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We rederive the universal bound on entropy with the help of black holes while allowing for
Unruh-Wald buoyancy. We consider a box full of entropy lowered toward and then dropped into a
Reissner-Nordstrom black hole in equilibrium with thermal radiation. We avoid the approximation
that the buoyant pressure varies slowly across the box, and compute the buoyant force exactly.
We find, in agreement with independent investigations, that the neutral point generically lies very
near the horizon. A consequence is that in the generic case the Unruh-Wald entropy restriction is
neither necessary nor sufficient for enforcement of the generalized second law. Another consequence
is that generically the buoyancy makes only a negligible contribution to the energy bookkeeping,
so that the original entropy bound is recovered if the generalized second law is assumed to hold.
The number of particle species does not figure in the entropy bound, a point that has caused some
perplexity. We demonstrate by explicit calculation that, for an arbitrarily large number of particle
species, the bound is indeed satisfied by cavity thermal radiation in the thermodynamic regime,
provided vacuum energies are included. We also show directly that thermal radiation in a cavity
in D-dimensional space also respects the bound regardless of the value of D. As an application
of the bound we show that it strongly restricts the information capacity of the posited black hole
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remnants, so that they cannot serve to resolve the information paradox.

PACS number(s): 04.70.Dy, 04.62.4+v, 95.30.Tg, 97.60.Lf

I. INTRODUCTION

The generalized second law (GSL) of thermodynamics
for black holes [1,2] states that when entropy flows into
a black hole, the sum of black hole entropy and ordinary
entropy outside the hole does not decrease. Arguing from
the GSL, Bekenstein [3] has proposed the existence of a
universal bound on the entropy S of any object of maxi-
mal radius R and total energy E:
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This bound was inferred from the requirement that the
GSL be respected when a box containing entropy is de-
posited with no radial motion next to the horizon of a
Schwarzschild black hole (for a Kerr black hole the con-
dition is more complex), and then allowed to fall in. The
box’s entropy disappears but an increase in black hole
entropy occurs. The second law is respected provided S
is bounded as in Eq. (1). Other derivations of the bound
based on black holes have been given by Zaslavskii [4,5]
and by Li and Liu [6]. Bound (1) can also be interpreted
as a bound on the information capacity of any object
with total energy E and circumscribing radius R [7,8].
Bound (1) has been checked directly for quantum fields
enclosed in boxes of various shapes, when § is inter-
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preted as the logarithm of the number of field quantum
states up to energy E above the ground state (for a re-
view see Ref. [9]). Numerical checks have been made for
free scalar, electromagnetic, and massless spinor fields
enclosed in rectangular or spherical boxes [8]. And an
analytic proof of the bound for those same free fields
valid for boxes of arbitrary shape and topology has been
provided [10]. A couple of checks exist for self-interacting
fields [9,11]. All the above demonstrations can be sup-
plemented by the observation that if the box the fields
are enclosed in is reckoned as part of the system, the
bound is even more strongly satisfied because E is thus
augmented while S is hardly changed. Black holes play
no part in any of the above considerations. Therefore,
bound (1) is known to be true independently of black
hole physics for a variety of systems in which gravity is
negligible.

By contrast, just a few pieces of evidence exist con-
cerning the validity of bound (1) for self-gravitating sys-
tems [4,12,13]. To these we may add that black holes
themselves comply with bound (1) if R in the formula
is interpreted as (.A/47)!/2, where A is the horizon area
[3]. Thus our confidence in bound (1) for gravitating sys-
tems rests almost entirely on the black hole arguments
of Refs. [3-6].

In Ref. [3] it was assumed that the energy at infinity
added to the black hole with the box (which determines
the increase in black hole entropy) is that which may be
inferred from the redshift factor at the deposition point.
However, Unruh and Wald (UW) [14,15] have pointed
out that when the deposition is attempted by lowering
the box from far away, buoyancy in the radiative black
hole environs will prevent lowering the box down to the
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horizon (if one does not wish to invest energy by pushing
it in), and the box will “float” at some neutral point. The
total energy at infinity added to the hole after the box
has been dropped from the neutral point is larger than
the redshifted proper energy of the box. Accordingly,
UW concluded that the GSL is respected when the box
is dropped, provided only its entropy is restricted by

S <V s(E/V), (2)

where s(e) is the entropy density as function of energy
density e of unconfined thermal radiation. UW thus con-
cluded that bound (1) is unecessary for the proper func-
tioning of the GSL. They further argued that that bound
(1) could not possibly remain correct when the number
of particle species in nature is arbitrarily large.

Although it seems reasonable that thermal radiation
maximizes entropy as a function of energy density, the
UW entropy restriction (2) can easily fail for a system
in which surface effects are sizable, because such a sys-
tem cannot be described entirely in terms of extensive
or intensive variables such as V or E/V, respectively. In
effect, the shape of the system is also a variable. For ex-
ample, in a rectangular box with dimensions d x d x 0.1d,
radiation in the energy range [/d,80%4/d] explicitly ex-
ceeds the UW restriction on entropy [16]. [A more dra-
matic violation occurs for a black hole; Eq. (2) predicts
a bound on § that rises like E3/2 whereas black hole
entropy grows like E2.] In light of this, UW [15] conjec-
tured that the entropy restriction (2) applies only for box
and contents together. In this revised form the restric-
tion may be generally correct for nongravitating systems;
however, it did not play a role in UW’s subsequent dis-
cussion of the functioning of the GSL in an alternative
gedanken experiment (box emptied into a black hole and
withdrawn open) [15], and its status has remained un-
clear. And because UW’s rescue of the GSL by an appeal
to buoyancy [14] in the original gedanken experiment [3]
relied on the UW entropy restriction, that experiment
has continued to be problematic for the GSL.

