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Anomaly cancellation in 2+ 1 dimensions in the presence of a domain wall mass
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A fermion in 2+1 dimensions, with a mass function which depends on one spatial coordinate and

passes through a zero (a domain wall mass), in the background of an Abelian gauge field is considered.
In this model, originally proposed in a non-Abelian version by Callan and Harvey, the gauge variation of
the effective gauge action mainly consists of two terms. One comes from the induced Chem-Simons
term and the other from the chiral fermions, bound to the (1+1)-dimensional wall, and they are expect-
ed to cancel each other. Though there exist arguments in favor of this, based on the possible forms of
the effective action valid far from the wall and some facts about theories of chiral fermions in 1+1 di-

mensions, a complete calculation is lacking. In this paper we present an explicit calculation of this can-
cellation at one loop which is valid even close to the wall. We show that integrating out the "massive"
modes of the theory does produce the Chem-Simons term, as appreciated previously. In addition, we

show that it generates a term that softens the high energy behavior of the (1+1)-dimensional effective

chiral theory thereby resolving an ambiguity present in a general (1+1)-dimensional theory.

PACS number(s): 11.27.+d, 11.15.Bt, 11.40.—q

I. INTRODUCTION

It was understood some time ago that there exist inti-
mate connections between the Chem-Simons term in an
odd dimensional space-time and the chiral anomaly in
one lower dimension. After such a connection was un-
derstood, Callan and Harvey [1] proposed a model in
which the connection was physically realized. They con-
sidered a three-dimensional fermion with a domain wall
mass (a mass term that depends on one space coordinate,
passes through zero at the origin, and goes to a constant
with opposite signs at plus and minus infinity) coupled to
a gauge theory. Since there are no anomalies in the con-
tinuous symmetries in odd dimension, the theory must be
gauge invariant. However, in the theory with a domain
wall mass, one can show, as we will see later, that there
exist effectively two-dimensional massless chiral fermions
attached to the domain wall. The resulting two-
dimensional chiral theory should have an anomaly in the

gauge current. However, since the whole theory has no

anomaly, there must be yet another contribution to the
current in the whole theory which will cancel the chiral
anomaly. It was found that there indeed exist currents
on either side of the wall which flow into or away from
the wall depending on the sign of the anomaly on the
wall. This current can be approximately calculated away
from the wall using methods of Goldstone and Wilczek
[2]. We will call these currents Goldstone-Wilczek
currents.

However, when one investigates the Goldstone-
Wilczek currents flowing from the third dimension into
the wall and thus accounts for the charge appearance on
the wall (the person on the wall considers the charge ap-
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pearing as an anomaly), one encounters difficulties. In an
Abelian theory, for example, the charge appearing on the
wall is twice as much as that predicted from an anomaly
in an exclusively (1+1)-dimensional theory [4]. In a
non-Abelian theory, the problem is more evident. Here
the anomaly in the two-dimensional chiral theory is
necessarily gauge noncovariant. This noncovariant form
is required by the Wess-Zumino [3] consistency condi-
tions obeyed by the usual definition of the current.
Hence the anomaly in this current is also referred to as a
consistent anomaly On the. other hand, the Goldstone-
Wilczek current accounts for the anomaly on the wall
which is gauge covariant in its form. This form of the
anomaly, which is gauge covariant in its form, is also re-
ferred to as the couariant anomaly Thus this . Goldstone-
Wilczek current alone cannot completely cancel the con-
sistent anomaly on the wall, as one is gauge covariant and
the other is not.

