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Covariant symplectic structure of two-dimensional dilaton gravity
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We study the symplectic structure on phase space of the classical solutions of dilaton gravity coupled
to scalar matter. The symplectic form clearly reveals the conjugate pair of global degrees of freedom,
and shows the modification of the canonical structure of matter fields due to dilaton gravity.

PACS number(s): 04.60.KZ, 04.70.8w

I. INTRODUCTION

A theory of two-dimensional dilaton gravity coupled to
scalar matter has attracted much attention since the
pioneering work by Callan, Giddings, Harvey, and
Strominger (CGHS) [1]. It was hoped that this toy model
for studying the formation, evaporation, and back reac-
tion of black holes could resolve the elusive issues associ-
ated with the end point of black-hole evaporation [2].
The initial expectation of CGHS turned out not to be
correct, as shown by several authors [3], because there
arise singularities in the solutions of semiclassical equa-
tions. There have appeared many articles which investi-
gated the nature of semiclassical solutions including
modification of the equations [4], or numerical analysis
[5]. Studies in other gauges than the simplest conformal
gauge [6], and path integral quantization approaches [7]
have also been attempted, and yet no definitive resolution
to the central issues has emerged. Thus it is still worth
studying the theory with a different method of investiga-
tion.

In this paper we apply the covariant description of
canonical formalism proposed by Witten [8], Zuckerman

[9], and others [10] to investigate the theory of dilaton
gravity coupled to scalar matter. The usual canonical ap-
proach ruins Poincare invariance from the beginning
through an explicit choice of a time coordinate, but the
covariant method preserves this symmetry as well as oth-
er relevant symmetries.

Chu et al. applied this method for the analysis of the
Wess-Zumino-Witten model on a circle [11], Navarro-
Salas, Navarro, and Aldaya applied this method for the
investigation of two-dimensional gravity [12],and Hwang
et al. applied it for the case of a particle moving in the
Jackiw- Teitelboim geometry [13].

The CGHS model is particularly suitable to the covari-
ant approach because the model is classically exactly
solvable; therefore, the covariant description of phase
space is explicitly given.

In this paper we will follow the Crnkovic-%itten pro-
cedure [14] for the construction of a symplectic structure
on the phase space of classica1 solutions. First, we con-
sider dilaton gravity without a matter field, and we find
that the symplectic structure most clearly reveals the

II. SYMPLECTIC STRUCTURE

A phase space is the manifold of solutions of the equa-
tions of motion of field theory. This definition has the ad-
vantage of manifest covariance, and was introduced by
Witten [8], Zuckerman [9], and also earlier by others
[10]. The symplectic structure on phase space can be
given by the symplectic two-form cu expressed as the in-
tegral

where X is an initial value hypersurface and c/ is a sym-
plectic current. This definition is independent of X if c/
is conserved, B„el=0, and the condition for the Jacobi
identity for Poisson brackets to hold requires co to be
closed, 5co =0, which is satisfied if co" itself is closed.

A canonical expression for co" in a theory with fields P',
based on a Lagrangian density X, is

co"=5(t'A 5
t)(&~/')

(2)

where 6 denotes the exterior derivative on phase space.
So obtained, co„ is automatically closed, and B„c/=0.

In our theory the action in (1+1)-dimensional space-
time is given by

S= f d x& g[e ~—[R+4(VQ) +4k, ]
—

—,'(Vf) ],

where g„, P, and f are the metric, dilaton, and matter
field, respectively, and A, is a cosmological constant. In
order to obtain the field equations and the symplectic
current we take the variation of the action as

conjugate pair of the global degrees of freedom: the
black-hole mass parameter and an integral of gauge func-
tion. Next, we include the matter field in construction of
the symplectic form, whose final result shows the effects
of dilaton gravity on the canonical structure of the
matter field. In the last section we invert the matrix of
the symplectic form to calculate Poisson brackets, but
only mention difficulties about quantizing the theory.

