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Covariant path integral for Nambn-Goto string theory
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We clarify the covariant Nambu-Goto string path integral proposed on phenomenological grounds by
Polchinski and Strominger.

PACS number(s): 11.25.Sq

The attempt to understand collective phenomena in
field theories has become the central problem of quantum
field theory [1,2]. One of the most promising frameworks
to solve this fundamental problem in quantum field
theories is to write the associated field theory path in-
tegral in loop space and, thus, search for string solutions
for the loop space field equations of motion [3]. This
effort, in turn, has recently led to intensive research into
the problem of the correct meaning for the string path in-
tegral. Most of these studies were based on Polyakov's
analysis of the conformal anomaly of two-dimensional
massless fields interacting with induced DeWitt quantum
gravity in two dimensions [1].

Unfortunately the Polyakov proposal of DeWitt two-
dimensional quantum gravity as the correct meaning for
the string path integral may be considered only as an
effective action study for the full Nambu-Goto area func-
tional, since it involves the full use of a mean field ap-
proximation [1].

It is the purpose of this report to clarify and justify, in
the framework of covariant path integrals, the alternative
Nambu-Goto string path integral recently proposed on
phenomenological grounds by Polchinski and Strominger
[4].

Let us start our analysis by considering the original Po-
lyakov path integral for the Nambu-Goto string propaga-

tor in a form useful for non-Abelian gauge theories (Eq.
(9.76) of Ref. [1])and Ref. [3]:

G[C]= g g exp
I g,bj I X„I

, f (&g )(g)d'g

&5,',„'[g,i, (g) h,b(X—"(g))] . (1)

The continuous sum over the string world sheet vector
position X„(g} and the intrinsic two-dimensional (2D)
metric g,b(g} in Eq. (1) are defined by DeWitt functional
metrics on hemispherical manifolds possessing as non-
trivial boundaries the string configuration I C]:

ii5X"ii =f (&g 5X"5X")(g)d g, (2a)

1~15g.~II= f,[&g 5g.~(g"g" }5g.b ](k)d'0.

The 5 functional inside Eq. (1) restricts the nonphysical
variable (intrinsic metric) g,b(g) to be the world sheet in-
duced metric

(2b)

h,b(X"(g))=(B,X")(Bi,X")(g) .

Let us briefly recall Polyakov's covariant analysis. In
his explicitly covariant scheme one writes the delta func-
tional by means of a covariant Fourier path integral:

G[C]= g exp , f (&g )(g)d g g g exp i f d g[v'giL, &(B'X"8X"—g' )](g)
IX~I I~.bj

(3)

By making the hypothesis of the exact validity of the
covariant mean field average for the Lagrange multiplier
(see Eq. (9.88a) of Ref. [1]),

,b(g)=i (A),g,b(g), , (4)

po=1/2nx'+ (A, ) .

one obtains Polyakov's result of 2D massless scalar fields
interacting with DeWitt two-dimensional quantum gravi-
ty as a definition for the string path integral Eq. (1) after
substituting Eq. (4) into Eq. (3) and defining an eff'ective
cosmological constant:

Unfortunately, in string theory the conditions for the full
validity of Eq. (4) on the string energy phase space is still
an open question. This, in turn, makes Polyakov's ap-
proach [1] a path integral efFective theory for string
quantization.

We, thus, make a departure from the above Polyakov
approximate analysis and try to consider exactly the orig-
inal expression Eq. (I) with the 5 function without mak-
ing any mean field approximation of the sort of Eq. (4).

The invariant measure associated with the DeWitt su-
permetric Eq. (2b) on the functional space of the fields

g,&(g} in the path integral formalism was shown in Ref.
[5] to be correctly defined by the DeWitt measure
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=f g I [dg, (g)](&g(g)) ' ']5' '[~(g., )]
I g.b I

Q de, (g)+det(&gg'") det[5M(g, 'b)/5e]
(g, c)

(5)

where M(g, b) is a gauge-fixing functional and [e,(g)]
denotes the infinitesimal vector field generators of a gen-
eral coordinate transformation in D. The powers of
&g(g) in the above written equation come from the root
square of the DeWitt super metric determinant in the in-
variant measure Eq. (20) of Ref. [5] for R .

