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Formation of topological defects in first order phase transitions
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We analyze the evolution of scalar and gauge fields during first-order phase transitions and show how
the Kibble mechanism for the formation of topological defects emerges from the underlying dynamics,
paying particular attention to problems posed by gauge invariance when a local symmetry is spontane-
ously broken. We discuss also the application of the mechanism to semilocal defects and electroweak

strings.
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I. INTRODUCTION

Topological defects [1] arising in theories with a spon-
taneously broken global or local symmetry play an im-
portant role in various branches of physics from cosmolo-
gy [2,3] to condensed-matter physics [4-7]. In cosmology,
topological defects are expected to form during phase
transitions in the early Universe. It is important to know
the number density of defects at the time of formation, as
well as other statistics such as correlation functions. De-
pending on the initial number density, many physics
models admitting local monopoles or domain walls are
ruled out [8]. For defect-induced baryogenesis [9] it is
important to know the initial separation of defects, and
for structure formation scenarios using topological de-
fects, such as cosmic strings [10], global monopoles [11],
or global textures [12], it is also useful to understand the
initial distribution of defects.

In 1976, Kibble [1] suggested a simple mechanism for
the formation of defects in cosmological phase transi-
tions, where the order parameter is a scalar quantum field
¢ (which maybe elementary or composite). It has two
key ingredients: randomness of the phases of the scalar
field ¢ on length scales larger than some correlation
length &, and the geodesic rule for interpolating the
values of ¢ on curves connecting points in different corre-
lation volumes. The first assumption states that ¢ takes
on random values in its vacuum manifold /M at points
separated by a distance greater than &; the second one
states that along a curve in space connecting two such
points the field ¢ traces out a geodesic path on the vacu-
um manifold.

For global defects, the Kibble mechanism has been
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verified in liquid crystal experiments [13] and in numeri-
cal simulations in field theory [14]. For local defects,
convincing experiments are lacking (see, however, Refs.
[15] for some numerical results for local vortex forma-
tion).

Recently, Rudaz and Srivastava [16] have argued that
in local field theories, the geodesic rule is not justified and
that the rate of defect formation might be much smaller
than what would be obtained by naively applying the
Kibble mechanism. The core of the objection is that the
Kibble mechanism is formulated in a gauge-dependent
way, and that a geodesic curve in the vacuum manifold of
¢ does not necessarily minimize the energy density and
hence should not play a distinguished role. These objec-
tions highlight the need to reconsider the Kibble mecha-
nism for defect formation in theories with local symmetry
breaking.

In this paper we reconsider the Kibble mechanism for
global and local defect formation at first-order phase
transitions. We analyze the equations of motion for sca-
lar and gauge fields, and demonstrate the validity of the
geodesic rule for ¢. To be specific, we consider vortex (in
2+1 dimensions) or cosmic string (in 3+1 dimensions)
formation in a model in which a U(1) global or local sym-
metry is broken. However, our methods also work for
more complicated models with 7,(M )71, for other types
of topological defects, and for semilocal [17] and elec-
troweak [18] strings. We do not consider here second-
order transitions because the analysis is qualitatively
different: the semiclassical methods we use ignore
thermal fluctuations. We plan to discuss their role in a
future publication.

In Sec. II we discuss theories with a first-order phase
transition which proceeds via bubble nucleation. We dis-
cuss how far the analysis can be applied to semilocal de-
fects and electroweak strings in Sec. III, and Sec. IV con-
tains a brief summary of results. Throughout the paper,
units in which kz=#%=c=1 are employed. Greek in-
dices run from O to 3 and our space-time signature is
(+,—,—,—).
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II. FIRST-ORDER PHASE TRANSITIONS

To be specific, we shall consider an Abelian Higgs
model with a complex scalar field ¢ and a U(1) gauge con-
nection 4,. The Lagrangian of the system is

L=(D,$)'DH¢—V($)—LF, F* @1
where
D,=3,—ied, 2.2)

is the covariant derivative (e is the gauge coupling con-
stant),

F,,=3,4,—3,4, (2.3)

is the field strength, and V'(¢) is a symmetry-breaking po-
tential, whose zero-temperature form is A(|¢|2—n?)2/2.
We assume that V(¢) depends only on |$|. In this case,
the Lagrangian (2.1) has a local U(l1) symmetry. If
|¢|=n(T)70 is the absolute minimum of ¥V(¢), then this
symmetry is broken at low temperatures. We shall as-
sume that ¢ =0 is the minimum of the high-temperature
effective potential Vi (¢). At a critical temperature T,
¢ =0 ceases to be the absolute minimum of V(¢).