In light of the above, we retrace in Sec. I A UW’s anal-
ysis of the original gedanken experiment in which a box
full of entropy is lowered towards and then dropped into a
black hole from the neutral point. For later convenience
we perform the gedanken experiment with a Reissner-
Nordstrom (RN) black hole. We studiously avoid UW’s
approximation that the ambient buoyant pressure varies
slowly across the box because it has become clear [17,5,6]
that the neutral point lies very near the horizon where
this approximation must fail because of the large gradi-
ents. Our exact treatment shows that the UW entropy
restriction (2) is neither sufficient nor necessary for the
satisfaction of the GSL.

This situation motivates our rederivation of entropy
bound (1) which takes full account of UW buoyancy. Our
new analysis closely parallels UW’s original one, much
more so than alternative ones proposed in the wake of
UW'’s paper [17,16,5,6]; we pinpoint the stage at which
the analysis departs from UW’s. In Sec. IIB we deter-
mine the position of the neutral point, confirming that
it lies very near the horizon. As a result, the buoy-
ancy makes only a small change in the energy bookkeep-

ing. The original entropy bound, Eq. (1), is recovered in
Sec. IIC.

As mentioned, the independence of bound (1) on the
number of particle species has been regarded as a sign
that it must fail when the number of species is large [14].
In Sec. ITI A we show by explicit calculation of thermal
radiation entropy in the thermodynamic limit that the
bound is respected for a box containing an arbitrarily
large number of massless particle species, provided care
is taken to include the vacuum energy in the energy of
the full system. We also show, in Sec. III B, that cavity
thermal radiation in the thermodynamic regime in D-
dimensional space also respects the bound regardless of
the value of D.

Finally, in Sec. IV we show that the bound strongly
restricts the information capacity of the posited black
hole remnants, so that they cannot serve to resolve the
information paradox.

Henceforth we use units with G = ¢ = kpoitzmann = 1,
but continue to display .

II. DERIVATION OF THE ENTROPY BOUND
A. Critique of the Unruh-Wald analysis

The system of interest is a macroscopic rectangular box
of total energy E which holds entropy S. We label the
horizontal crossectional area of the box A and its height
b. The box is to be lowered towards a black hole with a
face facing it in a standard orientation which is defined by
two technically convenient conditions. First, we require
that b not be very small compared to A'/2. If this turns
out to be the case for the initial orientation, the box is to
be rotated by 90° about a horizontal axis so that a longer
edge is brought to vertical orientation, and that edge is
to be labeled by b. Further, we require that the center
of mass (c.m.) of the box lie initially on the centroid
plane (horizontal plane halfway up the box), or below it.
If this condition is not satisfied, the box is to be turned
upside down (which respects the previous arrangement),
and lowered in that orientation. We denote by R the
circumscribing radius of the box.

For convenience we carry out the gedanken experiment
with a RN black hole of mass M and (not necessarily
electric) charge Q. The exterior metric may be written
as

ds® = —x?dt? + x2dr® + r? (d6? + sin 6% dg?), (3)

where 7 denotes the usual Schwarzschild radial coordi-
nate and

X2 = %—_), (4)

with 74 = M £ /M2 — Q2. The event horizon lies at
7 = r; and has area A = 47r2 and entropy Sgm =
A/(4#). In what follows we also employ the radial proper
length measured from the event horizon, I, defined by
dl = x~!dr, and use the notation A = r, —r_. In order
that the box may ultimately be dropped into the hole we
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assume that

Agr? b ry . (5)

We assume that the box and its contents are “transpar-
ent” to the gauge field of the hole, i.e., noninteracting
with it. This is certainly possible if the gauge field is dis-
tinct from the electromagnetic one and the box is made of
ordinary matter. Thus we do not worry about buoyancy
due to stresses of this field.

Following UW we assume the black hole has reached
equilibrium with its own Hawking radiation, the whole
system being enclosed in a large cavity. We assume the
cavity to be made of ordinary matter, like the UW box,
so that it does not interact with the hole’s gauge field.
One consequence of such a setup is that superradiance of
the charges of the gauge field does not lead to an unstable
situation because any such stray particles escape from the
cavity and do not get multiplied by multiple reflection
onto the hole. The black hole temperature Tgy and the
local temperature T are related by

T:@_ hA (6)

X - 47rr3_x ’

The redshift factor x enters here as in any equilibrium
situation in a gravitational field.

Applying the first law of thermodynamics to a parcel
of equilibrium radiation, and assuming that its proper
energy density e, pressure P, and proper entropy density
s are all functions only of T, UW derived the relation

e+P-Ts=0, (7

which merely says that the Gibbs free energy of the par-
cel vanishes, as befits a collection of photons or a mixture
of equal numbers of neutrinos and antineutrinos. Differ-
entiation of Eq. (7), use of T = de/ds, and simplification
with help of Egs. (6) and (7) gives

d(Px) = —edx , (8)

which is equivalent to the condition of hydrostatic equi-
librium [14].