When Bardeen and Zumino discuss consistent and co-
variant anomalies [5], they show how an addition of an
extra term to the consistent current can make the anoma-
ly covariant in its form. Thus it seems that there must
exist an extra piece of current on the wall that arises nat-
urally and which makes the anomaly in the effective
(1+1)-dimensional theory covariant in its form. This
term cannot be obtained from the Lagrangian of an ex-
clusively (1+1)-dimensional theory as the consistency
conditions would not allow its presence. On the other
hand, in our model this extra piece of the current can be
induced by the effects of the extra dimension. This prob-
letn was addressed by Naculich [4] in which he suggests
how a particular form of the Chem-Simons term in the
(2+1)-dimensional effective action (produced when you
integrate out the massive fermion modes of the theory)
can induce this extra piece. In fact, this particular form
of the Chem-Simons terms was originally suggested by
Callan and Harvey [1]. However, there is no complete
derivation for this Chem-Simons term in the effective ac-
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tion, which is valid arbitrarily close to the wall. This is
not satisfactory because the calculations suggested to ex-
tract the effective Chem-Simons term are valid only far
from the wall; on the other hand, the actual questions
which are at issue here are related to terms induced on
the wall. Also one wonders, if there is one extra effect on
the wall other than that of a simple (1+1)-dimensional
massless chiral theory, if there may be others that are
hidden and unclear until a complete calculation of the
effective action is done.

A more clean and simple view of this anomaly cancel-
lation comes from considering an effective action in terms
of the gauge fields after integrating out the fermions.
This effective action must be gauge invariant. This was
the original way Callan and Harvey [1] analyzed the
problem. In their paper [1] they argue that integrating
out the massive fermion modes (the modes that are not
chiral and do not live on the wall) produces a Chern-
Simons term in the effective action. They show how the
gauge variation of this term can cancel the variation
coming from the remaining (1+1)-dimensional efFective
chiral theory on the wall. This cancellation, when exarn-
ined in terms of the currents, motivates the above discus-
sion of covariant and consistent anomalies considered
first by Naculich [4]. Hence, even in this simpler view,
one needs a derivation of the suggested Chem-Simons
term in the efFective action that is valid close to the wall.
Further, one must show that the resulting (1+1)-
dimensional theory can be treated as a naive (1+1)-
dimensional massless chiral theory with no other effects
induced.

These questions are of particular interest in the context
of the recent proposal, by Kaplan, to solve the doubling
problem on the lattice [6]. The basic model used in this
new proposal is the same as the one proposed by Callan
and Harvey. In this model one is looking for a theory of
massless chiral fermions on the wall. To make the final
theory exclusively live on the wall, it is important that
the massive modes have very little effect on the wall, as
the massive modes are presumed to decouple from the
theory on the wall, so that the issues discussed above are
important in this context.

Taking all this into account, it seems quite important
to understand the structure of the cancellation of the
anomaly in this model with a domain wall mass. An ex-
plicit calculation would clarify the effects of the massive
modes in this cancellation. Also, the calculations given
in Refs. [1] and [4] deal mainly with axionic strings apart
from mentioning the applicability to domain walls. In
view of the recent interest in the domain wall problem
[6], we think it makes sense to write down some results
explicitly valid for the domain wall case along with some
proof for the previously suggested results.

In this paper we study the model in which fermions
move in a background of an Abelian gauge field and in-
teract with a domain wall, which is a smooth function of
one space coordinate. In general, one could couple the
ferrnion to a non-Abelian gauge field, but here we present
a calculation of the anomaly cancellation only for the
case of an Abelian gauge field. In Sec. II we study the
eigenstates for the free Dirac operator with this domain

wall mass and show how the eigenstates of the theory
change as the steepness of the mass function changes.
We actually find that, as the mass function becomes
smooth, the number of states bound to the wall increases,
though only one is chiral. We then pick a particular mass
function, which turns out to be easy to analyze and which
has only one (chiral) bound state, and derive the complete
set of eigenstates for the free Dirac operator with this
choice of the mass function. In Sec. III we find the free
propagator for this theory including the effects of the
space-dependent mass term using the exact eigenstates
derived in Sec. II for the particular choice of the mass
function. As computations are much easier in Euclidean
space, we continue our results to Euclidean space and ob-
tain a closed form expression for the propagator in Eu-
clidean configuration space. In Sec. IV we integrate out
the fermion fields using this Euclidean-space propagator
and treat the gauge coupling perturbatively to compute
the one loop effective action for the gauge fields. When
we look at only the terms potentially contributing to the
anomaly (i.e., the terms that contain the completely an-
tisymmetric tensor), we find that in the low energy limit
the effective gauge action consists of two terms. The first
is the old Chem-Simons term, as suggested by Naculich
[4], but now without any assumptions and valid arbitrari-
ly close to the wall. The second term is the chiral term,
which has contributions not only from the chiral bound
states, but also from fully three-dimensional massive
states. The extra contribution from the massive states
acts to "regulate" the chiral term. Thus we find that the
chiral anomaly is generated not by a potentially singular
term, but by a well regulated term. The high energy
characteristic of the chiral fermions on the wall is
"softer" than the usual chiral ferrnions in two dimen-
sions. Finally, we show how, because of these effects, the
gauge variation of the Chem-Simons term and the chiral
term in the effective gauge action cancel each other ex-
plicitly. Before concluding, we show how this cancella-
tion can be viewed in terms of the currents in Sec. V.