Considering the Abelian Higgs model in the context of
an expanding Universe, we conclude that as the tempera-
ture drops below T, the system undergoes a symmetry-
breaking phase transition. The order of the transition de-
pends on the functional form of V(¢). It is generally
thought that the transition is first order for B=A/e2—0,
and may be second order for B— o [19]. In the former
case, the one-loop temperature-dependent effective poten-
tial has the form [20]

3
VT(¢)=%MT><I¢12—n2>2+%e2T21¢12—;ﬂle3T|¢|2 .

(2.4)

In a first-order phase transition, ¢ =0 remains a metasta-
ble fixed point below T=T,.. The transition to a state
with |¢| =7 proceeds by bubble nucleation [21]. There is
a finite probability per unit volume per unit time
dP /dVdt that a bubble with |¢| =7 will nucleate in a sur-
rounding sea of “false vacuum” ¢=0. This probability is
given by an expression of the form [21,22]

dp - =
v Aexp(—Sg[d,4]), (2.5)
where ¢ and A4 are extrema of the Euclidean action Sg.
This field configuration represents a tunneling process.
At high temperatures (high compared with the scalar and
vector masses mg and my) the action is effectively three
dimensional, and the tunneling solution is spherically
symmetric about a point [22]. If the energy difference be-
tween the minima at ¢=0 and |¢|=m(T) is small com-
pared with the height of the barrier between them, then
the solution is well approximated by a thin-walled spheri-
cal bubble of true vacuum inside the false one [21]. The
width of the bubble wall is approximately mg ', and the
radius of the bubble is of order V,/mgAV, where V, is
the barrier height and AV is the difference is free energy

between the two phases. The bubble will then expand
with a speed which depends on the interaction between
the wall and the rest of the hot matter in the Universe.
When the mean free path of the hot matter is much
shorter than the wall thickness, the interactions are
ineffective in slowing down the wall, and it reaches the
speed of light [23]. The precise value of the wall velocity
is not important to our analysis. The expansion of the
bubble is fueled by the conversion of potential energy
density ¥ (0) to wall kinetic and gradient energy. The
phase transition is completed when neighboring bubbles
collide and the fraction of space with |¢| =7 approaches
unity. The correlation length £ for this transition is the
mean separation of bubbles. Implicit in our analysis are
some assumptions about time scales: we are taking the
expansion rate to be much longer than the nucleation
rate per Hubble volume, so that we are justified in taking
the space-time to be Minkowski type. The expansion of
the universe then serves to reduce the temperature as a
known function of time.

According to the Kibble mechanism, there is a fixed
probability p of the order 1 that a defect will form in any
correlation volume &3. The exact value of p depends on
the type of defect, i.e., on the topology of the vacuum
manifold M (see, e.g., Ref. [24] for a recent calculation of
p for various models).

Let us illustrate the Kibble mechanism for our toy
model, the Abelian Higgs model. The phase a of ¢ is as-
sumed to take random values in different bubbles. After
two bubbles meet, then if we follow a line in space con-
necting the centers of the two bubbles, a is assumed to in-
terpolate more or less smoothly between its values in the
two bubbles. The second part of Kibble’s argument
states that a(x) will follow a geodesic in /M in order to
minimize the potential energy.

A vortex can form when three bubbles collide, as illus-
trated in Fig. 1. If ¢;, i =1,2,3, are the phases of ¢ in
the three bubbles, then a vortex will form if the sum of
the phase differences a,—a; and a;—a, exceeds 7. In
this case, a(x) will run from 0 to 27 as we go along the
circle y; i.e., the field configuration has winding number
1. There is then a topological obstruction to the scalar
field reaching the vacuum manifold everywhere in the re-
gion bounded by the lines connecting the centers of the
bubbles. The field must vanish somewhere, and this is
where the vortex forms.