The buoyant force acting on the box, as measured by
an observer at infinity, is the difference of the redshifted
local forces acting on the upper and lower faces [14]:

fouoy (1) = A[(PX)1-b/2 — (PX)1+b/2]; (9)

where [ is the proper height of the centroid plane of the
box above the horizon. UW approximated the difference
in this equation by the first term in a Taylor series. An
exact expression follows from using Eq. (8) to convert
Eq. (9) to

1+b/2

d
Fouoy(l) = A / ed—;fdl' . (10)
1-b/2

Let us now express the gravitational force acting on the
box and contents. The four-acceleration of a point with
four-velocity u® is defined as a® = u® gu®. A simple cal-
culation shows that a point stationary in Schwarzschild
coordinates has invariant acceleration

a= (a"‘ao,)l/2 =x/, (11)
where a prime denotes a derivative with respect to r. We
can thus write the “gravitational force” acting on the box
as measured at infinity in the form

l+b/2 d
fgrav(l) = —A/ pd—;dl' . (12)
1-b/2

Here p denotes the proper energy density of the box and
contents, and dx/dl = ax is the local acceleration as
measured at infinity. The minus sign reminds us that
gravity and buoyancy act in opposite senses.

Putting together Egs. (10) and (12) we write the work
done by the box on the agent lowering it from infinity
down to proper height [ above the horizon as

1
W) = / (Fouay + feran)dl' - (13)

W (l) is maximized when the box’s centroid plane reaches
the neutral point, | = ly. Setting dW/dl = 0 we obtain
the condition determining lo:

lo+b/2

d
fbuoy(lﬂ) + fgrav(l()) = A[ b2 (6 — p)d—fdl =0. (14)

Henceforth, we shall adopt the following notation for
integrals such as those appearing in Egs. (10), (12), and
(14):

lo+b/2
A Fdl < / Fdv (15)
\'4

lo—b/2

where dV stands for the element of box volume Adl.
Note that if e and dx/dl are nearly constant across the
box, the condition (14) may be approzimated by UW'’s
form [cf., Eq. (2.2) of Ref. [14];

eV:EE/pdV, (16)
\4

where V = Ab is the box’s volume.

Since W (l) is maximum at ! = lo, the mass increment
M of the black hole is minimal if the box is dropped in
from the neutral point. Evidently (0M)min = E— W (lo).
Using Eq. (13) we may reeexpress this as

(5M)mi,.=/ pde+/ PxdV . (17)
v %

The first integral is just the energy at infinity of the box,
with each parcel properly redshifted. This integral equals
E — folz feravdl. The second integral is just — f:o" Fouoydl
with fouoy(!) in the form (9). As a result of the cancella-
tion of the work done by buoyant forces on top and bot-
tom of the box over the range [lo + b/2, 00], the buoyant
contribution to (6 M) min only depends on the distribution
of Px over the height of the box at the neutral point.
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UW?’s version of Eq. (17), namely,

would follow from Egs. (16) and (17) if P and x sepa-
rately varied little across the box. Because the neutral
point turns out to be so near the horizon (see Sec. IIB),
these quantities actually vary a lot across the box in
the generic case, so that the approximations leading to
Eq. (18) are questionable.

Instead, let us replace P in Eq. (17) by means of the
identity (7). Taking cognizance of Eq. (6) we get

(6M)umin = A (p— €)xdV + Tsx /V sdV.  (19)

Were x to be nearly constant across the box, the first
integral here would vanish by virtue of Eq. (16), and
we would be left with UW’s expression (2.22) of Ref.
[14]. Since taking x as nearly constant is an unwarranted
approximation in view of the closeness of the neutral
point to the horizon, let us instead use Egs. (19) and
(6) to compute the overall entropy change of the world,
(68)tot = (M) min/Teu — S, when the box is dropped
from the neutral point. We find

(68)sot = Tpg /;/ (p—e)xdV + L sdV—-S. (20)

In obtaining this equation we have ignored any entropy
emitted by the black hole. We have already mentioned
that, by virtue of the cavity it is in, the black hole is in
equilibrium with thermal radiation, so that Hawking ra-
diance entropy is not produced. The entropy produced in
spontaneous Unruh emission corresponding to the super-
radiant modes, and the concomitant black hole entropy
increase, can be made negligible by taking the black hole
as very massive, which we do in this section.

In UW’s discussion, the first integral in Eq. (20)
dropped out in wake of the indicated approximations.
It may be seen by comparing with Eq. (14) that, in fact,
its magnitude and even its sign depend on the distribu-
tion of e and p across the box. Thus, in contrast with
UW'’s discussion, we must conclude that validity of the
UW entropy restriction, Eq. (2), does not by itself guar-
antee that the GSL will be obeyed. And, conversely,
assuming that the GSL is satisfied in the gedanken ex-
periment in question does not allow us to derive the UW
entropy restriction for the box. Unless supplemented by
detailed information about the box, the entropy restric-
tion is neither a necessary nor a sufficient condition for
the operation of the GSL. Therefore, it seems best to
calculate in detail the sum of integrals in Eq. (20).

B. Neutral point

As the first step we make an approximate determina-
tion of the location of the neutral point by using UW’s
criterion Eq. (16) and a model of radiation as a mixture
of noninteracting gases of massless particles, one for each

species in nature. According to Boltzmann, for such ra-
diation

(21)

where NV is the effective number of particle species (pho-
ton and graviton contribute one to N, while each neu-
trino and antineutrino species counts as 7/16).

