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Supergravity coupled to chiral matter at one loop
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We extend earlier calculations of the one-loop contributions to the effective Bose Lagrangian in
supergravity coupled to chiral matter. We evaluate all logarithmically divergent contributions for
arbitrary background scalar 6elds and space-time metrics. We show that, with a judicious choice of
gauge Gxing and of the de6nition of the action expansion, much of the result can be absorbed into a
rede6nition of the metric and a renormalization of the Kahler potential. Most of the remaining terms
depend on the curvature of the Kahler metric. Further simpli6cation occurs in models obtained from
superstrings in which the Kahler Riemann tensor is covariantly constant.
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I. INTRODUCTION

Considerable progress has recently been made in
understanding Yang-Mills couplings at the quantum
level [1,2] in effective supergravity theories obtained from
superstrings. Speci6cally, it is understood how to cancel
the modular anomaly that arises at the quantum level of
the effective Geld theory. From the field theory point of
view, the modular anomaly is equivalent to the standard
chiral and conformal anomalies of Yang-Mills theories. In
particular, the conformal anomaly enters through the de-
pendence of the effective cutoff on the moduli fields [2, 3].
In a general 6eld theory the conformal anomaly entails
all operators that have logarithmically divergent coeffi-
cients at the quantum level. Understanding the structure
of the divergences in the full effective supergravity theory
is a necessary step in determining what counterterms are
needed to fully restore modular invariance. The determi-
nation of these loop corrections may also provide a guide
to the construction of an effective theory for a composite
chiral multiplet that is a bound state of strongly coupled
Yang-Mills super6elds, which in turn could shed light on
gaugino condensation as a mechanism for supersymmetry
breaking.

In Refs. [4, 5] we identified the divergent one-loop con-
tributions to the effective Bose Lagrangian, with a Hat
space-time background metric, in a general N = 1 super-
gravity theory, with specialization to the no-scale form
suggested by superstrings. Here we present the full re-
sults for a general supergravity theory coupled to chiral
matter with an arbitrary background space-time metric
and arbitrary background scalar 6elds. Partial results
for a curved-space time metric have been given in [6, 7],
and particularly in [8], where it was shown how to recast
the Einstein term in canonical form by a redefinition of
the background metric. However, the results are gauge
dependent [9], and therefore not very meaningful unless
one can isolate those terms that actually contribute to
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the S matrix. This is the purpose of the present paper.
We choose a gauge-6xing prescription which, together
with a redefinition of the expansion of the action, en-
hances supersymmetry cancellations between boson and
fermion loop contributions. With these choices, all op-
erators of dimension six or less, and most of those of
dimension eight, that do not depend on the Kahler cur-
vature can be either absorbed by Geld rede6nitions or
interpreted as renormalizing the Kahler potential. By an
operator of dimension d we mean a Kahler invariant op-
erator whose term of lowest dimension is d, where scalar
Gelds are assigned the canonical dimension of unity. In
many effective theories from superstrings, such as the
untwisted sector in many orbifold compactifications, the
Kahler Riemann tensor is covariantly constant; in this
case the results simplify further.

In order to complete the program of determining one-
loop supergravity, the Yang-Mills sector must be in-
cluded. We will present the full results in a subsequent
paper [10],where we will also consider the parity odd op-
erators that arise f'rom integration over fermionic degrees
of freedom. As mentioned above, the effective cutoff of
effective theories derived &om superstrings is 6eld depen-
dent; moreover the Geld dependence is different for loop
corrections arising from difFerent sectors of the theory [2].
Here we use a single cutoff and neglect its derivatives.
The latter does not represent a loss of generality, since
terms involving derivatives of the cutoff have a different
dependence on the moduli and must be considered to-
gether with terms that are one-loop Gnite. Our results,
some of which are collected in an appendix, will be pre-
sented in such a way that the contributions &om different
sectors can be isolated and the correct cutoffs included.

In Sec. II, we discuss gauge fixing and describe the
prescription used here. The results of our calculation are
presented in a succinct form in Sec. III; further simplifi-
cations arising in models from string theory are pointed
out in Sec. IV. In Appendix A we define our conventions
and give that part of the tree-level Lagrangian that is
needed to perform our calculations. In Appendix B we
list the operators that appear in the quantum action as
defined by our gauge fixing and expansion prescriptions,
as well as the traces of products of these operators that
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determine the divergent terms in the eR'ective one-loop
action. In a final appendix we list corrections to and
misprints in [4, 5].

II. GAUGE FIXING AND THE EXPANSION OF
THE ACTION

The S matrix is independent of gauge fixing and also of
shifts in the propagators that are proportional to Z~ ——

W/BP+ where P is any field. However, certain choices
can lead to an effective Lagrangian that better displays
the symmetries of the theory. For example, we expand
the action S in terms of normal scalar coordinates [11,

S = S(z) +DIS z + 2DIDgS z z (2.1)

where DI is the field redefinition covariant derivative de-
6ned in Appendix A, and interpret the determinant of
the second term in (2.1) as the one-loop effective ac-
tion for a scalar theory. The result divers from that
of a standard Taylor expansion by terms of the form
F (z)I'(z) Jj((D SI)„'where I'&a. is the connection asso-
ciated with the covariant derivative Dl, and I" is an ar-
bitrary matrix-valued function of the background scalar
fields. Such terms vanish when the classical equations of
motion for the background fields z are satis6ed. The ex-
pansion (2.1) yields an effective action that is manifestly
field rede6nition invariant. It therefore preserves nonlin-
ear symmetries among the scalar fields, up to quantum
anomalies.

