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The use of observational coordinates allows the formulation of redshift in a general cosmological
space-time in a simple form, (1+4z)= A,dw /d 7, where A, is a normalization constant, w is the observa-
tional time coordinate, and 7 is the proper time along the fundamental flow lines. This in turn allows
easy calculation of the anisotropy of the cosmic microwave background radiation (CMBR) due to the
Sachs-Wolfe (SW) effect. We reproduce the usual dominant first-order effect 6T /Ty =%(8,,B —8s4),
where §, is the density contrast of baryons on the last scattering surface; as implied by this equation, the
observationally significant result is the difference of §, in two different directions 4 and B on the plane
of the sky. In order to obtain the actual result, one also needs to study perturbations of the temperature
on the background last-scattering surface and on its first-order counterpart. In addition to the usual
dominant term in the SW effect, we obtain a second term when the pressure p is significant at last scatter-
ing; this term depends on the difference in the pressure at the points of emission 4 and B on the last-
scattering surface, and enters the CMBR anisotropy with a sign opposite to that of the usual term. For
the adiabatic case, this pressure term can reduce the SW effect by up to 87% in a low-density universe.
When p =0 at the last scattering surface, the usual SW result is obtained. Our results are gauge invari-
ant to first order. Other explicit contributions to the Sachs-Wolfe anisotropy in the observational-
coordinate calculation are clearly higher order. We discuss the interpretation of these results and com-
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pare them to other calculations of the large-scale cosmic microwave background anisotropy.

PACS number(s): 98.80.Es, 04.20.Cv, 95.30.Sf, 98.70.Vc

I. INTRODUCTION

The cosmic microwave background radiation (CMBR)
is perhaps the observational cornerstone of cosmology.
Precise measurement of its temperature, spectrum, and
anisotropy has given us access to the origin, evolution,
and development of the Universe itself, as well as to the
structure within it. In particular, the anisotropy of the
CMBR has often been used as the key to placing limits on
the amplitude and size of the primordial seeds of super-
clusters, cluster of galaxies, and galaxies themselves at
the time of last scattering. The preliminary positive Cos-
mic Background Explorer (COBE) measurement of the
temperature anisotropy by Smoot and his collaborators
[1,2] at the level of (87 /T)gyeery=1.2X107° on angular
scales greater than 7 degrees, with a quadrupole term
(8T /T)quaa=6X107%, has been used to strongly con-
strain competing theories of galaxy formation. The basis
for the comparison with these measurements is the
Scahs-Wolfe (SW) effect, [3] whereby photons traveling
from the last-scattering surface to the observer are red-
shifted slightly more if they have to climb from an in-
creased gravitational potential due to a density enhance-
ment over part of the surface. Calculation of the SW
effect, which will give the predominant contribution to
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the anisotropy of the CMBR for angular scales larger
than a degree, which correspond to scales larger than the
horizon at the time of last scattering (z =~ 1200), is simple
in principle. But in practice it has turned out to be quite
difficult, and fraught both with gauge problems and cal-
culational complications, which have necessitated various
approximations (see [4,5] and references therein for a dis-
cussion). The calculation has been repeated in detail by a
number of different authors, each making improvements
and clarifications [6—8]. But ambiguities and complica-
tions in the calculation remain; in particular the relation
of the measurements to gauge freedom, and the closely
related issue of the precise placing of the surface of last
scattering in the perturbed space-time remain elusive. In
our view the meaning of many of the computer calcula-
tions of the SW effect remains obscure, because the way
they handle these issues is not made explicit in their dis-
cussions.

We here present a calculation of the SW effect which is
both simpler and easier to interpret than the usual treat-
ments. It is based on using observational coordinates,
[9-13] in which the redshift, the key parameter in calcu-
lating the SW effect, takes a particularly simple form.
The variation of the observed temperature Ty coming
from the last-scattering surface is given generally by
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Sachs and Wolfe [3], Ellis [14], and Stoeger et al. [4]:

8Tx 6Tg 5z )
Ty Ty 1+z°

where T is the temperature on the surface of emission,
in this case the last scattering surface, and (1+2z) is the
redshift from the observer R to the points of emission E
on that surface. Equation (1) should be interpreted as
specifying the difference in temperature of the back-
ground radiation observed in different directions on the
plane of the sky, corresponding to different points of
emission on the last-scattering surface. The redshift is
generally given by

a )E
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where ug and up are the four-velocities of the emitter
and the observer (“receiver”), respectively, and k¢ is the
vector tangent to the null geodesic connecting the events
of emission and observation. In this paper we use these
two relationships, specified in observational coordinates,
to calculate the temperature anisotropy 6T /Ty for the
microwave background.

We first describe and specify observational coordinates
and show that, in terms of them, the redshift in a general
space-time is given by Eq. (8) below. Then we write down
the Friedmann-Lemaitre-Robertson-Walker (FLRW)
metric in observational coordinates, as well as the most
general perturbed FLRW metric. Using this, we give
(1+2) to first order in terms of these metric components.
The next step will be to give the conservation equations
in observational coordinates—these will relate the con-
tributing metric components to the density and pressure
on the last-scattering surface. Following this, we calcu-
late the variation of the redshift as specified in Eq. (1), in-
terpreted as giving the difference between two directions
on the plane of the sky corresponding to two different
points on the last-scattering surface. The last stage in the
calculation is the determination of the emission tempera-
ture Ty on the last-scattering surface itself; we calculate
this, assuming that the surface is given by constant free-
electron density [7]. Combining these steps we then have
8Ty /Ty to first order in a simple form, and give it for
the pressure-free case (p=0), and the adiabatic
(p =p,/3) and nonadiabatic radiation-pressure cases. In
the pressure-free case we recover the usual dominant SW
contribution; in the p70 cases we find another contribu-
tion which partially compensates for the dominant
density-contrast contribution, and can possibly reduce
the effect to 13% of that predicted by simple use of the
standard SW formula. We discuss and interpret our re-
sults in the final two sections of the paper, comparing and
contrasting certain of its key features with those of other
calculations of the CMBR anisotropy, and relating it to
the way in which the observations are made.