With Eq. (6) for T, criterion (16) amounts to

x(lo) = 0.0717NY/4(AbK/E)*/*Ar;2 . (22)

Since we assume the box to be macroscopic, and hence
large compared to its Compton wavelength, A/E < b.
This together with inequalities (5) tells us that for re-
alistic values of N (in Sec. III A we shall reconsider the
situation where N is arbitrarily large), x(lo) < Ar;'.
A look at Eq. (4) shows that the neutral point must lie
in the region r — ry <« A. But in this region, a good
approximation to the proper distance from the horizon
to a point 7 is

lx2r, (r—ry)Y2A712 (23)

It is clear that in that region ! < r4. In the same ap-
proximation Eq. (4) can be written

1. _
x() = EAr+zl. (24)

Two important consequences follow from the linear
form of x in the near horizon region where the neutral
point lies. First, from Eq. (6),

T = h/(2nl) , (25)
so that, as a function of proper distance from the horizon,
T does not depend on the black hole’s parameters. This
universal form for T' may be understood by writing down
the Unruh temperature [18] for an (accelerated) station-
ary observer, Ty = ha/(2~), and using Egs. (11) and (24)
to recast it into a form identical to Eq. (25). The equality
T = Ty in the near horizon region allows one to inter-
pret the thermal radiation in equilibrium with the hole
as observer dependent Unruh acceleration radiation seen
by the stationary observers. One may thus follow UW in
asserting that the large e and P corresponding to T at
the neutral point do not generate strong curvature, i.e.,
that the metric (3) remains an excellent approximation.

The second consequence of the x o« [ form is that con-
dition (14) can be rewritten as

/V edV =E , (26)

which, unlike the UW condition (16), is accurate in the
near horizon region, and indeed becomes the more accu-
rate the nearer to the horizon since Eq. (24) is asymp-
totically exact there.

Let us now use Eq. (26) to accurately determine lo.
Substituting e from Eq. (21) and T from Eq. (25), and
remembering that the range of [ in the integral is [lo —
b/2,lo + b/2], the condition leads to

NhA
= T20n2EDS (27)

(3 -0%/4)° _ 5
3121 + b8/4
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In our world where the number of particle species that
would be excited by a massive black hole is limited, n <«
1 because A/E < b and because in the standard box
orientation, b2 cannot be very small compared to A. In
Sec. IIT A we shall argue that 7 < 1 remains true even
when N is arbitrarily large.

When n < 1, it follows from Eq. (27) to lowest order
in 7 that

12~ (1/4 + n)b%. (28)

Therefore, at the neutral point, the centroid plane of the
box is just a little farther from the horizon than half the
box’s height, which means the box floats almost touch-
ing the horizon. This phenomenon has been noted earlier
[17,5,6]. Since the neutral point does occur near the hori-
zon, the approximations involved in Egs. (23) and (24)
are seen to be justified a posteriori. The finding here
serves to emphasize that the UW neutral point condition
(16) cannot be accurate because of the strong gradient of
e near the horizon, and should properly be replaced by
condition (26).

Of course, all the above hinges on the correctness of
the Boltzmann model, Eq. (21). However, three effects
may introduce corrections to it in the horizon’s vicin-
ity: vacuum polarization in the gravitational field, the
increase in the number N of species present as the local
temperature rises upon approaching the horizon, and in-
teractions between constituents of the radiation. We now
discuss each in turn.

The importance of vacuum polarization is gauged by
the expectation values of components of the energy-
momentum tensor for the appropriate (Hartle-Hawking)
vacuum. According to calculations by Page [19], the
mixed components (T};) are all finite and small near the
horizon. By comparison, the energy density and stresses
in the acceleration radiation rise as [~ near the horizon.
It is thus clear that vacuum polarization is a minor effect.

The appearance of new species as T rises is well under-
stood (c.f. early cosmology), and is known not to cause
a significant departure from the Boltzmann “equation of
state,” provided N is regarded as slowly rising with T'.
Very often, as in Eq. (22), an important quantity depends
on a low power of N. Thus the slow variation of N is
rather innocuous.

In contrast with the above, interactions between ra-
diation constituents may cause a substantial departure
from the simple relation (21). Interactions, when not
weak, prevent the radiation from behaving like a gas of
noninteracting quanta as postulated in the Boltzmann
model. Departures from the simple Boltzmann model
will set in according to the relation between the relevant
lengthscales of the problem: r, the size of the hole; A,
the typical locally measured wavelength in the radiation;
l, the proper distance from the horizon and the scale over
which radiation properties change significantly; and some
length scale L characteristic of the interaction physics.
Now, according to Eq. (25), A ~ [ over a broad region
near the horizon, so that A is not an independent vari-
able. We are interested in a large black hole, and so we
take it for granted that L <« r4. Under these circum-

stances departures from the Boltzmann model are not
expected for [ > r,. The size of the black hole thus be-
comes an irrelevant variable in that only the ratio {/L
decides whether departures are expected. Clearly such
departure will set in when [ becomes comparable with L.
We reach the same conclusion if we stipulate that inter-
actions become important when 7' becomes comparable
to the temperature /L associated with the interaction
length scale.

How big is L? We know that L < 107!2 cm because
Eq. (21) works well in cosmology all the way back to the
lepton era. If the strong interaction is the one that spoils
the Boltzmann model, we may expect L < 10713 cm.
At any rate, it is clear that L is much smaller than the
dimensions of a macroscopic box.