Supersymmetry is also a nonlinear symmetry in super-
gravity theories, even when auxiliary 6elds are used. We
have no formal argument by which we can determine the
gauge fixing and expansion prescription so as to yield
an effective action that is manifestly supersymmetric.
Instead, we adopt a pragmatic approach, and use pre-
scriptions that give the most boson-fermion cancellations,
and/or simplify the calculation. We find that with our
prescription the operators of dimension six or less can be
interpreted as renormalizations of the tree Lagrangian,
except for those that depend on the scalar curvature ten-
sor. Additional operators of dimension eight can be iso-
lated into terms of the form F~~I'~&IcDr S~„which do not
contribute to the S matrix. It turns out that the gauge-
6xing prescription that satis6es these properties yields
an effective quantum Lagrangian that is of a particularly
simple form: all the propagators are the same as those
of standard scalar or spin-& fermions. It is possible that
this feature contributes to the enhanced cancellations.
We first discuss the case of flat supersymmetric (SUSY)
Yang-Mills theory, where a similar gauge fixing depen-
dence arises [15], and where a "supersymrnetric gauge"
can be found.

A. Supersymmetric Yang-Mills theory

In background field calculations of the effective one-
loop action, the Landau gauge 6xing condition 'V"2„=0
has frequently been used [4—6]. In the absence of a super-
potential, the dimension four operators of the resulting
supergravity Lagrangian for the gauge nonsinglet scalars
can be interpreted in terms of two renormalizations. The
first is a renormalization of the matrix-valued function
x&(z, z) = Ref(z) that normalizes the Yang-Mills ki-
netic term 4xi, —F„„F„„.The second is a renormaliza-

tion of the Kahler potential K(z, z), where z = (z) t is a
complex scalar field. Here (and throughout) we consider
the case xt, ——b& x at the tree level, for which the results
are

ln A2
K ,—(T—z) -(T z)~

+higher dimension terms, (2.2)

where T represents the gauge group on the scalar fields
z" = (z")t, and

ln A2
2D;(T z)~D~(T z)' —6CGi l6'

327r2

+higher dimension terms, (2.3)

ln A2 lnA
T (T.)' = S; ) C„.

16m2x 16vr2x
R

%hen a superpotential is included, the results obtained
in the Landau gauge can no longer be interpreted in terms
of these renormalizations. This is similar to the result
found in [15]. However, if we use a smeared gauge-fixing
prescription defined by

l. —+2 ——t C,

C = 'D"A„+ —[(T z) z' —(T z)'z ] K, —, (2.4)

the results can once again be interpreted as above, with,
instead of (2.2),

where CG is the Casimir of the adjoint representation
and the field redefinition covariant scalar derivative D; is
defined in Appendix A. The fact that (2.3) is not the real
part of a holomorphic function has been discussed else-
where in the literature (see, e.g. , [1]). In the flat SUSY
limit z m const, K, — —+ b, , and the renormalizations
reduce to constants that depend on the Casimirs of the
matter representations R:

ln A2 ln A2

Since we set background fermions to zero, our effective
action cannot be manifestly supersymmetric. However su-

persymmetry constrains [13, 14] the bosonic part of the ac-
tion; by "manifest supersymmetry" we are referring to these
constraints.

6K =
~

— K , (T z) (T z)'—+ e -.A;, A"
~

+higher dimension terms, (2.5)

where A;~ is defined in Appendix A; in the Bat SUSY
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limit it reduces to the second derivative of the superpo-
tential W:

l'. m 8+ —C„C",1

t. A. .A'~ m e O'. -W

Note that the gauge-dependent term in (2.5) differs by a
factor of 2 from that in (2.2). The result (2.5) agrees with
the chiral matter wave function renormalization found
in [15] and in a recent string loop calculation [16].

Unlike the Landau gauge, the smeared gauge 6xing
(2.4) gives a quantum Lagrangian of the simple form
(3.1) below. The field-dependent masses have the cor-
rect poles for unitarity when evaluated at the ground
state configuration for the background 6elds, i.e., B„z=
A„= 8;V = 0, where V is the scalar potential. We will
use gauge-fixing prescriptions for supergravity that share
this feature. In addition, the transformation laws for su-
pergravity are nonlinear even when auxiliary fields are
used. 2 This suggests that it may be necessary to rede-
fine [9] the expansion in a manner analogous to (2.1), in
order to obtain a manifestly SUSY result.

B. Gauge fixing the gravity supermultiplet

We set background fermions to zero, and use unhatted
symbols for quantum fermion fields (g, y, A).

The commonly used gauge fixings for the graviton [18,
19, 4, 8], when generalized to include the YM sector, is
defined by

C„= 7'"It„„—V'„—h„—217„z Zlzz
2 ( 2

+xI'"„„A (2.6)

where Zlg(z, z) is the scalar metric, z, A are the quan-
tum scalar and gauge 6elds, and the symmetric tensor
h„„ is the quantum part of the gravitational field. Like
the smeared Yang-Mills gauge fixing (2.4), this leads to
a Lagrangian of the form (3.1).

For the gravitino, two types of gauge fixing have been
used: the Landau gauge [20, 4] p . Q = 0, which is imple-
mented with the aid of an auxiliary 6eld, and the smeared
gauge-fixing [8] 8 -+ 8 —FMF, F
4 (i P+ 2M~), which requires Nielsen-Kallosh ghosts.
Neither of these has the feature that the quantum La-
grangian reduces to the sixnple form (3.1). In addition,
while the Landau gauge propagators have the correct
poles for constant background fields, the smeared gauge
6xing propagators do not. Here we adopt an unsmeared
gauge which satisfies both requirements.

In a supergravity theory in which the Yang-Mills nor-
malization function satisfies Ref s = 8 sz, the part of
the Lagrangian that depends on the gravitino Q„ is [13,
14]

+ Q„(r"~p"—A F„—Q„'Pz K; p"Ly' + Q-„p"ps% 'D——if„p"Ly'm; + H.c. + four-fermion terms,

(2.7)

where

M = (M) = e ) (WR+ WL), R, L = —(1+ps), m„= (m„-) = e ~ D„(e W), 17 = K, (T z)'.
2

(2.8)

We take the Landau gauge condition G = 0, where

G = —p" (i P —M)Q„— 0 "~A F—„—2(Pz'K; Rg +'Pz K; —Ly') + 2imly ——ps17 A, (2.9)

Once the auxiliary fields have been eliminated, the trans-
formation laws for fermions in Bat supersymmetry are also
nonlinear. However it is easy to show that eliminating these
fields before or after functional integration gives the same
one-loop effective action.