As discussed in Ref. [25], a bubble collision is a quite
violent event. In order to justify the Kibble mechanism
(both for global and local symmetry breaking), we must
follow the evolution of amplitude and phase of ¢ and
demonstrate that the geodesic rule is valid. In order to
do this, we will write down the dynamical equations
which follow from (2.1). We first consider a global theory
and discuss the evolution of amplitude and phase of ¢.
Then, we make the transition to a local theory and show
that the gauge fields do not strongly perturb the evolution
of ¢. This analysis is done in a particular gauge. Howev-
er, the final result, the winding number, is gauge invari-
ant.

In the Lorentz gauge, i.e., with the choice

3,4"=0, 2.6)
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FIG. 1. Three bubbles of the broken symmetry phase (p=1)
colliding. If the phase change of the scalar field around the loop
y is £2m, a string (or antistring) is formed. If the phases a;, are
ordered, then the requirement for a string is a, + 7 <a; <a,+7.

the variational equations which follow from (2.1) are

(8#8"—2ieA“8"—e2A#A“)¢+2a?(;ng:O (2.7)
and
2 2— i, %3
0,044, —2e*4,|¢]*=—ied*d .4 . (2.8)

It is convenient to separate Eq. (2.7) into equations for
the amplitude p and phase a of ¢. Inserting

é =pe ia (2.9)
into (5) we obtain

14

p—(da—ed)p—e*d*p+2——p=0 (2.10)
P P P 3’

and

82a+2(a“a—eA“)8“pP%:0. 2.11)

The collision of two bubbles in the Abelian Higgs mod-
el was studied numerically in Ref. [25]. We now demon-
strate that we can reproduce the essential features of the
collision process using the above equations.

We first consider a theory with global U(1) symmetry
and choose axes such that the centers of the bubbles lie
on the x axis. We can additionally boost in the (y,z)
plane to a frame in which the bubbles nucleate simultane-
ously [25], and translate in the x direction so that they
collide at x =0. Provided the bubbles nucleate far from
each other (far meaning much greater than the wall
width so that the field is exponentially close to zero be-
tween the bubbles) the solution representing two bubbles
nucleating at x, and x, can be approximated by a sum an-
satz:

#(x,0)=e""1f(x—x,)+e 2 f(x—x,) , 2.12)

where f is the modulus of the single-bubble field. The ac-
tion for this configuration is (exponentially) independent
of a; and a,: hence the phase of the two fields are well

approximated by independent random variables.
Without loss of generality we take the phase in one bub-
ble to be =0 and in the other bubble a=a,. Note that
the phase a is not defined for points outside the bubbles.

When the bubbles meet (we take this to occur at time
t =0), the phase a(x) is approximately a step function:

alx,t =0)=a,.0(x) . (2.13)

In fact, the step will be smoothed on a scale mg ! by the
finite thickness of the bubble walls. We shall work in the
planar approximation d,¢=43,4=0. This is reasonable if
the bubble radius is much greater than the wall thickness.
In fact, the symmetry of the two-bubble collision reduces
the problem to a two-dimensional one anyway [25], but
for simplicity we choose not to exploit the coordinates in
which this is manifest. Inserting (2.13) as initial condi-
tion into the phase equation [Eq. (2.11)], we see that
phase wavefronts emerge which travel in tx direction
with the speed of light (see Fig. 2):

alx,t 20)=1a [0(x +1)+0(x —1)] . (2.14)

Equation (2.14) gives the solution of (2.11) because the
phase waves are propagating inside the bubbles where
aup=O.

The phase waves which arise for a,70 carry away
some of the kinetic energy of the walls, but not all. The
rest of the energy goes into bubble walls. The region of
false vacuum ¢=0 does not disappear at t =0. Rather,
the walls which separate the region with |¢| =1 from the
false vacuum scatter and start to reexpand [25]. What is
happening is that the modulus of the field has overshot
p=m, and rolled back to p=0. We denote the wall posi-
tions by =X (¢). However, as X (¢) increases, the potential
energy of the field configuration increases, thus creating a
force which tends to restore X to 0. An approximate

FIG. 2. Space-time diagram of two bubbles with different
phases colliding. After nucleation at time ¢, the bubble walls
collide at t =0, when they are traveling at approximately c.
Phase waves continue out from the collision site, spreading a re-
gion whose phase is halfway between the phases of the bubbles.
The walls pass through each other, but eventually turn round
and recollide. This may happen several times.
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equation for X (¢) can be obtained from elementary phys-
ics considerations:
.. kY4
X=——=,
’ X
where o is the mass per unit area of the wall, and W (X)
is the potential energy (per unit area) of the false vacuum
region x €[ —X,X]. Obviously, W =XV (0) and hence
(2.13) becomes

X=—-v0)/o .