II. STATES OF THE THEORY

We start with a theory defined in Minkowski space to
give the theory a physical setting and to be able to ana-
lyze the physical states of the theory. The theory can be
given in terms of the action

4= fd z V[iy"(d„ieA„)+—m (s)]%, (1)

where the y"'s are the Dirac matrices, which obey the an-
ticommutation relations

[r" }"]=g"", p, v=o, 1,2, (&)

and %=V y . We assume that p=0 is the "time, "
p = 1,2 the space direction, so that the metric would be
g =1, g '= —1, and g = —1. The coordinates of the
space-time are labeled by z"=(t,x, s} The mass .depends
on the second space direction, labeled by s. We want
m (s}to be a function with a domain wall shape: i.e.,

mo, s~+ 00,

m (s}= —mo, s~ —~,
0, s=0.
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Having fixed the theory, let us ask what the eigenstates of
the theory are. We will treat the gauge coupling as a per-
turbation and think of the remaining theory as a free
theory and solve the equations of motion. However,
keeping in mind that we would like to solve for the prop-
agator of the theory too, we will try to solve the eigenval-
ue equation

y [iy"8„+m (s) ]%'&=A%&

or in the matrix form this can be written as

ia, —ia„—a, +m (s)

ia, +ia„8, +m (s)

Clearly, the eigensolutions for A. =O will also be the
solutions for the equations of motion. The propagator
for the theory, S(z,z'), can then be constructed from the
eigensolutions above by

'Pz (z )%z (z' )
S(z,z )= y (&)

When we construct the propagator, we must remember
to take the Feynman prescription, which can be derived
using the usual canonical commutation relations. How-
ever, let us first solve for the eigenvalues A, and the corre-
sponding eigenfunctions 4&.

To do this, first observe that the eigenfunctions can be
ljrot —tk

l
X

written in the form %z=4zz(s)e 'e ', where we
characterize the eigenvalues A by k=(ko, k„kz). Actu-
ally, we can look at the asymptotic behavior of Eq. (7)
and Gx the eigenvalues. We then find that for a given

kp, k „k2 we get two values of A, given by

=k +co co =(k +k +m )'

We first want to solve for the states of the theory to see
the effects of the mass function. In order to proceed fur-
ther, we assume a specific form of the mass function
which is suSciently general to be able to study its various
limiting forms. We choose

m (s) =motanhpos .

To be concrete we choose a chiral representation for the
Dirac matrices defined by

If we solve for P& or Pz, we can substitute it in (10) and
obtain the other by solving a simple algebraic equation.
Substituting m (s) =motanhpos in (11),we get

Pp
2

+kz+a(a+1)
Bs cosh pps

a 2
2 2

+kz+a(a —1)—Pp

Bs cosh pps
Pz=0

(12)

2 2 2

+kz+
2

Bs cosh pps

82
+k hz=0 .