The gauge fixing of supergravity using superfields is con-
sidered in [17j, where it is necessary to introduce "ghosts of
ghosts" because the Faddeev-Popov action has itself a gauge
invariance, as well as so-called "hidden" ghosts because the
gauge smearing parameters are constrained. The component
action gauge fixing we describe here has no such proliferation
of ghosts.

which we implement by inserting a b function in the func-
tional integral over f Writing.

S(G) = f da exp (iaG),

and defining

we obtain
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(2.io)

l: = — g—'" (i P —M)g' + 6rp—"(i P —M)p a + matter terms
2 2 P

= ——0'"(i@—M)@' —a(i++ 2M)a+ a —o"'A F' + 2imIX —pT) A')
2 P

ized„—
' g"A —2Q„'('D"z K, Ly—'+ 'D"z*K, Ry— )

Note that g is C even: g = Cg, then g' = CQ' requires cr = —Ca, i.e. , n is C odd; note also that n has negative
metric. All the terms remaining in the Lagrangian (2.10) are of the form of either a mass or a connection; that is,
(2.10) is of the form (3.1).

To obtain the ghostino determinant we use the supersymmetry transformations [13]1, . , — 1ibg„= (iD„—zp„M)e, iby' = —('Pz*R —im'L)e, iby = —('Pz L —im R)
2

'
2

4
(2.11)

to obtain

ObG „1= D"D„— p"p" [D—„,D„] —i[@,M] —2MM + m'm; + D + 2im — 'Pz L + 2im; 'Pz'R
196 2

+ opF ~—
]

o""F—„+ ps'D — —'D„z'K, 'D" z -+ ps[p", p—]'D„z K, 'D z'-
2 ' (4 " z ) " '

2

For constant background fields the ghostino propagator becomes

D"D„—2MM + m'm, + 27 = D"D„+MM + V,

(2.12)

(2.i3)

where V is the potential. %hen we evaluate this at a ground state with a flat background metric, the vacuum energy
necessarily vanishes: V = 0, so the (fourfold) ghostino pole is at pz = D= Mz—. If the cosmological constant is
nonzero the curvature is also, and there are additional terms in all the masses.

Now the goldstino is unmixed with the gravitino, but instead mixes with n. The normalized (left-handed) goldstino
6eld yL, is

xL, =
I

m'x'I, —-'D-&L,
I2 )

and its mass is

1-(m m'+ D) (2.i4)

mz ——e e A,zA'A~ + 4DA — Df,A'—
2x

(e A, A' + 'D), (2.i5)

where A is a gaugino, y' is the left-handed superpartner
of z', and

are included [10]. The normalized [4] (n, y) mass matrix
1S

Ag~ = DgA~ = DgD~A, A = e 8 = M.

At the ground state
where

im
i

Mo Mo) (imm —2M) ' (2.17)

V;=0=4'V;= e A, A'A~+2BA

Df,A' —2—e A*A;A.
2x

(2.16)

Using this gives m~ = 2M.
Here we show that unitarity is satisfied in the case

where there are no gauge couplings: 'V = 0; the argu-
ment goes through in the same way when gauge couplings

In the notation of (3.1), Z = —2; including the contri-
bution proportional to DetZ we get a quartically divergent
term proportional to ln 2 which cancels a similar contribution
from the graviton ghost [4].

p; =(p,,—) =e ~ A, , p'~ =K' K~ p

so

(M; M& t'~- im ~

]~M (2.1S)

p, pI& —m m~

i im"pl„. —2iMm, .
ip,*"mg —2iMm* 4

4MM —m mg )
(2.i9)

For the goldstino at a ground state with vanishing cosmo-

is the normalized mass matrix for left-handed chiral
fermions. In the traces used to evaluate the one-loop
effective action (see Sec. III) this gets multiplied by
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logical constant [see (2.13) and (2.16)], p, ;~ ~ 2M, m; ~
~3M, so the a-goldstino squared mass matrix reduces to

MiMi -+ MM
i

— (1 0&

The ghostino determinant removes four poles at p = M
and the unphysical 6elds y and a restore two of them,
so the singularities are correct. Note that because n is

odd while y is | even, Mi, which operates on left-

handed fermions, is not the Hermitian conjugate of Mi,
which operates on right-handed fermions.

The Einstein term can be put in canonical form by a
redefinition of the metric [8]

gp~ ( )gpv p~~
R

I Ae = e + ar, e„„='R„~ + Pr„~ —-', g„~(&p + Pr))
e' = ep + (4a + P)V,

'g „=H „—Pg„„F—F —2ag„„Dpz''D z K;
4

+P —'D„z*D„™zK;

C. Modi8cation of the graviton propagator —'V„z'V„z K; — + xF„pF„~ (2.24)

The S matrix is unchanged if we add terms propor-
tional to l'.~ to the propagators, as in (2.1). Consider
the graviton-scalar sector. We have

8; = —(K; D" D„z— + V;),
1 (p; p -) 1l:„„=—g„„~ ——V + K; Dpz"DP—z

2
——(K; - 'D„z'D„z + K; - D„z'D„z )

l'."„=——2V + K; —17pz'V~z

where g„„is the background metric. We can rede6ne the
graviton propagator by

~ DrDpvS — gpuDr—S ~, (2 20)

'R""'D„z—'D„z K; + 'R""-F„p—F„P

'R„"F„p—F—"P
~, (2.25)

where the tree Lagrangian C(g) is given in Appendix A.
Note that any terms containing factors of l'.„„that can
appear in l'.

q are completely removed by this metric re-
de6nition.