(2.15)

(2.16)

Thus, there is a constant restoring force which causes the
wall to recollapse on a time scale 7=2X(0)o /V (0).
There is a series of bounces, each losing energy through
propagating oscillations in p, and thus leading to reduced
X(0) and period 7 (see Fig. 2). Note that the coupling of
the scalar to other fields will result in particle production
and consequent energy loss as the scalar field oscillates.
In principle, these couplings could be strong enough to
overdamp the oscillations, which would merely result in a
reduction of the relaxation time.

An alternate way to derive Eq. (2.15) is to insert the an-
satz

plx,t)=n0(x —X(t)) (2.17)

into the equation for the modulus p [Eq. (2.10)], and in-
tegrate the resulting distributional equation over x.

To summarize, we have verified that after a bubble col-
lision, the phase a(x) along a path ¥ connecting the two
bubble centers interpolates between its original values in
the two bubbles. The interpolation happens in two jumps
of width mg ! associated with excitations of the Nambu-
Goldstone mode, spreading from the collision site at the
speed of light. Thus, the second key ingredient of the
Kibble mechanism, the “geodesic rule,” has been estab-
lished for global defects forming in a first-order phase
transition. We stress that the geodesic rule follows from
the equations of motion, not from minimizing the energy,
as assumed in Ref. [16].

We now extend the analysis to theories with a local
U(1) symmetry. We again study the collision of two bub-
bles and establish the applicability of the geodesic rule.
In the bubble nucleation instanton, the magnetic field as-
sociated with A, vanishes. Thus at the time of nu-
cleation ¢, we have, even in the Lorentz gauge, some free-
dom left in specifying 4,. In general,

A(x,1,)=VA(x,t,), A°=A(x,t,), (2.18)
an arbitrary function of position. However, it is clearly
simplest to choose A(x,¢, )=O=A(x,t,, ), which amounts
to a complete specification of the gauge. During the bub-
ble wall collision, a nonvanishing gauge connection is
generated through the coupling to the phase difference in
the scalar field across the bubble wall, which, in turn,
feeds back into the evolution of the scalar field modulus p
via (2.10). We will analyze first assuming A/e?>>1. We
assume that we may neglect e4 in comparison to
da~V'An, so that Eq. (2.8) becomes

(87—32)A4,=2el$|d,a—ed,)~2en®d a . (2.19)

If we take for a Eq. (2.14), then we can easily solve for
the gauge field. This is most easily expressed in light-
cone coordinates x =t+x. After one integration we find
(¢>0)

3_4,=Lten’a 6(x"),
(2.20)
9, 4_=len’a 6(x7),

which corresponds to an electric field in the x direction of
Fy,=2(0_A,+0,4_) (2.21)
=len’a [6(x +1)—06(x —1)] .

This field exists only between the phase waves, which are
carrying off equal and opposite charges (per unit area)
a. /2. Behind the phase wave the Higgs vacuum screens
the charges, and the gauge field is exponentially damped
beyond light-cone distances Ax*~(en)”!. Thus, we
conclude that the gauge field is bounded in modulus by
~m. Our approximation is self-consistent, for
en <<V'A7. At the phase wave itself the gauge field van-
ishes, so it should be a good approximation to ignore its
effect on the propagation of the wave (this feature was
originally found by Hawking et al. in their numerical
simulations [25]).

This is perhaps not the correct limit to use if we are as-
suming a first-order phase transition, where A /e? is sup-
posed to be small. In this limit we cannot approximate
the phase wave by a step function. Instead we take
(t>0)

a(x)=%ac[l+%W(msx+)+%W(me7)] ,  (2.22)
where W is the phase wave profile, interpolating between
—1 and 1 as its argument changes from — o to + .
Then we find that Eq. (2.8) becomes

(40,0_+mP) A, =tla e’ mgW'(mex™) . (2.23)
In a gradient expansion in powers of mg/my, the first
term is A, ~d,a/e=ta.mgW'(mgx*)/4. Thus, the
current vanishes to this order, and the equations of
motion for a and p are affected only at higher order in
mg /m y-

Physically, what is happening is that in the limit
mg>>my, the wall collision contains enough high-
frequency modes to create longitudinal gauge bosons. In
the opposite limit, the gauge bosons are too massive to
appear from scalar bosons of frequency ~myg: instead,
the gauge field tracks the phase to ensure that the current
vanishes.