BS

(13)

It is now evident how the choice of a above simplifies
things. We can solve (13) for Pz in the above equation
and substitute it back in Eq. (10) to obtain t))~. These will

be the scattering eigenstates, given by

where a=mp/pp.
We wish to solve (12). In fact, these two equations de-

scribe quantum mechanical scattering off a modified
Poschl Telle-r potential and the energy eigenvalues and
functions are known; see, for example, [7]. The potential
can be written generically as p(p+ l)po/cosh pos and is
known in the literature as the modified Poschl-Teller po
tentiol. It is clear from (12) that the only difference be-
tween P& and Pz is that P=a for P, and P=a —1 for Pz.
It is known that given p, the number of bound states
equals the largest integer less than P+1. Clearly, (t

&
has

always one more bound state than (()z. This is the chiral
bound state since it can be shown that if this P, is substi-
tuted back in (10) it gives (()z=0. This is the chiral state
which is responsible for the anomaly in [1]. However, we
also see here that as the mass function becomes less steep,
i.e., as mp/lzp becomes large, the number of bound states
increases, though none of these are chiral except the one
discussed above. If 0 & m o/matzo

~ 1, the only bound state is
the chiral bound state. As this is the case of most interest
at present, we will assume mp =pp, so that the mass func-
tion becomes mptanhmps. The reason for doing this is
that then the eigenstates of the theory can be written in
closed form. Substituting that a=mo/p, &=1 in (12), we

get

28 + kz+ z z( )+ Bm(s)

8 z z z Bm(s)
o gs

+ k +m —m{s)— Nz=0

Using these facts, one can write the differential equations
obeyed by the two components of C&z ~, P, and (t)z, as

ko —k, —8, +m (s}

8, +m (s} ko+k, =A, + . (10)

One can rewrite the above two coupled equations for P,
and Pz as decoupled second order equations given below:

ikz+m (s)
x+,k +cok +k

&

where m(s)=motanhmos. [We will hereafter assume
m(s)=motanhmos wherever we use m(s). ] Note that
when we substitute Pz back in (10) we will in general get
two solutions for P& depending on the sign +A.. This is

explicitly shown in (14). Note that at present the range of
k2 goes from —~ to ~. However, we have not yet ob-
tained all the eigenstates of the theory. There exists one
bound state for P, which can be obtained by solving (13).
This cannot be obtained from a solution of Pz because for
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this eigenstate $3=0. This bound state is given by

sechmos

@chiral (15)

1 l

8m a)k(t))k kk) )
+),~~,o~d=

kz coskzs —m (s}sinkzs
X —( kp)k+ k, )sink2s

' 1/2

even
8

Along with this we have the complete set of states of the
theory though they are not yet orthonormal. We can
take linear combinations and form an orthonormal basis
for the theory, which we find to be

' 1/2

k is given by

—oo &kp, k, &+oo and 0&k2&+oo .

The asymmetry in the range for k2 arises because we
have made linear combinations of +k2 and —k2 to form
odd and even states.

The orthonormality can be tested by showing

f k, k, n%'k. , k., o =5~ '5k k.5 (k —k')

when a and a' are not chiral. If both a and a' are chiral,
then the three-dimensional 5 function is replaced by a
two-dimensional 5 function in kp and k, . The chiral
eigenstate is orthogonal to both the odd and the even
eigenstates. Thus we have an explicit calculation for the
eigenstates of the theory. We can now go ahead and con-
struct the propagator as described by (8).

III. PROPAGATOR

+k, A,0,chiral

mp

4m

sechmps

k2sink2s+ m (s) cosk2s
X (ka)k+k, ) coskzs

0 1
—ik t —ikx

(16)

The construction of the propagator is straightforward
though the derivation of the explicit expression in closed
form will be complicated. We use (8) to obtain an in-
tegral representation in "momentum" space for the prop-
agator. After substituting and rearranging the terms and
also extending the limits of the kz integral from —oo to
+00, we get

with eigenvalues A,+,A,+,A,p
=kp —k „respectively.