This induces additional matter terms:

l:(g)+&i(g) = l'-(gR)+l:i —l:.
1

+~g ~

2e'V —e''D„z'D" z K; + —'8„"-V

and
1

b„„p m 6„„p —P„„,p Zq ——[g„„Zp +gppC„„]

1
+-[gpp&- +g-p&p +gp &-p+g l:pp]

2
= —(PV'+ X)„„, , (2.21)

where the spin-2 projection operator P is defined in (B2),
and

Ml.pv = gppgvn
Bgp~

The unmodified propagators have been evaluated5 else-
where [18, 19]; using these results in the above we get

1
p" p~ p"Ip& [ pp&& + &pp&) '

Evaluating the determinants in (3.2) below gives an
efFective Lagrangian including terms linear and quadratic
in the space-time curvature:

III. THE ONE-LOOP EFFECTIVE ACTION

In the absence of gauge fields, the quantum action ob-
tained by the prescriptions de6ned in the preceding sec-
tion takes the form

l: = ——O' Z@ (D + H@) 4+ —eZe (i P —Me) 01 2 1—
2

+l gh + l Gh. (3.1)

2l:i ———Trln(D + H@) ——Trln( —i@+Me)
2 2

The last two terms are the ghost and ghostino terms,
respectively, C' = (h„„,z', z ) is a 2N + 10 coinponent
scalar, 0 = (g„,y = Iy' + Ry', a) is an N + 5 compo-
nent Majorana fermion, where N is the number of chiral
multiplets, and the matrix valued metrics Z@, and Zo,
as well as the matrix-valued covariant derivative D„, are
de6ned in Appendix A. The one-loop contribution to the
efFective action is

1l:i 9 7„=—~g eo(z, z)r + H„„('Dpz, Dpz, Fp ) r""
2

+iTrln(D + MGh) —iTrln(D + M h). (3.2)

+ar + Pr""r„„ (2.23)

Because of the simple form of (3.1) we can immediately
apply the general results obtained in [12,6, 4] to evaluate
the determinants:

As a check, we have also calculated the curvature-
dependent terms using the unmodi6ed propagators; we agree
with the results of [18],but not with [8] for these terms

The expression for the logarithmically divergent term
agrees with the one given in [21].
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i 2
A2 fl ) lnA /1 2 1 1 „1—Trln(D + Hg, ) = ~g Tr

~

r——H~,
~
+ Tr

~

H—@
— r—H@, + —G„„G" + Ir + 2r" r„]j

2 32vr i 6 j 32vr ( 2 6 12 " 120 " )
(3.3)

and since

2 4
——Trln( —i@+Me) = ——Trln[D + H~],He ——M& —i[@,Mo]+ 4[p", p ]G„, (3.4)

the fermion trace is —
2 times (3.3) with the substitution

H@ ~ Ho, and the trace includes a trace over Dirac
indices, so

elements of H and

G„„=[D„,D.] (3.5)

1

2
—(Tr 1)o ——(Tr 1)@——2N + 10.

Similarly, the ghost and ghostino contributions are equiv-
alent to, respectively, —2 and +2 times the contribution
of a four-component scalar with the masses M h

——Hgh
and connections as determined in Sec. II. The matrix

are given in Appendix B.
The traces in (3.3)—(3.5) are explicitly evaluated in Ap-

pendix B; here we simply state the result. If E(g, K) is
the standard Lagrangian [13, 14] for N = 1 supergrav-
ity coupled to matter with space-time metric g„„and
Kahler potential K, then the logarithmically divergent
part of the one-loop-corrected Lagrangian is

2

&~a' = &(ga, Ka) + ~g 2
e A, A R„I,R"" A~A~ —4R„*„A,A"A A" — R„A A—"A,A'

327t nk mq p nk & m 3 n

+(R'„,A~I, A"AA'+ H.c.) —R'r, A, t,A™A„A'—(D R'„,)A, I, A"AgA' —R'„,R I,AgA"A~A*

R I,A;gA'—"A~A' —(D,R ™)AgA'"A~.A' + 8V + —(N + 5) VMg + (N + 5)Mv,3

2+B„z'9"z e ——K; —R"AI,A" + 2R"- R '~AgA" —4R"- AA,.A
3

R'„,A, g
A" —(D~—R'„,)A, gA-"—R .

t,
A.,g

A'" —(D;R, q) Ag A~".-

(N+29)V+ —-(N+5)M& K, — —2R, — -V+M&
3 3

tm m,

+e (17„z'17"z~ [A,I,gA R" —R",(A~ggA™—AggA)] + H.c.)

—4 (17„z 17"z'K;~) +
~

—+ 7
~

17„z'17"z'17~z 17 z"K;„K,m-
32 —,—.- 2

+—B„z 17"z'B z"B"z~K;„-K-- ——'D 'V z K; -'V" ~B„"B-„-

+V„z D"z B.—,B z B"z"R~„-I,+27„z V"z'B . , 'V z"D z B„-I,-g

+427„z™17"z"P„z~'D z'B„-~ —;—4&„z D"z'27„z~ V z"B—~„-,.

+ —ID zest z R"Dz V z R'z e
—V,- —z-zV z R; D— 'Dzz Rj e]+—4-'(f;AAe +-H.c..) I. (Kfi)

2
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The classical Lagrangian l:(g, K) is given in Appendix A. Since we are neglecting gauge couplings, the gauge covariant
derivative 17„ is here an ordinary derivative: 17„~8„. The renormalized Kahler potential is

2

Kit = K+ 2e A;;A' —2A;A' —4AA], A = e W = (A), A; = D;A, A' = K' D A,-etc. ,

(3 7)

and the field redefinition covariant derivative D; is defined in Appendix A. The renormalized space-time metric is
given by

gpv (1 e)g + empt
R

lnA2 N —19; — N+ 29
g„„17~z'17~ z — (D„z''17„z + 17„z'17„z ) K;—

32x 6 " 6

R; —g„—27p—z D~z '+ (N+ 5)r„). — (3.8)