In either case, the key point is that the interpolation of
the phase between the bubbles is not affected by the pres-
ence of 4,. Hence, by choosing a particular gauge, we
establish the geodesic rule for local theories. In a three-
bubble collision, the geodesic rule can be applied between
each pair of bubbles provided the collision happens be-
fore the advancing wall of the other bubble reaches the
collision point. We can, in fact, boost along the normal
to the plane containing the centers of the three bubbles so
that they nucleate simultaneously, so this is a constraint
on the positions of the centers: they must form an acute
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triangle. The winding number around a closed curve
connecting these points, along which the scalar field van-
ishes nowhere, is a gauge-invariant quantity. This is
given by

n=——t_ A
v 47 |¢|?

ds* . (2.24)

We can compute it in our chosen gauge and be confident
that the result is gauge invariant.

These results imply that in first-order phase transitions,
there is a finite probability that a field configuration of
nontrivial winding (and hence a vortex) emerges during
the collision of three bubbles. This is true for both local
and global theories. If a;, a,, and a; are the phases of ¢
in the three bubbles (without loss of generality
a,<a,<a;) and if a;+7<aj<a,+7, then by the geo-
desic rule, after bubble collision, a(x) will smoothly go
from O to 27 along ¥, yielding a configuration with wind-
ing number 1. As we have seen, the phases in the three
bubbles are random, since the nucleation probability is
independent of their values and so we get winding num-
ber 1 (with probability | [24]).

III. EXTENSIONS

Our analysis has been based on dynamical rather than
on topological considerations. Hence, the arguments
may carry over to the case of defects such as semilocal
strings [17] or electroweak strings [18], whose stability or
otherwise is dynamical in origin.

The key to our analysis in the previous sections was to
establish the validity of the geodesic rule, i.e., of the
statement that after completion of the phase transition,
the phases of the Higgs fields along a line in space con-
necting the centers of two initial bubbles will interpolate
smoothly between their initial values in the bubbles, thus
forming a section of geodesics on the vacuum manifold
M. The question of determining the probability of defect
formation then reduces to the statistics problem of
finding the probability that a closed geodesic will have a
nonvanishing winding number.

We now generalize this approach to semilocal and elec-
troweak strings. We first verify the geodesic rule, thus re-
ducing the problem to a probability problem. However,
the probability calculation, will, in general, be much
harder than for topological defects.

Semilocal strings [17] arise in models with a large glo-
bal symmetry group G of which only subgroup G, is
gauged. If this gauge group and its unbroken subgroup
H, obey the usual topological condition = (G,/H;)70,
then stable string solutions exist only if the scalar mass is
small enough relative to the vector mass [27,28]. The
simplest example is the model of Ref. [17]: a U(2) sym-
metry acts on a complex scalar double @, but only the
U(1) generated by the identity matrix is gauged. When @
gains an expectation value the remaining symmetry is a
global U(1).

The vacuum manifold of the theory is S?3, defined by
|®|2=n? and it is fibered by the action of the local U(1)
into a bundle which is locally S2XS'— the Hopf bundle
[27,28]. In the string solution, the scalar field wraps
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around one of these fibers outside the string, and vanishes
at the origin. In fact, it is simply an embedding of the
Nielsen-Olesen [26] vortex in the full theory. It is only
stable if the scalar mass is less than the vector mass.

The equations of motion of this theory are essentially
the same as those of Sec. II. Both components ¢, and ¢,
of & satisfy Eq. (2.5),

G14
3lgl?

3%, —2ie A, 3", —e’ A’ +2 $,=0,

i=12, (3.1

and the gauge field satisfies the analogue of Eq. (2.8):

A, —2e2A (3 +¢})=—ie($}0,6,+630,4,) .  (3.2)
In particular, the gauge connection A, does not mix ¢,
and ¢,. The same arguments as in Sec. II imply that the
geodesic rule applies in our Lorentz gauge with
A4,(x,1,)=0.