The subscript k, A, ,a characterizes the different eigen-
states. A, refers to the eigenvalue, a refers to odd, even or
chiral, and k refers to (kp, k), k2). The allowed range of

I

S (z,z') =Se»«)(z, z')+Smee„„e(z,z'), (18)

where the chiral part is due to the chiral mode in the
summation in (8) and the massive part is due to the rest.
The two terms are given by

mp d k 1 ka t'ko(t ——t') —ik)(x —x')
S,h;„,=—(1+iy ) sech(mps)sech(mps )

& 2 2 e ' e
2 (2m } k2p —k) +ie

d k y"k„M -ik (t —t') —ik (x —x') —ik (s —s')
Smesst~e

(2 )3 k2 3 +
~ ~ ~

mp

where M is a matrix in spinor space given by

(19)

(20)

ko+k,—m (s) Im (s)m (s'}+ik2[m (s') —m (s)]—mp Ik, +mp'

—m(s') (21)

To make the notation clear, we will use Greek letters to run from 0 to 2 and Latin letters run from 0 to 1, so that y'k,
means y ko+y'k& unlike y"k„, which means y kp+y'k, +y k2. The above form of the ProPagator has a structure
similar to the usual fermion propagator in three dimensions except for the massless chiral term, which reflects the chiral
modes on the wall and the unusual mass matrix M. The integral in the mass matrix M is the only thing that seems quite
difficult to explicitly evaluate. Note that in three dimensions the other integrations can be easily done.

At this stage we will analytically continue to the Euclidean space so that we can explicitly evaluate the propagator
and study the gauge transformation properties of the one loop effective action. This can be most easily done in Euclide-
an space where things are well defined. The continuation to Euclidean space means

t = —i~, ko~iko I =y, I'= —iy', I = —iy (22)

where the I"s are the gamma matrices in Euclidean space and ~ is Euclidean time. After the explicit calculations are
done, we find the final result for the Euclidean propagator is
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SE(z,z'}=—
3

(1+mor)e ' +
4~ r' 4m r

0
m (s')

, I'~. moe
(1—I') r ~

8~ g2 r
m (s) m (s'), m (s') m (s)—1 +s —s'
mo mo mo mo

, r'~.
(1—I ) mosech(mos)sech(mos'),

8m. E,

where the various symbols are defined as

r~=(1 7 )x x,s s )p e (r 7 tx x )

e=+(r—r') +(x —x'), r =+e +(s —s')

(23)

(24)

The last term of the propagator can be easily identified with the chiral propagator except for the sech(mos)sech(mos')
term, which says that these modes are bound to the wall. The first two terms combined become essentially the three-
dimensional massive propagator with the mass term modified into a matrix. The third term seems to be new. It has the
character of the chiral term (the last term), but at the same time is massive. To make this explicit, we rewrite (23) in a
slightly different form by combining the third and fourth terms. After substituting m (s}=motanhmos, we get

Sx (z,z') =—
™0~motanhmos" (1+mor)e ' +

4~ r' 4m. r motanhmos'

I'c,
(1—I ) [1 f (e,s——s')]mosech(mos)sech(mos'), (25)

where the function f (e, s —s') is given by
—m r0

f (e,s —s')= [r coshmo(s —s')+(s —s')sinhmo(s —s')] . (26)

We have written the third term in (23) in terms of the
function f so as to unite it with the chiral term. Now the
efFects of this term are clearer. It modifies the singularity
structure of the massless chiral term. This suggests that
the massive modes "regulate" the chiral modes. This also
suggests that, when the theory is coupled to a gauge field,
a cancellation of the anomaly between the massive modes
and the massless chiral modes might be more involved.
Hence we investigate the cancellation of the anomaly in
the next section.

IV. ANOMALY CANCELLATION AT ONE LOOP

Having found the free propagator explicitly, we can
treat the gauge coupling perturbatively and construct the
one loop effective gauge action induced by integrating out
the fermion fields. Nate that the effective action being
calculated here is the one loop gauge action with no fer-
mion Selds. It is still three dimensional, though parts of
it might look two dimensional due to the presence of the
chiral pieces that are nonzero only on the wall. This is
important to remember as there are many other kinds of
effective action that can be considered, for example, by
integrating out only the massive fermion fields and keep-
ing the effective action dependent on the chiral fields.
This would be natural when one wants to study the
effective chiral fermion theory in the low energy limit.
However, we are not doing this. We want to study the
gauge invariance of the full theory and that can be done
by integrating out all the fermion fields, and studying the

V" =tr[I "SE(z,z')I "SE(z',z)] . (28)