We point out that direct use of Eq. (5) for calculations
is very subtle since it contains the usual Feynman prod-
uct measure on the variables dg, b(g) and de, (g) weighted
with factors of the form (&g(g)) which, in turn, lead to
the use of a new Geld reparametrization in the path in-
tegral in order to reduce the functional measure to the
usual Feynman measure. For instance, if one wants to
evaluate formally a path integral of the form

T

I= g exp —f d gL(g, b)(g) (6)
I g,b l

where L (g,b ) denotes an invariant coordinate transfor-
mation action functional for the g, b ( g ) field, we must
consider first the variable change

du. b(i)
~k g,b(g) ( g(g))

which will reduce the weighted measure Eq. (5) to the
usual Feynman product measure

I= f g dq&, (g) exp —f d gL(y, )(g), (8)
(g, a, b)

where L(y,b ) is the new expression of the action in terms
of the new variable Eq. (7) added with the Faddeev-
Popov ghost action. It is worth remarking that in the
functional integral form Eq. (8), practical calculations are
very cumbersome and not explicitly covariant under the
action of the (dilfeomorphism) group.

Fortunately, in two dimensions it is possible to obtain a
closed expression for Eq. (6) in the conformal gauge
g,b(g)=e~'&'5, b as has been shown by Polyakov by
directly using the DeWitt super metric Eq. (2b) to rewrite
the covariant measure Eq. (5) in terms of the conformal
factor [1,9]:

I g e P(()g

= f g [d(e+ &'5ii)d(e+ ~'5&2)e &'&'
] exp

26 2 1

48m. D 2f d g
—(By) +p e~ (g)

= g d(e~'~' ) exp (9a)

By making the choice e~'~'~ =y(g) as the correct dynamical degree of freedom, we get the final expression for the g,b-
invariant measure to be used in our study:

g =f gd[y(k)lexp-
g, b

26 d2 1 a 7
48~ D 2 y~

exp lim f d gy (g)
1

p+ 4m.5
(9b)

Next, we consider the X„(g) functional integral [6]. In order to reduce the covariant path integral over the world
sheet string vector position to a Feynman functional measure as in Eq. (9b) we first consider the following covariant
Gaussian functional integral which may be used to define the covariant sum in Eq. (1) [see Eq. (2a)):

I[g,b]= f g [dX"(g) "&g(g)] exp ——f d g[&gX"( b~)X"](g)—
(g,p) 2 D

(10)

where b, is the Laplace Beltrami operator associated with the metric g,b(g). Now we note that Eq. (10) is a Gaussian
path integral:

I[g,b]=det ~
(
—b, ) .

It is possible to write the above functional determinant as a local field action for the conformal factor y(g') [1]: namely,

DI[g,„=y 5,„]=exp f d g
—

22. y' (g) exp + lim —f d gy (g)p+$ 0
(12)

Let us now consider a metric conformal scaling in Eq. (10) [6]:

g.,(g) =e"'e'g.,(g) .

We, thus, write Eq. (10) as well as
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I[g,b]= f g [dx"(() [g(g)]' e '~' ]exp ——f d g[&/'gx"( —b, )X~](g)
(g,p) 2 0

(14)

We remark that the classical action of massless scalar
fields on a compact manifold without boundary (the
domain D) is conformally scale invariant, so it does not
depend on the conformal factor. The effects of the con-
formal scaling are nontrivial only at the quantum level

or, equivalently, at the level of the functional measures as
may be seen from Eq. (14}.

Now we note that change on the functional measure

Eq. (13) is taken into account entirely by a Jacobian
J [A,(g)] which is a functional of the conformal scale fac-
tor (the well-known Fujikawa conformal anomaly factor
[6,9]):

J[A,(g)]=det /
( b—& )/'det /( —b, ) . (16)

Let us make use of Eqs. (14)—(16) for g,b=5,b and

A,(g) =2 lny(g), since we can always consider the confor-
mal gauge in Eq. (10)

After substituting Eq. (15) into Eq. (14} and evaluating
the resulting Gaussian covariant functional integral, we

get the explicit expression for the above-mentioned Jaco-
bian:

g dXP(g) x(g)/2 [g(g)]I/4
, (g,p)

=J[A(g}] g dx"(g) [g(g)]'/ (15)
As a result we obtain the following relation between the
covariant measure and the Feynman product measure pa-
rametrization:

g [dx"(k)r(k)] = exp f d'0 —,+I 'r' (4) g [dx"(4)] .D 1 &(y )

. (g,p) 4877 0 2 y
(17)

At this point, we return to the original Eq. (3) and rewrite it in the conformal gauge by using the Feynman functional
measure parametrization Eqs. (9) and (17):

G[C]=f +dr(g) g [dx"(g)] exp
26—D p I

48m. 0 2

2'2
aX +I"r' (k)

X exp , f d g(B X } (g) 5,'0 [y (()5~b h,b(x"(g))] . (18}

It is instructive to remark that we must rewrite the covariant delta functional inside Eq. (18) in a Feynman parame-
trization form. In order to implement this step of our study we consider the covariant Fourier path integral representa-
tion written directly in the conformal gauge g,b(g) =y (g)5,b [see Eq. (3)]:

