using
(2.21) and (2.23) in order to rewrite DpDpF, as

DpDpF, = D,DpFp —D~DpFp, —2gf~b, F pF~'(), (3.4)

one can convert the terms (3.3) to terms without higher
time derivatives (and without first time derivatives of Ap,
g, and 1f ) by using the EOM following from Zp, viz. ,

DpFp, ——D~F; + gQbp;t 'Q,

The Jacobian determinant implied by the change of the
functional integration measure corresponding to these
transformations only yields extra b4(0) terms [20] which
are neglected here.

(5) Applying the Faddeev-Popov formalism to (3.10)
and adding the source terms one finally finds (1.1) in an
arbitrary gauge.

This completes the proof of Matthews's theorem for
effective gauge theories.

(3.5) IV. SUMMARY

, ( clVI
Dpg

c)$ )
(3.6)

BV
DpDpy = D,D;(p

&Pa
t (3.7)

(and the corresponding equations for @ and pt). By
repeated application of the EOM one can eliminate all
higher time derivatives from Cl. The fact that the EOM
do not contain second time derivatives of Ao, g, and

makes it possible to eliminate not only higher but
also first time derivatives of these fields. The Lagrangian
obtained by applying the EOM is gauge invariant, too,
because the form of the EOM is invariant under gauge
transformations.

Now Matthews's theorem for effective gauge theories
with higher time derivatives can be proven as follows.

(I) Given an arbitrary gauge invariant effective La-
grangian 2, this can be reduced to an equivalent gauge-
invariant Lagrangian 8, ~ without higher time deriva-
tives (and without first time derivatives of Ap, @, and

@ ) by applying the EOM, i.e. , actually by making field
transformations such as (3.1). This does not affect the
Hamiltonian PI [12].

(2) E„qcan be quantized within the Hamiltonian PI
formalism by applying Matthews's theorem for first-order
Lagrangians derived in Sec. II. This yields the PI

In this article I have completed the proof of Matthews's
theorem for arbitrary interactions of the physically most
important types of particles. I have shown that a gauge
theory with an arbitrary effective interaction term can be
quantized by using the convenient (Lagrangian) Faddeev-

Popov path integral because this can be derived from the
correct Hamiltonian path integral. Thus Hamiltonian
and Lagrangian path integral quantization are equiva-
lent. This means that the Feynman rules can be obtained
in the usual way from the effective Lagrangian.

Matthews's theorem also applies to effective gauge the-
ories with higher derivatives of the fields. Each effective

gauge theory can be reduced to a gauge theory with at
most first time derivatives by applying the equations of
motion to the effective interaction term. Thus, an effec-

tive higher-order Lagrangian can formally be treated in

the same way as a first-order one; all unphysical effects,

Note that the use of the transformations (3.1) in (3.8) would

result in an application of the EOM following from Eo+C~F+
l:sb, & (and not from l:s alone) which would not yield the
desired result.

In distiction from naive Lagrangian PI quantization, (3.10)
is not taken as an ansatz here but it has been derived from

the Hamiltonian PI.
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which normally occur when dealing with higher-order La-
grangains, are absent because an efFective Lagrangian is
assumed to parametrize the low-energy efFects of well-

behaved "new physics. "
Actually, these results justify the straightforward

treatment of efFective gauge theories in the phenomeno-
logical literature.
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