The trace is over the spinor space.
The expression for V" clearly would be quite a long

and complicated expression when SE(z,z') is substituted;
but, as we will be interested finally in the mo~ 00 limit, it
makes sense to just look at the expression for the limit.
Also we will focus attention on the part of V" which has
either a two-dimensional e or a three-dimensional an-
tisymmetric tensor e" ~. This is because the potential
anomaly occurs in this part. The appropriate expression
for V,""(where the label a denotes this potentially anoma-
lous part), keeping only the nontrivial terms that survive
in the limit mo~ ~, is found to be

full three-dimensional effective gauge theory. However,
we will treat the fluctuations in the gauge fields as small

compared to the mass of the massive modes of the fer-
mion fields in order to motivate a low energy effective

gauge theory. We will then show that this low energy
effective theory is gauge invariant. The actual problem at
issue here is the gauge invariance of this low energy
effective gauge theory, as there are nontrivial low energy
terms that are induced by both the massless chiral fer-

mion fields and also the massive fermion fields.

Having explained our motive, let us look at the one

loop effective gauge action, which is given by

S,tr[A]= —f d z d z' Aq(z)V""(z, z')A (z'), (27)1

where
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ger

—id'"~ ( I+m0r)e [m (s)+m (s'}]— [1 f (E,s —s')] sech (m0s)sech (m0s')
T 2mpP m0 ~I ~* +~ ~~a

T 6

(29)

where d' ~ is the totally antisymmetric tensor with e ' =1 and c"=i@'c.
b is the dual of c.'. Note that c' was defined in

(24). Here e' is the antisymmetric tensor in two dimensions. Note also that whenever the two-vector e" is encountered,
the component c. is assumed to be zero.

As stated above, it is assumed that m0~ 00 will be eventually taken and only the relevant terms in this limit are
given. The important point to note is that though the function f (e,s —s') comes from the massive modes we cannot
throw it away because in the limit a~0 this function goes to 1 and hence contributes to the anomaly in a nontrivial
way. If the above expression for V," is substituted in (28) and some simplification is done, we get

jef jef+jef

fd z sgn(s)d'~"A&B A,

&a&eh+ &breaf d z d z' A, (z)— A&(z')m0[1 f (s,s —s—')] sech (m0s)sech (m0s') .
16 2

(30)

The first term is the Chem-Simons term which is mentioned in [1]. The limit of m0~ e0 turns tanhm0s to sgn(s),
which is the origin of the sgn(s} in (30). We have also used the limit

2' 0e
lim m0

mp~ «0
=2m5(r) .

2 (31)

Note also that we are analyzing the term in the effective action which has in it the antisymmetric tensor and hence the
superscript o in the action. We must now show that 5$',ff, the gauge variation, is zero.

First let us consider the Chem-Simons term denoted by S,~s. We then have

5$,&= fd z sgn(s)d'~"(5A„«} A„+A„B 5A„), (32)

where 5A„=8„8. Substituting this and also using the antisymmetry of ff~~", we get
~ ~

5$,&= fd zsgn(s)d'~"B„8B A„= fd z25(s)ff'8«}, A&= fd z8(z}[ff' B, A&] . (33)

5gchiral
efF

Now let us consider the second term; we shall call this the chiral term. Note that there are factors of m0 present in
this term because we cannot take the limit m0~ eo before the integration. Making a gauge variation as above, we get

fd z d z'm0sech (rn0s)sech (m0s')[«},8(z)A&(z')+ A, (z)«}&8(z')]— [1 f (s,s —s')]—

2 2d zd z'rn0sech (m0s)sech (m0s')8(z)A&(z')«), — [1—f (s,s —s')]
a&eh+ &brea

(34)

Using the fact that the singularity as e—+0 is not severe due to the factor [1 f (e,s —s')], w—e can compute the partial
derivative. We get the result

a&eh+ &brea aeb+ brea &a

C

=iff' [[1 f (s,s ——s')] ], —
BE,

(35)

where we have used the fact that e. 'c, =0 and the definition of the dual c. =is' e'. Using the above result, we have