5,',„'[y'(g)5, —&, (X"(g))]=f g [d& (g)y '(g)] g[d& (g)y '(g)]

~„(g) [a'x~5,x~)(g) —y'(g)]
X exp'i

n r(k) r(C)

~22(C) [a'x~a'x~)(g) —r'(g)]X exp 'E
r(k)

(19)

The covariant functional measure g(& )
for the Fourier tensor field variable A,,b(g') in the conformal gauge

ab

g,b(g) =y (g)5,b used in Eq. (9) is still defined by us with the DeWitt covariant measure Eq. (2b) for two-dimensional
tensors A,,b(g):

gaa' ebb'
II5~.bll'= f d'4 r'(4)(5&.b)(t),0 y'(g) y'(g)

(20)

Following the discussion after Eq. (6) about the correct meaning of a covariant path integral, we note that by making
the variable change
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~i i(P =~»(k) ~y(k» 4~(4) =42(k) ~y(k» (21)

the covariant delta functional Eq. (19) in the conformal gauge has the same form of the delta functional defined from
the usual Feynman product measure definition:

5,'.„'[y'(g)5„—h.„(X (g))]=f 'PdX„(() PdX„(g) p f d'g X„(g)
a x"a x"—

0 "
y

= 5' '[y (g)5,b
—h, i, (X"(g)) ] . (22)

Next, we can evaluate exactly the root-square conformal factor y(g) auxiliary functional integral due to the usual delta
functional Eq. (21) which produces the result [4]

6 [C]= f g dx"(g) exp , f dg+dg [(a+x")(a x")](g+,g )
27TX 0

'(a', x~)(a x~)(a'x~)(a, x~)
'

[(a,x~)(a x~)]' (23)

Note that the use of the conformal gauge in Eq. (1) implicitly constrains the use of the orthonormal coordinates for
the string world sheet vector position (Ref. [3],Appendix C):

(a,x~)(a,x~)=(a x~)(a x~)—=0, (a,x~)'=(a x~)'. (24)

Equation (23) is, thus, the exact path integral meaning to the sum over surfaces Eq. (1) in the string world sheet ortho-
normal gauge as originally conjectured in Ref. [4].

At this point of our paper we remark that scalar scattering amplitudes as random surfaces which intercept point;
probabilities at the critical dimension D =26 [1] are given exactly by the usual nontachyonic dilaton scattering ampli-
tudes which solve the problem of tachyonic excitation on this string theory.

If we now consider a further term, taking into account the surface rigidity extrinsic functional in Eq. (1), namely,

exp ——f d g[&g ( —Agx") ](g) (25)

we obtain straightforwardly a well-defined path integral quantization of the extrinsic string on the conformal gauge, a
result which was used in Ref. [7] without proof:

G[C]=f g dx"(g) exp , f d$+dg [(a x")(a x")](g+,g )
2 ITX 0

X exp. —k f dg'+dg' (a, a X~)(a,a X~) ' (g', g-) .
D (a+x")(a x")

(a+x~)(a-x~)(a' x~)(a,x~)
( +, )

(a,x~a x~)' (26)

Let us recall that it is a subtle problem if the Liouville terms Eqs. (23) and (26) do not disturb the ultraviolet theory re-
normalizability. In addition, by considering complex fermionic degrees of freedom belonging to the fundamental repre-
sentation of an intrinsic group such as SU(22) we can cancel this nonpolynomial Liouville piece of the action [3].

Finally we call attention to the fact that if we had followed Polyakov [1] by using the complete conformal factor
p(g)=e~~' instead of its square root e~'~'~ as the scalar dynamical degree of freedom to be quantized in the g,b-
functional integral,

= f P [dp(k)) e"p '
26 f d2$

1 aP

48m 0 2 p

2

(() 'exp lim J p(()d'g
o+ 4m5 D

{27)
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we would have obtained the following delta functional for
Eq. (22):

$(y) 8 X~8 X"—p (y) 3 X~3 X"—p
v'p v'p

=/((i X&(j X&)(g X&(i X&)${ )((l X&(1 X&—p)

5[(a —y)/&y ]=&a 5(y —a)

used in its functional integral version.
The result implied by Eq. (28) will lead us to consider a

further weight of the form +h (X"(g)) on the Feynman
differentials dX"(g) in our final Eqs. (23) and (26) for a
sum over surfaces in the orthonormal coordinates [see
Eq. (24)]; and it is worth pointing out that a similar
weighted path integral result was put forward some de-
cades ago in Ref. [8].

X5' '(t) X"t) X"—p)

as a simple result of the usual identity

(28) I am thankful to the Alexander V. Humboldt Stiftung
for partial financial support to complete this research in
Berlin Freie Universitat.
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