The term in (3.6) proportional to Cl can be removed by
a (nonholomorphic) scalar field redefinition:

z' ~ z* + X', C(z) -+ Z(z) + X*K;,

ln A2 —.X' = — A'Ae
8+2

The quadratically divergent contributions are given by
(B20) and (B21). However, as emphasized in [4], the
relative coeKcients of the quadratically divergent terms
are unreliable as they depend on the explicit regulariza-
tion procedure used [6, 22]. Therefore we have actually
only identified all the ultraviolet divergent terms at one
loop in the effective bosonic Lagrangian of supergravity
theories, and determined the coefBcients of the logarith-
mically divergent terms. The full quadratically diver-
gent one-loop correction. to the e8'ective Lagrangian for a
toy inodel [23] has been determined [22] for the leading
term in the number N„, of gauge nonsinglet chiral multi-
plets, for which the definition of a Pauli-Villars regular-
ization scheme consistent with the requisite symmetries
is straightforward; the e8'ective cutofF in that scheme co-
incides with the one required [2] for consistency, within
a supersymmetric theory, between the chiral and confor-
mal anomalies under modular transformations in target
space; the conformal anomaly is related to the choice
of cutoK, while the axial anomaly is finite and unam-
biguously determined. Defining consistent regularization
schemes for higher spin loops appears much more prob-
lematic. Moreover, in realistic theories the e8'ective cut-
o8's appearing in difFerent terms will not even have a
uniform dependence on the scalar fields. The issue of
removing the breaking of modular invariance induced by
the quadratically divergent terms has yet to be addressed.

IV. STRING MODELS

We have shown that most of the Kahler curvature-
independent terms that appear in the logarithmically di-
vergent one-loop contributions to the efFective supergrav-
ity action can be absorbed into field redefinitions or inter-
preted as a renormalization of the Kahler potential of the
standard classical Lagrangian. The curvature-dependent
terms vanish for models with a minimal kinetic term:
K; — = b; . More interesting for string phenomenology
is a class of theories in which the Kahler potential sepa-
rates into disconnected sectors that depend on different
subsets o. of chiral fields:

K=) K, BB~K =n K;K,
8„,= n(K, „--K. ——. +K „-K.,—-), . .D,B„-~—I,

——0,

(4.1)

A;~ =0 (4.2)

(Here the notation o.; = o~ means "if i and j belong to
the same subset. ") Then since

R' ' „=0 if o.; g n~,

the result (3.6) reduces to

(4.3)

because the metric is covariantly constant. These results
apply to Witten's toy model [23] and to the untwisted
sector of orbifold compactifications [24]. In models with
three matter generations in the untwisted sector, there
is further simplification because [24, 25] 8;0 W = 0 if
K; — g 0 and also n = +1 for all a. This is true for
the three matter + moduli generations, as well as for
the dilaton, which (neglecting nonperturbative efFects)
has no superpotential. In this case one finds, for the
covariant derivatives,
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ln A2
ff = l: (pz, Kz) + ~p e ) (N + 7) (A, A') ——A, A' ) N (A~A~)

+2
~

—V+ M& ~

e ) (AA'j + 2V + —(N —1) VM& + (N —1)M&(3 ) 3

+'D&z*D+z e ——K,~ ) N~(A&A~)~ + ) (2Nii, + 8) K,~(A&A )ii

+6.— ) (V„z'A') (V~z-A-)

KN+27 - 2 (1-+D„z'D"z e
i

V+ (N+—2)M@
~

K, — —2R.
(

—V— + Mq (E3

—4(D~z D"'z IC; ') +'~ —-+ 7) ii„z'D"z'D„i D"z"K;„/C, -
6

32 -- ' — 2
+ D„z—'D"z'D„z"'D"z~ K;„K~ +-D—~z'—D~z K; )(—N + 1) D"z~ D„z"'K~„

+) i N. + —
i
(~„"~".=K; )+ --(N. -5) r„"V 'V„."V"=-K; K;„

11'l, — 2 1

Q

1——(N —8) D„z D"z'D„z~ D z"K, K,„

where and covariant diH'erentiation is defined by

N =) N, (AB') =) AB', V'„A. = O„A —p~ Ap, etc. (A2)

and, for the dilaton s,

A, A' = AA.

i/ex

(4.5)

The scalar field redefinition covariant quantities are de-
fined identically with

g~ ~~r~, p+r, ~~&, V'„~Dr, I
Our results will be extended to include the gauge sector

in [10].
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APPENDIX A: CONVENTIONS AND NOTATION

Our Dirac matrices and space-time metric signature
(+ ———) are those of Bjorken and Drell or Itzykson and
Zuber. We use upper case notation (R, I') for derivatives
of the Kahler metric, and lower case (r, p) for those of the
space-time metric. Our sign conventions for, respectively,
the Riemann tensor, Ricci tensor, and curvature scalar
are

(A3)

where z', z = (z )t are the scalar partners of left-
and right-handed Weyl fermions, respectively. Because
the scalar metric is Kahler, there is only one type of
nonvanishing element of the Riemann tensor: namely,

Rnj km = %kj m Rmj kn = Rmkj n

R-, k= R k—, =-R —, k-= -—R-—k-i.--

Note that since R'k& ——0, [D;, Dz] = 0, and the tensors

A,-, .. .i =D,, D, A, A" '" =D" . D'"A

(AG)

are symmetric in all indices. It follows from the Bianchi
identities that D;R k is totally symmetric in (ijk).

We work in the Kahler covariant formalism [14], which
diifers from that of Cremmer et al. [13] by a phase trans-
formation on the fermions that removes phases propor-
tional to Im(W/W), where W is the superpotential. In
this formalism the fermion U(l) Kahler connection is just

vpcr g ~&P& ~~l vp ™@~vcr~ ~~+ Lp +pg+vcr ~

(A1)
I „=—(K,V„z' —K —V„z-), (A6)
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where 27„ is the gauge covariant derivative. It is conve-
nient to introduce the notation V = e (A;A' —3AA), 2) = —V 1),

2z

A=e W, A=e W. (A7)
17 = K;(T z'). (AS)

Then the classical potential is V = V + 'V, where
With these conventions the tree-level Lagrangian [13,14]
for the case f(z) i, = b gf (z) = b &[x(z, z) + i y(z, z)] is