M,ff' = d zd z'm0sech (m0s)sech (m0s')O(z)ff' A&(z') —
3 [[1 f (c,s —s')] j . — (36)

Now we can use the property that m0 is large and that contributions to the integral come only from the region where
z"—z'"=r" tends to zero. So we can expand A&(z') about z'=z and keep only the terms that do not vanish in the
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m0~0o, We get

C

5cPff 2
d z d r m p sech (mps)sech (mps')8(z)e'hB, Ab (z)( —s')— [ [ 1 f—(E,s —s' }]2]

BE

I I

d z d'd E mpsech (mps}sech (mps'}8(z)e'hB, Ab(z) — [[1 f (E—,s —s')]2]

Using d E=2m.EdE, we get

5g,ff"'= — fd zds'mpsech (mps)sech (mps')8(z)ff' B, A&(z) f de {[1 f (e,s——s')] ] .16m 0 BE
(37)

m psech2(m ps)sech (m ps') =45(s)5(s') .

Using these results, we get

Wg"'= — ' fd'z O(z) [ff"a.A, (z)] .

(38)

(39)

Hence, using (33}and (39), we finally get

The E integration can be trivially done. At the upper lim-
it a= co, [1 f (E,—s —s')] =1, and at the lower limit
c, =0, [1—f (e,s —s')] =0, which can be easily verified
using the definition of f(e, s —s') in (26). Also, the
remaining s and s integrations can be trivially done since
in the limit m0~~ we get

J„=— sgn(s)ff„„PA ",

Jcov Jchiral + 5 & A b5(S }p p 4~ pa

(45)

Clearly, J""gives the covariant anomaly in two dimen-
sions, which is twice the consistent anomaly as it should
be. As seen in (45), in addition to the usual chiral
current, an extra term is needed to make the anomaly co-
variant. This extra piece comes from the Chem-Simons
piece as noted in [4]. J, on the other hand, can be cal-
culated using the methods of Goldstone and Wilczek [2]
by considering points far from the wall where the approx-
imation required for such an analysis is valid.

5@a 5gCS+ 5gchiral
eff eff eff (40) VI. CONCLUSION

V. GAUGE INVARIANCE IN TERMS OF CURRENTS

Having shown the cancellation of the gauge variation
of the one-loop effective action, we can try to look at the
same phenomena in terms of the currents. If we define
the current as J"=54,ffj5A„, we see from (30), after
some simplification, that the current also can be thought
of as consisting of two components, Chem-Simons and
chiral parts:

Jcs+Jchiral (41)

where we get

J„=— sgn(s)ff„„P'A "+ 5„,ff,h A "5(s} (42)
4~ ~''

and

QpJchira' = e 5a A 5(Sp 4 ab (43)

J—JCJW+ Jcov (44)

where

which is the consistent anomaly in two dimensions as dis-
cussed in [5] and [4]. In the second term in (42) and (43),
the values of a and b go over only 0,1. Now consider the
second term in (42). This term is nonzero only on the
wall, which suggests that it be considered with J'"'"',
which is nonzero only on the wall. Then we obtain the
following splitting of the currents:

We have shown explicitly that the potentially anoma-
lous contributions in the gauge variation of the effective
action cancel between the Chem-Simons term and the
chiral term. This was suggested in [1] and [4], but here
we show that their analysis can be made exact even close
to the wall. We find the Chem-Simons term with the
space-dependent coefficient as suggested before valid ex-
actly even close to the wall. Further, we find that the
effect of the massive modes is not only to produce the
Chem-Simons term, but also to produce a chiral term in
the propagator which plays a critical role in the cancella-
tion of the gauge variation. A closer look indicates that
the effect of the massive modes is to make the ultraviolet
behavior softer for the chiral modes, acting as a regula-
tor. Further investigations of additional effects of mas-
sive modes on the wall might be interesting in the context
of [6], where the effects of the massive modes on the two-
dimensional domain wall is crucial. Also, the claim that
the anomaly on the two-dimensional wall is a covariant
anomaly can be better understood from this explicit cal-
culation. The expectation of Naculich [4] appears to
have been borne out by our calculation.
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