However, this is a geodesic rule in the full vacuum
manifold S3, in which there is no topological obstruction
to the scalar field reaching |®|=m everywhere in the tri-
angular region formed by a three-bubble collision. This is
related to the fact that the analogue of (2.24), or

. 5
L2 a“:p ds* ,
Ld

(3.3)

m,=——
Y 47

is not necessarily an integer. The probability of forming
a semilocal string is, in fact, a complicated dynamical
question. It seems likely, however, that the “closer” the
field in the three bubbles lies to the same U(1) orbit, the
more likely is the formation of a string. We can, in fact,
give this closeness a precise geometrical meaning.

Let us choose coordinates (o,¥,y) on S 3 such that, in
its vacuum manifold,

b=y (3.4

(cosy /2)eito ¥/
sm()(/2 )ei(0+¢')/2

Then o parametrizes the S! fibers, and (y, ) are polar
coordinates on the base space S2. This can be seen by
projecting onto a unit three vector:

o~

¢ *=® 0D /|®|>=(siny cosy,siny sing,cosy) . (3.5

The semilocal string has (¥,¥) constant around it, with o
changing by 47. Thus, the measure of closeness of the
field values in the three bubbles (o;,x;,¥;) to the string
configuration is the area of the spherical triangle defined
by (X;,¥;). The smaller this area, the closer the field is to
a pure phase change around the curve joining the centers
of the bubbles (that is, the closer m, is to 1), and the
more likely a string is to form. Unfortunately, without
dynamical simulations, we cannot say how the string for-
mation probability depends on the area A. The only
piece of information we can extract geometrically is the
probability P(A4) that a random spherical triangle has
area less than or equal to A4, which is [29]
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|4, 1.4 A .4
P(A) 2+2sm2cos2 ar sin 5
+l(1T—A)(37r—A)tan—A— /ﬂcoszé-. (3.6)
8 2 2
For small 4
34 ?
P(A)~— |1+ — 3.7
(A4) 4 4 (3.7)

For fields ¢ with d components we would expect the
probability to go as ¥, where V is a (2d —1)-dimensional
volume, although the coefficient is a more difficult exer-
cise in geometric probability.

For electroweak strings the geometrical considerations
are identical: our two-component semilocal model is just
the bosonic sector of the electroweak theory in the limit
that the weak mixing angle approaches 7 /2. However,
we can expect the fields to evolve toward a string solution
only if there is a locally stable solution towards which to
evolve. In the standard model the string is unstable [30],
so we do not expect to see them formed. However, meta-
stable strings exist in theories with a more complex Higgs
sector, [31] and in those we can expect some string for-
mation in first-order phase transitions, although we are
unable to estimate the probability.

IV. CONCLUSIONS

We have studied the formation of topological defects in
first-order phase transitions. We showed that both for lo-
cal and for global defects, the assumptions on which the
Kibble mechanism [1] is based can be established by us-

ing the equations of motion.

The result of the analysis is that there is a probability p
that a defect will form per correlation volume of the field.
For topological defects, p is of the order 1 [24], for nonto-
pological defects such as semilocal strings and elec-
troweak strings, p depends on as yet ill-understood dy-
namics, but we guess it to be typically much smaller than
1. However, in no circumstance is the formation proba-
bility Boltzmann suppressed.

Our technique is based on first studying the dynamics
of the scalar fields in the absence of gauge fields (a gauge-
dependent analysis), establishing the existence of winding
number in the final state (a gauge-independent con-
clusion), and then bounding the effects of the gauge fields,
for convenience working in Lorentz gauge with the addi-
tional choice 4, =0 at the time of bubble nucleation.

We have not included thermal fluctuations into our
consideration. We are therefore implicitly assuming that
the root-mean-square amplitude of the thermal fluctua-
tions on the length scales we discuss is much less than the
magnitude of the scalar field %(T), which is, in fact, not
unreasonable [32].

Note added in Proof. Defect formation in a first-order
phase transition (at the end of inflation) has also been
considered in Ref. [33].
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FIG. 1. Three bubbles of the broken symmetry phase (p=1)
colliding. If the phase change of the scalar field around the loop
y is =27, a string (or antistring) is formed. If the phases a; are
ordered, then the requirement for a string is ¢, + 7 <a3 <a,+ 7.



FIG. 2. Space-time diagram of two bubbles with different
phases colliding. After nucleation at time ¢, the bubble walls
collide at ¢ =0, when they are traveling at approximately c.
Phase waves continue out from the collision site, spreading a re-
gion whose phase is halfway between the phases of the bubbles.
The walls pass through each other, but eventually turn round
and recollide. This may happen several times.