A departure from Boltzmann’s model affects our dis-
cussion only if at the neutral point the lower side of
the box has penetrated to within [ < L, so that it is
exposed to temperatures at which interactions are im-
portant. But, of course, since the box is much larger
than L, this means that at the neutral point the box
must nearly touch the horizon, with its centroid plane at
proper height =~ b/2, just as we found by relying on the
Boltzmann model alone. Thus, as far as the location of
the neutral point is concerned, complications beyond the
Boltzmann model are of no practical consequence.

C. Entropy bound

Proceeding with our program, we now compute explic-
itly §Sgg by going back to Eq. (17). Because of the
linearity of x with [, the integral over p, the energy den-
sity in the box, may be expressed in terms of the proper
height of its c.m. above the horizon, I, , defined by
%Arlzlcm = X|i, (average with respect to p), and E as
defined by Eq. (16). And the integral over P may be
worked out with help of Boltzmann’s model, Eq. (21),
and Egs. (23)-(25). The result is

1 _
(‘SM)min = EAT-IZE [lcm + n3l0b4(lg - b2/4) 2]' (29)

A look at Eq. (28) shows that the square parentheses in
Eq. (29) amounts to l..m. + 7lo; the second term comes
from the buoyancy. We recall now that in the standard
box orientation employed here, the c.m. of the box can-
not lie above the centroid plane (l.m < lo initially, and
the c.m. can only slip down as the box enters strong
gravitational fields). And because lp = b/2 + 7b [see
Eq. (28)], the square parentheses in Eq. (29) cannot ex-
ceed (1 + 31)b/2. The buoyancy corrections of O(n) are
evidently negligible under the same assumptions that led
us to conclude that the neutral point is near the horizon.
We thus obtain

1
(JM)min S ZATIZbE 5 (30)
which is another version of Eq. (19).

From Eq. (30) we may compute, with help of the first
law for black holes, Eq. (6) and the obvious constraint
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b < 2R that, when the box is dropped from the neutral
point,

(65)1;01; < 27FRE/ﬁ - S , (31)

which replaces Eq. (20). It is evident from this inequality
that in order for the GSL to be satisfied [(§S)tot > 0],
the box entropy S must satisfy the bound on entropy (1).

The above argument requires modification if at the
neutral point the box already penetrates into the region
with T beyond the transition temperature at which the
Boltzmann model gets modified. We first note that what-
ever the true relation between e, P, and T, the inequality
P < e must be satisfied. The reason is that causality
demands that dP/de < 1 (speed of sound in.the radi-
ation subluminal) for all T. Integrating the inequality
dP —de < 0 from low T where P = e/3 certainly applies,
we see that P < e for any T, however large. Consider
now the identity

d(Pxl) = ld(Px) + Pxdl . (32)

If we substitute in it from Eq. (8), and take into account
that in the near horizon region {dx = x dl, we see that
P < e implies that d(Pxl)/dl < 0 near the horizon. This
means that P(l) drops off with ! faster than {~2, which
means that whatever the modification to the Boltzmann
model, P(T') must grow faster than T'2.

In light of the above, consider the buoyant contribution
t0 (6M)min in Eq. (17), written as

f Pxdv /
PydV = &%~ PdV . 33
/V xav =22 |, (33)

By the causality constraint, [, PdV < E [see Eq. (26)].
The ratio of integrals is evidently largest when P de-
creases slowest with [. We may thus bound from above
that ratio by using the limiting form P o =2 to compute
it. Recalling Eq. (15) we thus have

/ PxdV < 1Ar:"E(lo + b/2)ln—y , (34)
v 2 y-1

where y = (o + b/2)(lo — b/2)~. The closeness of the
box’s bottom to the horizon at the floating point means
that Iy = b/2; therefore, lo+b/2 = 2lp and y > 1. Hence,

/ PxdV = wAr;*LE (35)
\4

where w <lny/(y — 1) < 1.

Inserting this result in Eq. (17) for (6 M) pin and recall-
ing that the integral over p is already evaluated in our
previous result (29), we have

(6M)min = %Ar;zE [lem. + 2lo] - (36)

Again, because the box is standardly oriented and very
close to the horizon, l.;, < lp = b/2 < R. And be-
cause w K 1, the buoyant term evidently cannot make
the square brackets larger than R. We thus find that
Egs. (30) and (31) apply again, and the entropy bound
(1) follows from the assumed validity of the GSL, as in

the case when the Boltzmann model could be used down
to the neutral point.

In all arguments in this subsection, a slightly tighter
bound on entropy would follow if we worked through-
out in terms of b, rather than appealing to the inequal-
ity b < 2R. The impression we get from this, that the
maximal entropy of a thin box decreases with decreasing
thickness b, is supported by numerical computations [8] if
b is not too small. Those calculations do not support the
Li-Liu conclusion [6] that the entropy bound is uncon-
ditionally set by the smallest box dimension. After all,
in three-dimensional space a two-dimensional box filled
with massless quanta can hold nonvanishing entropy. In
our approach here the bound could not be derived in
terms of b for arbitrarily small b because the condition
1 < 1 will fail when b gets sufficiently small [see Eq. (27)].