0556-2821/94/49(4)/1906(6)/$06. 00 49 1906 1994 The American Physical Society



49 COVARIANT SYMPLECTIC STRUCTURE OF TWO-. . . 1907

5S= fd x& —g ((Uf )5f+ [4[R +4(VP) +4k, ]+4(04)]5/2'
+[(&4 2—A, 4)g p

V—Vp@+44[rj QBQ ,'—g —p(VP) ]+[,'(V—f)g~ ,'—aJ—' dg]]5g I )

+ fd»„&—g [( g"—dJ")5f (4—g" (3 @)5$ @—[V 5g "+2g" (3 (5(in& g—))]
+(() 4)[5g "+2g "5(ln(U' —g ))]j, (4)

g+ —= pe g++ =g ——=2p

where x*=t +x. The equations of motion are

e I'd+r) f=0,
e ~e )'( —4(),() (}I)+4(),ya (r)

(5)

+28+() p+A, e )')=0, (7)

T =e ~(4() p () ((}
—28 P)+ —,'() f() f=0,

T =e ~(4() pB (()
—28 (I})+(() fB f=0,

T =e ~(2()+B P 4B —(t)d P Ae—)') =, 0 .

(9)

(10)

The general solution of these equations is given by
CGHS [1) as

f(x)=f+(x+)+f (x ),
2p —2P—:6 =6+ (x +

) +G (x ), (12)

where 4—=e ~, CI—=V„V", and 7„ is a covariant deriva-
tive.

The phase space and its symplectic structure can be
conveniently analyzed in the conformal gauge:

M ~2f»+ G+f» G

A,

,'—f—"e"f"
——f e f e (() f )2, (13)

where M is an integration constant. The conformal sub-

group of diffeomorphisms, which is not fixed by the con-
formal gauge, might be fixed by a suitable choice of G, for
example, 6 =0. In the case f =0 and M =0 the solution
represents the linear dilaton vacuum, while the solution
with MAO and f =0 represents a black-hole solution
where M corresponds to the black-hole mass. In the situ-
ation where an f shock wave travels in the x direction
with magnitude a described by the stress tensor

—,(()+f ()+f=a5(x+ —x() ), (14)

the solution, in the gauge G =0, represents a formation
of a black hole [1].

The symplectic current in the conformal gauge can be
read from (4) as

co =5f h5(()+f )+2e ~[5(8+6)A5(t)+5((3 P) 556+2(—() —$)56 &5$]

=5f r 5(a,f) [5(a,6)r—, 5C -56& 5(a —e)]. - (15)

Before proceeding further, we note that the symplectic
currents of the dilaton gravity and the matter fields are
completely separated, and those of the dilaton gravity are
expressed in terms of 4 and G [ =2(p —((})]. When push-
ing down m

+—on phase space, since G is not a dynamical
field but only a subconformal gauge function, we find that
dilaton gravity does not have a local physical degree of
freedom. It is well known from previous works that the
dilatonic gravity action is equivalent to a topological
gauge theory [15]; therefore, it is expected that the sym-
plectic current depends on a pure gauge function, and
physical degrees of freedom are of global ori in

The covariant symplectic structure co= c/'do. „is in-
C

dependent of the choice of the initial value hypersurface
C. So we take

(a, +a )C= —X'e"'" 'f" e'-'" '

x G+(x+) G (x )
e + e (17)

r

5M ~2 f x G+(x'~)5, f x G (x )

g2 f + + f — —56 (
&

)

where f=(3of=(d++(3 )f, etc.
Inserting the general solution (11)—(13) into the sym-

plectic two-form (16), we can obtain the desired symplec-
tic structure. First, in the case f =0, we have

co — co dx

=f dx(5f h 5f +5@656 —54 h 56 ), and the symplectic current of dilaton gravity coDG is
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f x G+(x' ),+ f x G (x' ) fx+ G+(x'+)
X f e 5G (x' ) 656

56 ( +)+ f + 5G ( '+)

+ e + f e 5G (x' )+ f e + e 5G (x ) '656+ —5Mh56 (19)