X 1
'&(gc Kc f) = —&+ Ki~ D"z'&„z — F„—F""— g'—F„„F""—V

+—A pA+iK' (Xi, @XI,+ XgPXIt) + e '
~

f;A*-44 —A; XgXL, + H.c.
~2 i4

1 1
+

l
&R 2K*-(T z) — f;&—.+ ~„„F-.""fi XL, +H.c. i+8~+ four fermi-on terms, (A9)

with 8@ given in (2.7). In the notation of [4] [see Eq.
(3.91)],the masses operating on the left-handed gravitino
and chiral fermions are

—K/2g m" = 2e-K/'X, ,u (A10)

These are related to the elements of Me in (3.1) by
(- [4])

M~ = g„"-K/'~ = g~M~,
Mm g™&

—K/2 g &
—K/2 gm

2
e (A11)

Note that the normalization of our chiral fermions is the
same as in [13], which differs by a factor ~2 from [14].
The covariant derivatives D„ include the spin connec-
tion, the gauge connection, the Kahler connection (A6),
the afBne connection, and the Geld reparametrizaton con-
nection for chiral Gelds. For fermions,

1
D„g = V„+ —p„(V„p")+ ipsI'„P P 4

D„X'= V„+ -p„(V„p")—ap, r'„X'+V„z'r', ~X .
4

(A12)
I

APPENDIX B: OPERATORS AND TRACES

In this appendix we list the matrix elements of the
operators appearing in Eqs. (3.1)—(3.5) and the traces
needed to evaluate the divergent contributions to the one-
loop efFective action (3.2). We drop all total derivatives
in the traces.

1. The bosonic sector

In the absence of the Yang-Mills sector, the operator
H@ can be expressed as [18, 19, 12, 6, 4]

Z@H@, ——H+X+ Y, (B1)

with

[The gauginos have the same Kahler weight as the grav-
itino, and an additional connection which is given in
(C7) below. ] Operating on a function of scalar fields,
D„= 17„z DI, where B„ is gauge and general coordi-
nate covariant.

1
ipv c irrc Kirrc& ij rrcrc & pv po pv, per s (gppgvcr + gvpgpcr gpvgpo) ig pv po ~ (B2)

The nonvanishing elements of Z@H@, are HI J, X„,and Y„I, with

IJ — IJ + IJ) IJ — IJ + IJ)
VIJ = DIDJV, RIJ —VI z Vvz TIKI.J)
UIJ ———217„z Dvz ZIKZJI, )

J1
Xpv, per = 2Pja v, per V [rp

—
pvsr + rv pro] c Ypv I = YIpv = —ZIJDp Dv z

The contribution UIJ to the scalar "squared mass" arises from the graviton gauge fixing term which is the same as
in Refs. [18, 19, 4, 8]. The expressions for X and Y are simpler than in those references because of the propagator
modification introduced in Sec. II. Using

V; = e [Az, A —2A;A], V~ = e [A~;i,A" —A;~A],

= e K[A& Ajlc A Aj + PA&Ak 2PAA+ ~ z Ai, A ] (B4)
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we obtain the traces (Lorentz indices are raised with g" and scalar indices are raised with K' )

TrH = 20,' = 2e [Ag;A*" —R„"A iA"] + 2(K —1)V + 2(N —3)M@ —1)"z'1)„z (2R, — + 4K; ),—

1-TrH =H H'+H H'
2 j i u

=e [A; A~"A' A „—2A; A~"A'A +A, A'~(2A Ag —3AA)

+2A;~ A~"R „~A~A" + AiA R „I,
R" ApA —2R ' A.A"A~A"

—2R„A~A" V+M@ + N —1 V +2 N —1 VM~+ N+3 M~

+Ay;, A'~ A"A —(A,~gA'"A'A + H.c.)]
—2(1)„z'1)"z'e [A, ,I,A" —A;~A] + H.c.)
—'V„z B"z' 4e A, .A~- —A;A- + 4E, — + 2R, — V+ M~

+217„z~17"z R" ,e .[A—I,gA
' —3AI, A' + R „'&ArA"]

('D„z~—V"z'R" ;e [A. I,r A —AgrA] + H.c.)
+B~zBzR~~iBvzBzRg~g+B~zBzRj iBvzBzR~
+4B„z~B~z'B„z B z"K;„-E,— + 4X „z B~ziB„z"B"z~E;„-E,—

+427„z 17"z"Bvz~'0 z'R„-~~i —4B„z '8"z'Dvz '9 z"R~,„-i)

and

TrX = —20V+ 2r,

TrX =40V —8rV + 8r»r"" —2r + total derivative, (B6)

TrY = 4 (D„1)„z')(D"1)"z ) K; +4r""17„—z'D z K;

Finally we need

(B7)

G„

(G:.)',
TrR„„R""

(G, + G~)„„,
I K L I(R„„)q——1)„z 'D„z RqqJr,

p g p cr
p p~ r~pvA +

6r~ ""r~ „— = 12
~

r —2r" r„„~ + t—otal derivative.
)

(B8)

2. The fermion sector

The metric is

Z~ I ~J —2ZI J ) Z~~ = 2 )

Z~~ = Z~~ = Z~~ = 0-

Zp, v = gpv)

(B9)

The matrix elements of Mo are given by (2.16), (2.17), (A.ll), and

MI" ——2ZIJB"z, M„= —D„z . (Bio)

We also need their covariant derivatives, which have been defined in [4], with the difFerence that the Kahler connection
is here given by (A6). In evaluating these derivatives it is useful to recall that the gaugino has opposite Kahler weight
from the chiral fermions and the auxiliary 6eld a. One finds, for the covariant derivatives of the matrix elements
defined in (2.16), (2.17), and (A7),

D„p,~
=e ~ (A;~g17„z" +. 1)„z [A,K~. +A~.K, +A-„R,"- —]),

D„m, = e ~ (A; 1)„z"+17„z AK, ), -

D„M = .-K~'A„r„z".
(B11)
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The nonvanishing matrix elements of G„v are

(G„„)~ = (R„„)~ + 6~ (—psI'„+ Z„„),
(G„„).= —&,r„„+z„„,

1(G„„)'= s. (p,r„„+z„„) (B12)

where

r„„=-(V„z K, V„z-' —V„z K, -n„z*'),1
V

Then we find the traces

1 p cr
~p v rpo'vp p4

(Bis)

—TrMe ——e A; A'~ —2V+ 2M —4B"z'V z K, —

4

4
—TrM& —e 2~[A;~A~" A' AI, —4A;& A~

"AI,A'+ 4(AA'A;I, A" + H.c.)]