III. EXTENSIONS
A. Irrelevance of species number

Our derivation of the bound in Sec. IT assumed 7 < 1,
which condition would seem to fail in a world where N is
very large. Indeed, UW contended that no bound of type
(1), which is independent of the number of species, could
possibly retain its validity as N becomes large because it
is known that the more species there are, the larger the
number of states (entropy) accessible with given energy.
Their own entropy restriction, Eq. (2), scales as N1/4,
that being the dependence of Boltzmann’s formula for
blackbody radiation entropy at given energy on the num-
ber of species. UW conceived of buoyancy, with its in-
trinsic dependence on the number of species in the radia-
tion, as nature’s exclusive way to defend the GSL against
a violation when a body made up of many species (large
entropy with moderate energy) is lost down a black hole.

That this view must have restricted validity is clear
from the following argument demonstrating that an N-
independent entropy bound must exist in order for the
GSL to function, even in situations where buoyancy can-
not play a role.

Consider a box with energy E and entropy S dropped
freely from far away into an ezactly extremal RN black
hole of mass M in empty space. Because the fall is free,
i.e., geodesic, the box does not feel Unruh radiation. And
because the hole is extremal, thermal radiant pressure is
absent. Hence there is no buoyancy to complicate the
energy bookkeeping. Initially Spy = mM?2/A. After the
black hole has assimilated the box, the mass has gone up
to M + E and Sy = (M + E + V2ME + E?)?/h (be-
cause Q is unchanged). We regard F as a small quantity.
Then to lowest order in E,

8Spu = m(2M)¥/2EY/? k. (37)

Coherent gravitational and electromagnetic radiation
may be emitted due to the infall. The energy in these
radiations is expected to be of order E2/M [21]. Its sub-
traction from the final M will produce terms in Eq. (37)
of the same order as those we have already discarded.
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Thus the infall radiations prove negligible, and in any
case they would act to reduce 6Sgg. There may also be
some radiation entropy emitted by the Hawking process
as the box is assimilated and the black hole departs from
exact extremality. Once the black hole is not extreme,
it should radiate entropy at a rate a bit higher than a
blackbody of temperature Tgy and area A [20]. This
entropy emission should be somewhat larger than the in-
duced decrease in Sgpy. Therefore, the overall entropy
growth rate would be

dSgu/dt + dSpaa/dt ~ (180) 1A% % . (38)

In our case, after the assimilation, A = 2(2ME)/2.
Therefore, over a period of coordinate time ~ M, which
is of the order of the time required for the effective dis-
appearance of the box, the just perturbed black hole
should generate entropy ~ (4v/2/45)(E/M)3/2, which is
certainly much smaller than § Sgg because M has to be
large compared to the Planck mass.

Thus we have accounted for all entropy contributions.
In order for the GSL not to be violated, the box’s entropy
S must be bounded by 7(2M)3/2E/2/h. Of course, for
large M this is a much larger bound than Eq. (1). How-
ever, the point is that the new bound, though derived
without recourse to lowering into the black hole, is also
independent of N. This shows that there must exist an
N-independent bound on the entropy of a bounded sys-
tem, arguments involving buoyancy notwithstanding.

This said, we still face a paradox: By Boltzmann’s
formulas it seems that for large enough N, a quantity
of radiation with given energy should surpass any N-
independent entropy bound. The resolution we develop
here depends on recognizing that the bounds on entropy
derivable with the help of black holes must always refer
to an entire system, not to part of one. In particular,
bound (1) refers to the entropy and energy of the box
and its contents. Therefore, when comparing thermal
radiation entropy in a box with the bound, one would
like to restate the Boltzmann formula for entropy in a
form that takes cognizance of the existence of the box and
those of its properties which are responsible for confining
the radiation. Then a comparison can be made.

We shall perform the concrete calculations for a spher-
ical box of radius R and total energy E. According to
Boltzmann, at temperature T thermal radiation in the
box has energy

Eraq = (4% /45)NR3T*R3 (39)
and entropy
Siad = (1673 /135) NR3T3R 3. (40)

If E, stands for the energy of the empty box (E at T = 0),
then upon eliminating 7' we have

S = (4v2/135)NY/*[457R(E — Eo)/R** . (41)

How small can Ey be? Even when empty, the box’s en-
ergy receives a contribution from vacuum (Casimir) en-
ergy of those fields it can entrap (or keep out). On dimen-

sional grounds each species contributes vacuum energy
€ = afi/ R where a is dimensionless. For the electromag-
netic field in a sphere Boyer [22] showed that o = 0.045.
For all species together we write e = aNA/R, where a is
the suitable average. If positive, the vacuum energy sets
a lower bound on Ej.

Even when the vacuum energy is negative [23,24], the
total box mass must end up being positive. The physical
mechanism is the suction on the box’s wall that must ac-
company negative vacuum energy. In fact, from the rate
at which € gets more negative as the box’s radius de-
creases, it follows that the wall sustains a negative pres-
sure P = —aNh/4mwR3. To resist this suction the wall
must maintain a surface pressure (force per unit length)
of the same order [17]. But unless the wall’s surface mass
density is bigger than the surface pressure, the speed of
sound in the wall would be superluminal. The conclusion
is that the wall must have a mass comparable to the mag-
nitude of ¢, or larger. This will make Ej positive. Since
an exact cancellation between wall mass and vacuum en-
ergy is unlikely, we expect Ey to be of order |a|k/R, or
larger. Thus, henceforth, we simply write Ey = aNA/R
and assume a > 0.