Since 6 is a subconformal gauge function it depends upon continuous coordinate transformations, and can be divided
into topologically distinctive classes. Here we will limit only to the simplest case, namely, 6+ =6 =0 and its continu-
ously transformed functions. So 56 is also limited to this class of functions, and Eq. (19) is simplified in this case, by let-
ting 6+ =6 =0 with an appropriate choice of coordinates, as

r

coDo= —
A, x f dx'+5G+(x' )+x+f dx' 56 (x' ) h56

+A,' x 5G+(x+)+x+5G (x )+ f dx'+56+(x'+)+ f dx' 56 (x' ) 656+—5M 656 . (20)
1

Now for the evaluation of the symplectic two-form ~D&, we make use of the manifest covariance of the formalism,
i.e., the freedom of choice of the integral curve, and take t =0, namely, x —=+x. Then we have

coDo= f dx A,
—x(5G+(x)+56 ( —x))—f dx'5G+(x')+ f dx'56 (x') h5(G+(x) —6 (

—x))

+ f dx A,
—x(56„(x)—56 (

—x))+ f dx'5G+(x')+ f dx'56 (x') h5(G+(x)+6 (
—x))

+ f dx —5M h56, (21)

where, in deriving the first line, we used
coDG= —5M@ fdx 61

DG (24)

5G(t =0)=5 6+(x+)
dx

+ G (x )
d

dx X — X

d=5 [6+(x)—G (
—x)],

and integration by parts assuming vanishing total deriva-
tive terms. The result immediately reduces to

coDG= fdx 2A, f dx'5G (x') 656+(x)

+ f dx'5G+(x') 656 (
—x)

The first integral in the curly brackets can be reexpressed,
after changing the order of double integration, and ex-
changing the integration variables x and x', as

f dx f dx'56 (
—x) h 5G+(x'),

which cancels the second term in the curly brackets.
Therefore, we are left with the last term only, and it is

This final result clearly exhibits that there is only one
degree of freedom of a global nature: the apparent local
function G does not enter in the final formula but only its
integration over the whole range. The black-hole mass
parameter M appears as the only dynamical degree, and
it is in agreement with Mikovic's analysis of the dilaton
gravity in a unitary gauge [16]. Our study, however, ex-

plicitly shows the conjugate variable of M, and its rela-
tion to the gauge function. It is perhaps worth mention-

ing that the conjugate pair depends upon the topology of
the base manifold. For instance, in the case of cylindrical
geometry the monodromy group variable appears instead
of the gauge function G. This problem was studied in the
case of the Wess-Zumino-Witten model [11], two-
dimensional induced gravity [12], and Jackiw-Teitelboim
gravity [13].

Having obtained the symplectic structure of dilaton
gravity without a matter field, we proceed to the case
where fWO. With the matter field the symplectic form of
dilaton gravity is modified. If we denote this
modification by hm, we see that

5~= 5cgDG = dx AcoD~

= f dx b(54) h 5G —b,(54) A 6, (25)

where
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+ X

b(54)= ——f dx' e + + f dx" e + + [(5G (x' ) —5G (x" ))(8 f (x" )) +5(B f (x" )) ]
2

I
G (x )

II

2
——f ' dx' e

'" 'f dx" e [(5G (x' )—5G (x" )}((j f (x" }) +5((j f (x" ))~]

G (x+) x+ I

5(8++8 )4= ——e + f dx'+e + + (8+f+(x'+ )) ——e f dx' e (8 f (x' ))2
2 + + + +

and

G (+) x+ I

5(54)= ——e + f dx'+e + + [(5G+(x+)—5G+(x'+ ))(8+f+(x'+ )) +5(B+f+(x'+ )) )2

2
——e

" f" dx' e
' [(56 (x ) —56 (x' ))(a f (x' ))'+5(a f (x' ))'] .

(26)

(27)

(28)

As before we let G+ =G =0 by a suitable coordinate transformation, and take the integral curve t =0. Then
x*=+x, and we have

'2

hei)Do= ——f dy f dz [56~(y)—56~(z)] f~(z) +5 f~(z)
dz dz

'2
——f dy f"dz [56 (y) —56 (z)] f (z) +5 f (z)

2

A5 (6+(x)—6 ( —x))d

A5 (G+(x)—6 ( —x))d

'2
+-' "y G. -- G. y ",y + " -y

2

A5(6+(x)+6 ( —x))

2

+-' "y G--Gy y + y

'2

A5{6+(x)+6 ( —x)} . (29)