+2V —4VM@ —10M& —8e 'V„z'V"z A;.A — + K, —AA —A, A-

4e (1—7„z'17"z~A;~A + H.c.) + 817„z~17"z'17„z 17"z"K;„K~-

4
Tr~D„M—e~ = e 17„z'l7"z [A;~sA +10A;-A- + 4R," AI, A~ +-R — „RI,",ArA" —23~-A;&]

+2K;~ V+ 2M& + e 17„z'B"z~ 2A;~gA" + A;I,gA R"„.—2AA;~ + H.c.

—4 (D„17„z~)(D"27"z ) K~ —,

—Tr([p", p"]G„„)= (N+5)r,

(Me'[p", p"]G„„)= 'r T Mo'-

—Tr ([p",p"]G„„) = —2(N + 5)I'„„I' " —[TrG„„G""],+ (N —8)r —+ 8r„„r&",

where

TrG„„G""=4(N+ 5)I'„„I'""+2 [TrG„„G""],+ (N+ 13)
~

— z —2 „„„„~,
E2

(Bi4)

I'„„I'""= —(&„'& *D„17"S"K;„K-, —17„S -17 —'D„"V" K,„K,-) . -
P (B15)

3. The ghost sector

For the graviton ghost we have [18,19]

II""= 2'D"z 17"z Z —r"—" (G*") = rgh pv P
= Ppv~

TrHgh ———417„z'17"z K; — —r,

TrH,'„=8B„z~B~z'B„z B"z"K;„-K,— + 8B„z V&z'B„z"B"z~K,„-K,— + 8r„„B&z'B"z K; — + r„„r&",
TrG„vG"v = —r P„„r ~""= r —4r„vr"v + total derivative.

For the gravitino ghost, JIG' ——MG& is given by (2.12), and

[D~, D„]= G„„=&sF„„+Z„„.
We get

(Bi6)

TrHGh—

TrG„„G""=

4 V + M~ —4B„z'K.—'V"z —r
2

4 V+ M~ +4 'V„z'K;-B"z + —r — 8B„z'K;-B"z + 2r V+ M~

—4B„z'B"z A; A —e + 2rB„z'K; —B"z —6F„„I'"",

PP & 2P (Bi8)
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4. Supertraces

If we define

1
STrF = TrF@, ——'IrEo —2'IrEgg + 2'7rEGh,

2

the effective Lagrangian (3.2) is

A2 lnA2 t'1 2 1 1
g 22i ——— STrH+ STr

~

H —— rH+——G„„G"
32vr2 32m'2 I 2 6 12 )

with

(820)

+R -„R e ;AeA"I —"2R; (2e+Me, )—
+2'D„z~D"z R" ;e [Ai-,rA ' —AsA'+ R ' A A"]

(D„z~D—"z'R", e [A~qqA —Ai, qA] + H.c.)
+B„z~B"z B".—;Bz '6"z"B'- + B„z~17"z'B" . .B„z"B"z R„-I,—

g

N+9 . , — „„- N —23+ B„z~'8"z'D„z B"z"K;„-E~— — 'V„z '8"z'B„z"'8"z~ K;„-K~-

+4D„z D"z"'D„z~D z'R„, —4D„z - D—"z D„z~D"z"R

+ TrR„„R""+—4 (D„z D"z'K; )
—5rV —3—rM~4

N+9,
16

+ ~ ~pv)+4rB„z B~z'K, — —4r~ B„z B„z'K,——

p N+1 2 X —5 - N —1 2 1; -j 1 j pST—rH—= r — rV — rM& + rR'A—;A~ + rD„z—'D"z (R, —2K—; —),6 12 3
—STeR' = e I2A

"A'"2'Ae+ A A" (22e+2M )2

+2AA~B ~A A" + AAB I
R"" A A~ —2B I AA A A"

—2B„A A" V+M~ +Ay, ~A'~ A"A + N+21 V + N+ 17 M~+2 N+5 VM~

—(A;~qA'"A~A+ 4AA'A~A,
~ + H.c.)] + e (D„z~'D"z'[4A,~A+ A,qqA"R"„] + H.c.)

l
+'D„z 17"z'

~

e [A;~gA~~ + 2A;~A~ + 2A;A~ —10K;~V

—STrG „G""= — I' „I'""+ (r' —4r""r )P 48 P

Inserting these supertraces in (820) gives a contribution of the form (2.23) with

2 lnA2 N+ 5lnA2 lnA2 ~ ( —,. 2, . 'i 2N+ 20 - 2N+ 16

(821)

2

H„ = (g„„DRz'D~z [ s K; + R; ]
—4 'D—„z*'D-„z -K; + D„z*D„z— K;Pv 32 2 P v P 3 %Teal 3 t77L P

so the metric redefinition (2.24) gives (3.8), and we get a correction b„C given by the last term in (2.25):

(822)

2e ~
~' A—l,;A'" — R„"A&A"

I

—(N+—&7)V — Mq2 ——r V
4N+ 32, 4

N+59 - Ic t' —;q 2 q -„l 2N+16 2 2 4+ K, — V+ e Aq;A'" ——R„"AqA"
~

+ M~+ —r + —R; —V Bpz'DPz
3 ) 3 " 3 3

R; +8K;
~

'D z"Dpz +— — (D„z*D„z + D„z'D„z ) K; D„z'D"z"K;„—(2 l, , N+29

The Kahler potential redefinition (3.7) absorbs the contribution b, Ird, where
(823)
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ln A2
[ (—A;~i, A~ "AA' + R „,A~gA" AA' + H.c.) + 3A;~A'~AA