The formula for entropy, Eq. (41), is now

Srad = (4V2/135)N/*[457(RE/k — aN)]?/%.  (42)

Now the function f(z) = (z — a)%*/z has a maximum
value of 13%/4a=1/%. We may, therefore, deduce from
Eq. (42) the inequality

V2m3/%4 RE

Sra <o .
4= (135a)1/4 h

(43)

This bound for blackbody radiation in a box is of the
same form as bound (1). Indeed, since typically a ~
1073 — 1072 for a single field [23,24], the numerical co-
efficient here is ~ 3 — 5.5 in harmony with bound (1).
Most important, the bound here obtained from statistical
physics is independent of N, just as (1) is. The physical
mechanism is that some of the energy E is inert energy
whose magnitude depends on N: E > Ey = alNR/R.
Thus the factor RE/h actually grows with V. But the
point is that when we state the entropy bound in terms
of R and E, we do not have to worry about how big N
is; the bound will take care of that automatically.

At this junction we return to the issue of the allowed
range of 7. We have already seen that when N is a few,
and the box is standardly oriented, n < 1. Let us now
analyze the case when N is large for a spherical box of
radius R. Then we may use our result that £ > Eo =
aNFk/R in the definition (27) by taking A = 4nR? and
b=2R. We get

s Nk 1

1440 ER < 14407a’ (44)

n

which shows that 1 does not grow indefinitely with N.
Furthermore, unless « is much smaller than the typical
value for separate fields, ~ 1072 —1073, 5 is indeed small
compared to unity, thus allowing the arguments follow-
ing Eq. (27) to yield the entropy bound from an appeal
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to black hole physics. And this bound is, of course, con-
sistent with Eq. (43).

The case of a nonspherical box is much harder to ana-
lyze because Ey depends not only on the typical dimen-
sion of the box, but also on axis ratios [23]. However, it
seems plausible that 7 will also be small in those cases
provided the various box dimensions are not too different.

B. Irrelevance of many dimensions

Not only does the proliferation of particle species in-
crease the entropy for given energy, proliferation of spa-
tial dimensions has the same effect. Evidently the more
the dimensions, the more ways there are to split up the
energy, so that a higher entropy is obtained. We might
thus naively expect a bound such as (1) to be violated
as the number of dimensions increases without bound.
As we now show, this conclusion would be premature.
Counsider in D flat spatial dimensions a spherical space
of radius R into which we dump energy E. What can
we say about the entropy S(E) as D grows? Evidently
maximal S(E) corresponds to the excitation of all ex-
isting field species with like inverse temperature 3. The
description of our fixed energy system in terms of temper-
ature (thermodynamic regime) is tenable provided F is
large enough that energy fluctuations in the canonical en-
semble for 3 are small. In practice this means SA/R <« 1
(many wavelengths small compared to R are thermally
excited), which we assume to be true. We shall simplify
matters by ignoring massive species. This corresponds to
the case that 3 times any of the rest masses is large.

The volume of a sphere of radius r in D dimensions is
[25]

27TD/27‘D
= —— 45
o(r) = pr(p/2)’ (43)
where I' denotes the Euler gamma function. Conse-

quently, the volume in frequency space of the shell
(w,w + dw) is
dVp(w) = D[Vp(w)/w]dw. (46)

The mean thermal energy in the sphere from one helicity
degree of freedom is

E:VD(R)/Ooo (e—:ﬁ‘:—%ﬁ, (47)

where upper (lower) signs correspond to boson (fermion)
fields. Using Egs. (45) and (46), and

© P dg
/0 e = (D +II(D+Y)

wE!
1—-2"D

where ((z) is Riemann’s zeta function, we can cast the
mean energy of all massless species in the form

for bosons,

for fermions, (48)

5 _ _NUD + )I(D)RP
= 2D3[0(D/2)PBP+RD

(49)

where N is the number of massless species (massless
nonscalar bosons contribute one to N, while massless
fermions contribute 271 — 2—(D+1)),

Likewise, we can write the thermal entropy of one he-
licity degree of freedom as

s ="ol® /0°° [q: I ) + d(‘zf?r)(z)-
(50)

After integration by parts, the first term in square brack-
ets is seen to reduce, by virtue of Eq. (46), to D! times
the second. Comparing the result for the entropy of all
helicity degrees of freedom with Eq. (47) we see that

Sy = (1+1/D)BE. (51)

The special case for D = 3 of this equation is well known.

As mentioned, the condition S%A/R <« 1 must be re-
spected in order for the above continuum treatment to
make sense. Solving Eq. (49) for the relevant quantity
we have

Bh/R = Cp(Nh/RE)?+, (52)
with .
_ [¢(D+1r(D) 17+
Cp = [2"‘3[F(D/2)]2] (53)

Numerically it is found that Cp decreases with D: Cp =
(1.34,1.29,1.25,...,1) for D = (1,2,3,...,00). Hence
the condition on 3 amounts to RE/NA > 1. So, just as
in Sec. IIT A, we find here that IV constrains the value of
RE. Substituting Egs. (52) and (53) into Eq. (51) we get
Sy = Cp(1+ 1/D)N 7+ (RE/K)p%1. (54)
The case D = 3 of this should be compared with Eq. (42);
the only real difference is that here E does not include
vacuum energy.
Let us now take the limit D — oo while keeping N
fixed. In this limit {(D +1) — 1 and '(D + 1) —
V2ne=D DD , and so we find rigorously that

Jlim Sy = RE/h. (55)

Thus despite the many dimensions, and the arbitrary
number of species N, this entropy is consistent with
bound (1). As in Sec. IIT A, the dependence on N has
dropped out except for the fact that our end result is
valid only if E is large enough on a scale set by N. And
contrary to intuition, in the thermodynamic limit the
large phase space that opens up because of the multiplic-
ity of dimensions does not help the entropy to surpass
the entropy bound (1).
What happens for D finite? We rewrite Eq. (54) as