~-= d- dy
" .y

dy

After integration, and ignoring the total derivative terms, we get
2 '2

f+ (y) 56+ (y) h 56+ (x)
d

dy

+ fdx f dy 5 f (y)
dy

'2 2

f (y) 5G (y) A56 ( —x) . (30)

Here we notice that the left-moving and right-moving
sectors are separated, and the matter field mixes with the
local gauge function. The dilaton gravity coupled with a
matter field is no longer a pure topological gauge theory.
This contrasts with the gauge invariant matter coupling
in the topological gauge formalism of dilaton gravity
[15], where one may expect that only global degrees of
freedom appear in the symplectic structure. The second
terms in the curly brackets show the weights in the sym-
plectic structures of 5G+'s, and after changing the order

I

of integration we can rewrite them as
2

—f dx f+(x) 5G+(x) h f dy 5G+(y)

2

—f dx f (x) 5G (x)h f dy56 (
—y) . (31)

The total symplectic two-form is

co= fdx 5fi(x) A5 fi(x) 5f (x) A5 f—
(
—x)d

I

'2 2

+ f dy 5 f+(y) A5G+(x)+ f dy 5 f (y) A56 (x)
dy dy

2

+ f dy 5G+(y) A5G+(x) f+(x) +f dy 5G ( —y) h 56 (x) f (x)
2

+ A5 fdx6 (32}
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In the first set of curly brackets we used

f—:(8++8 )f = [f+(x) f—(
—x)],= d

and the crossed term 5f+ h 5f cancels out. The left-
and right-moving sectors are completely separated except
for the global degrees of freedom. The cosmological con-
stant appears only through the ratio M/A, in the last
term; hence, it seems to have no other role but providing
a scale of mass. This concludes our evaluation of the
syrnplectic structure.

III. DISCUSSION

Having obtained the syrnplectic structure the next step
is to calculate the Poisson brackets. For this we must in-
vert the form co: if we write

where X' are coordinates on the phase-space manifold,
and the Poisson brackets are

[ F,K ]
= co"(X)

ax' ax~ ' (33)

where co, (X)co~ (X)=5,". Since the left-moving, the
right-moving, and the global degrees of freedom are mu-
tually separated, the inversion can be performed in each
sector. We consider, for simplicity, only one case, and
the others are entirely similar. First we notice that

co+ -=—jdx 5f + (x ) 6 5f '+ ( x )

+f dx j dy[5f' (y) f' (y)—5G+(y)] h5G+(x)

(34'

co =
—,
'

co,j (X)5X'5X', can be rewritten

co+= f dx 5f+(x) h5f'+(x)+ f dx f dy
8(x y)f '+ (y—) —8(y —x )f '+ (x )

2

X [5(G+ F+ )(x) h—5(G+ —F+ )(y) 5F + (x)—h 5F+ (y) ], (35)

where

and

f '+ (x):— f+(x),= d
dx +

f„(x)=exp[F+(x)] .

By defining

K+ (x) = G+ (x) F+(x)— (36)

we have

1 f '+ (y) f '+ (x)
co+= f dx 5f+ h5f'+ ——f dx dy 8(x —y), —8(y —x), 5f'+(x) h5f'+(y)

2 f '+ (x ) f '+ (y)

+ jf dx dy 8(x y)f'+(y)5K+(x—) 65K+(y) . (37j

This division into two orthogonal blocks (f+, f'+ ) and
E+(x) made the inversion simplified: the inversion in
the (f+, f'+ ) block is itnmediate, and the inverse of
8(x —y)f'+(y) is

1
5(z —x)f '~~ (z) dx

It is noteworthy that the conjugate pairs in Aat spacetime
of the matter field (f+, f'+ ) are no longer canonical
pairs, but some combinations of them are.

For quantization of the model one proceeds with the

replacement of the Poisson brackets by commutation re-
lations of operators on a Hilbert space. But in our prob-
lem we have to take care of the conformal anomaly and
Hawking radiation. At present there is no known
straightforward way of dealing with these in the formal-
ism [17], so we leave it for future investigation. For the
topologically distinctive classes of the gauge function G
other than G+ =G =0, the symplectic structure may be
quite different from the one which we presented in this
article. Another point that requires more careful analysis
is the neglect of the total derivative terms which we as-
sumed in deriving (21) and (30).
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