~g 327r2

+A; A~""A„A'+ 2A; A~"A„A'+ R~ .A.„A™A„A'+(D R~„,)A „A"A A'+ R~„,R, „A A"A A'

+2R' A,„A'"A A'+R', „A-;,A'"A A*+(DR™)A&A'"A A'

+2R „~,A iA" A~ A'] —4V —20M@V —36M~

+e [A,~i,A~ + 2A;~A~ +R-„",A&I, A + (D R-, )A~i, A

—6A;A~ + K;~A~I, A~" + R~„;R sAr-A" + 2R ;Ay„—A~"+ R sA,—gA~" + (D;R s)Ar—A~"

+2R„" ;As—A"]17„z'17"z —6M~K; 17„z*—17"z ). (B24)

Finally,

4Z;A'Ae + H.c. = 4 (—e A;~A'A~A+ e 17„z'17"z~A;zA+ H.c.)
+16e +A;A'AA + 8e 17"z'17„z (A;A — + K; —AA). (B25)

Then evaluating

l:i —r„+b,„Z —dklcl: —4 (r.;A'Ae + H.c.)

yields the result given in (3.6).

g ——h~F""B„A„+xh"„F„B"A~ —V~A"

was inadvertently omitted &om the quantum Lagrangian,
and graviton- Yang-Mills ghost mixing was neglected; this
will be corrected in [10].

1. Corrections to Ref. [4]

(a) The D term is missing from the tree-level bosonic
Lagrangian [13] in Eq. (1.8):

1
Z~ p ——Ref g;(T )'z~gg(T )& z .ab (C1)

(b) A factor eg~2 is missing from the last term in the
first line of (1.11). The signs of the last term in the
fourth line and the second term of the last line of the
same equation should be changed.

(c) Equations (2.33) and (2.34) should read, respec-
tively,

8d„-+ iP„+GPV
pv

—ipse )
( ) ~

( Px Pn —x +PmP)
=1

APPENDIX C: ERRATA

In this appendix we list errata for Refs. [4, 5]. In both
of these papers the term

(d) Equation (2.46) should read

K = 4 D„F" D"F„p +2 D F„„DF""

(C5)

(h) The sign of part of the gaugino connection is in-
correct. Equation (3.84) should read

(d„), = b, (8„+iT„ps)+e, A„—(1/Ref) 'D—„(lmf,)p,
2

(C6)

and (3.89) should read

(I„),= ——(1/Ref) 17„(lmf,) . (C7)

As a consequence of this sign error, there are errors in
the B„sterms in the final equations (4.1) and (4.2) of [4].
The correct result will be given in [10].

(i) The right-hand sides of (3.106), (3.107), and (3.112)
should be multiplied by 2.

(j) The sign of the right-hand side of the last line of
(3.91) is incorrect, and (3.120) should read

2~2M2 ln 2 + M4 + +2M2

1 2 2—-("~'+ f~+ Ql')»(2~a/~*) ].
(C4)

(e) The sign of the gauge connection in (2.48), (3.84),
and (3.104) is incorrect.

(f) A term 8D"z'D„z~V ~+ 88"B„sV„-is missing &om
(2.67).

(g) Equation (2.79) should read

(—i)"8"
X

ppg pI
(C2)

|'0 o
ZM =

(o (M"~)„„

l
(M x)

o j
(C8)

I" mP = ) —,(d„, d„ I") (C3) This sign error modifies the relative coeflicients of (3.174)
and (3.75) for the terms containing M~".
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(k) A term is missing from (3.133):

(F+)*-(F+" )'- & (f""& )'- (C9)

ln(g„A" p )
—ln( —2/ g, (Cao)

and the second line of the same equation should read

Corresponding terms that were omitted from the final
equations of I will be given in [10].

(1) The paragraph after Eq. (3.145) should read "We
also need to expand the remaining terms in (3.19). Only
the second term, being of order M, will yield both
quadratically and logarithmically divergent corrections.
The other terms yield only logarithmically divergent
terms. Again, after using. . . ."

{m) The signs of My in {3.141) and of My, Ng in

(3.149)—(3.152) should be changed; this does not affect
the final result.

-QA
(n) The subscripts a and p, on/ in Eqs. (3.159) and

(3.160) should be interchanged.
(o) The right-hand side of (3.165) should read

1——Mg(. (C11)
2

(p) &n Eqs. (3.174)—(3.176), G"" should be replaced
everywhere by G~". In addition, the subscripts a and o
on (G~") in (3.174) should be interchanged, the denomi-
nator of the second term on the right-hand side of (3.176)
should be 48p, and the left-hand side of (3.176) should
be multiplied by 4.

(q) The last line of (3.192), and the last term in the
fourth line of that equation, should be removed.

2. Corrections to Ref. [5]

(a) Equations (30) and (31) should read, respectively,

1
y. ~ = 2k& D~, in& I ~' p~'+ —p~ p'~p Tr&, T p,

4r P ~' r—I~'+ g~ rg—~rI D Xg~ —[7', inc]
K Cl a

(C12)

(b) The sentence before (44) should read "Also, —2f'rl (C„)P(17")bA„=.. . ."
(c) The signs of the C C terms in (46) should be changed.
(d) There is a cl ines, „B lne term missing from (53).
(e) The last sentence of the paragraph following (53) should read ".. . where N' is N without the fl and C terms

~ ~ ~ ~

(f) The following corrections to (58) should be made.

Replace 4N„„b bg"" by (N —0 —4N )„„b~bg"
Replace —-8„;8„Z'~b~brl"" by —(28;8„—2 8;8„)Z'~ 8~bil"

Replace 2(N„'„N "") b 5 by ([N —A]„„[N—0] " —2N„'„N "") b b.
Replace 2N„'„0""by 2(N —O)„B" .

(g) The text following {58) should read ".. . where 8' = 8+ s, and N' is given by N in (46) without the 0 and C
terms, . . . ."

(h) The second sentence of the Appendix should read "The space-time metric g„„has the flat limit i7„„
diag(1, —1, —1, —1)."

(i) Replace e by e in the definition of Q, Eq. {Al).
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