Sy = Cp(1+ 1/D)(Nh/RE) D% RE/A. (56)
Numerically Cp(1 + 1/D) decreases monotonically from

2.89 at D =1 to unity as D — oo. Because NA/RE < 1
in the thermodynamic regime, it is clear that the entropy
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Sn conforms to bound (1) for any D. We must stress
that this result, like the previous one, is not guaranteed
if the condition for the thermodynamic regime fails. In
that case one cannot rely on continuum formulas such as
Egs. (50) and (51), and must take recourse to numerical
calculations of the energy distribution of quantum states
in a cavity. As mentioned, for D = 3 such calculations
have been made [8], and fully confirm bound (1). When
generalizing these to arbitrary D and N, care should be
taken to include vacuum energies.

IV. INFORMATION CAPACITY OF REMNANTS

Remnants of black holes have been suggested as a reso-
lution of the black hole information paradox (for reviews
see Ref. [26]). In one version of this idea [27], the black
hole stops evaporating when its dimension approaches
the Planck scale. It is hypothesized that this remnant
quiescent object retains the large information that went
down the initial black hole upon its formation. With
a notable exception [28], the arguments for and against
Planck scale remnants have not confronted quantitatively
the question of how much information can really be con-
tained in a space which looks so small from the outside,
and has a correspondingly tiny externally measured mass
energy.

Now, if a system contains information I (natural
units), then it must have at its disposal at least n = el
internal states. When looked at in coarse graining, such
a system will be ascribed entropy S = max(Inn) > I.
Now, the entropy bound (1) must also bound the en-
tropy of a gravitating system since we never specified in
Sec. II details about the box’s interior. Applied to a rem-
nant the bound would predict that for radius £pjanck and
mass A/lplanck its entropy is 27 at most. The remnants
information content is thus just a few bits. This makes
Planck-size remnants irrelevant for the information para-
dox (the system that collapsed to the black hole which
fathered the remnant may have been specified by 1012 of
bits).

Giddings introduced the idea of large remnants [28] to
overcome problems such as this. The idea is that each
black hole decays to a remnant of a different size, which is
deemed capable of retaining the initial information. Now,
for a Schwarzschild black hole of initial mass Mp, the ini-
tial black hole entropy Spg = 4mMZ measures the total
information that becomes hidden at the moment of col-
lapse. As argued above, Eq. (1) should bound the infor-
mation that can be held by the remnant whose mass and
external radius are E and R. We assume R ~ 2E because
the remnant must be a strongly gravitating object. Thus
for the remnant to succesfully retain the initial informa-
tion, we need E > My which is impossible since some
evaporation must have taken place. The point is that
black holes saturate the entropy (information) bound so
that the equivalent amount of information cannot be held
by a lighter strongly gravitating object.

Clearly the role of remnants, Planck size or larger,
might be rescued if they were not to respect the entropy
bound (1). We have argued that the bound must ap-

ply to any object that can be lowered to the horizon of
a black hole. Perhaps a remnant, by virtue of its black
hole nature, cannot be supported in the requisite way to
be lowered. However that may be, any remnant can still
be dropped freely into an extreme RN black hole of mass
M provided the black hole radius M is larger than the
remnant’s external radius R ~ E. Repeating the argu-
ment at the beginning of Sec. IIT A, and arguing that the
information-coding states of the remnant contribute to-
wards coarse-grained entropy, we see that the procedure
bounds the entropy, and hence the information capacity,
of the remnant by 7(2M)3/2E'/2 (otherwise the GSL gets
violated in the remnant-black-hole merger).

Now M has to be bigger than F so that the remnant
can be absorbed, but it does not have to be arbitrar-
ily large. Thus this independent argument bounds the
remnant’s information capacity by yE? with v perhaps
a few times 23/27. If the remnant has descended from
a neutral black hole of initial mass My, it must retain
information 16w M¢Z to do its job as information reposi-
tory in the resolution of the information paradox. This
information will conform to the bound we have just set
provided E > 4(m/v)'/2M,. We see that the remnant
cannot be much lighter than M,. However, there seems
to be no reason for black hole evaporation to turn off as
soon as the black hole has lost a moderate fraction of its
mass. This problem dramatizes the difficulty the rem-
nant scenario has in resolving the black hole information
paradox.

The usual argument for remnants as information repos-
itories is that they can retain large information despite
their small external dimension because they contain a
very large internal space in the form of a throat or horn.
According to this widespread argument, a bound such as
(1), which is stated in terms of external remnant dimen-
sions alone, cannot apply. But we have just seen that if a
remnant had an information capacity well above that in-
dicated by bound (1) in terms of its external dimension,
it would cause a violation of the GSL, were it dropped
into a black hole sufficiently large to contain its outer di-
mension, the only one relevant for assimilation. Thus we
must conclude that the postulated large internal space of
a remnant does not allow it to hold a lot of information:
The usual intuition that a large space can store a lot of
information must thus fail for these strongly gravitating
objects.

This last conclusion might be countered if the infall
of the remnant into a black hole produces a singularity,
thus making the GSL moot. However, in that case the
whole role of remnants as stable information repositories
is put in doubt. The bottom line is that black remnants,
as discussed heretofore, cannot resolve the information
paradox.
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