This is the sixth in a series of papers setting up a
theoretical gravitational physics framework in which
cosmologically significant observations can be optimally
incorporated into a direct study of the geometry of
space-time. Papers I and II are by Ellis et al. [11]. Pa-

pers IIL, IV, and V are by Stoeger er al., Refs. [15], [16],
and [17], respectively. In this approach, we determine
what data tell us directly about space-time geometry,
without imposing geometrical presuppositions (e.g. a
FLRW geometry) on the analysis. In the case of the
CMBR, examined in this paper, this approach links the
observational data directly to conditions on the last-
scattering surface, rather than through a model of the
growth of irregularities in the Universe.

II. THE REDSHIFT
IN OBSERVATIONAL COORDINATES

Observational coordinates {x°} ={w,y,0,¢} [9,10,
18,11-13] are characterized in the following way. The
“timelike” coordinate w=x° is defined so that
fw=const} gives the past light cone C ~(p) for each
event p on the observer’s world line C. Often we normal-
ize w by requiring that w measure proper time along C,
ie., w|c=7|c, where 7 is the proper time. Here we shall
not impose that requirement. Instead we require that

1
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implying that 47 is the g, component of the metric. We
choose w=w, to correspond to the event p, (“here and
now”).

The null geodesic vector field generating the ruling
geodesics of these light cones w =const can be written

k=9/3v=ki=dx'/dv , 4)

where v is an affine parameter along the null geodesics
and where (Friedlander [19], pp. 79-80)

ki=w ; =8, kk;=0. (5)

This definition implies that k is the hypersurface-
orthogonal (k,., =k,.,) null geodesic (k“;bkb‘—'O) vector
field lying in (and orthogonal to) the null surfaces on
which w is constant (w ;k'=k°=0).

The angular coordinates 8=x2? and ¢=x> will be ob-
served angles on the plane of the sky. More technically,
we let the null geodesics generating a given null cone be
given by {6,¢} =const in the surface {w=const}]. Then
6 ;k'=¢ ;k'=0=k*=k3=0. Furthermore, we normal-
ize 6 and ¢ by the central condition that they are stan-
dard spherical coordinates based on a parallely propagat-
ed orthonormal tetrad along the observer’s world line C.
Taken together, the above results show

ki=dxJ/dv=(1/B)8] ,

where k'=(1/B)=dy/dv; it follows from (5) and
k; =g,-jkj that 3 is the g;; component of the metric [11].
Now y=x! is the radial coordinate which measures
“distance” down these null geodescis. There are various
possible choices for y. It can be the affine parameter v it-
self, redshift, observer area distance, or something else.
In order to mesh this choice easily with a simple formula-
tion of the FLRW metric in observational coordinates,
we choose y =7, where (a) the initial value of 7 on our
past light cone w=uw, is determined by setting
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800 = —&o; there; (b) the coordinate is then “dragged off”
this light cone by the condition that 7 is comoving with
the fluid four-velocity u, so its Lie derivative with respect
to u is zero: that is,

dr/dr=0=u'=0. (6)

In the background FLRW space-time, this choice makes
7 a standard comoving distance parameter in the surfaces
t=const [15]. It should be mentioned that choosing
800= —801 on w=w, does does not mean that this rela-
tionship will hold in general as 7 is dragged off onto other
past light cones: gy, may not equal —g,, at other values
of the retarded time w,’ although this will indeed be true
in the FLRW case, and so will be true in the background
model.

Now, from Eq. (5) and from the fact that the com-
ponents of the four-velocity u are just u'=dx'/dr, we
immediately see that

ku®=dw/dr . (7

Then, from Egs. (2) and (7) and the central condition (3)
we have that the redshift in observational coordinates is
simply

(1+z)=Aydw/dT, (8)

where A4, is A evaluated at the position of the observer,
that is at w=w, and 7=0 (¥ is zero on the observer’s
world line C). Equation (8) is the key result which
simplifies the calculation of the SW CMBR temperature
anisotropy in observational coordinates.

III. THE METRIC IN OBSERVATIONAL COORDINATES

As has been shown elsewhere [11,20], in observational
coordinates the background FLRW metric can be written
as
J

dP?=R¥w —7){ —dw?+2dw d¥ +k %sin’k7dQ?} , (9)

where k=1,0, —1, respectively, for the elliptic, flat, and
hyperbolic cases, and dQ? is the metric on the unit two-
sphere. The most general metric in observational coordi-
nates, written in the “FLRW-based” form, is [11,20,16]

dm?*=—(R*—Z?*dw*+2(R*+B?*dw d¥ +2v,dw d6
+20;dw dp+(R2F 2+ hyy )d60*+2h,,d0d ¢
+(R%f%in*0+hyy)d ¢? , (10)

where the functions R=R(w—F) and f=«lsink?
characterize the FLRW part of the metric, and the func-
tions Z2,B%,v,,v3,h,,,h,3, and hy; characterize the devi-
ations in the metric from the FLRW form. In general,
they will be functions of all four coordinates. When these
are small, they represent perturbations from the back-
ground FLRW space-time.

The quantity A4 of the previous section [see Eq. (3)] is
related to these metric components by A?=R?*—Z2
Now as we have already indicated, by suitable coordinate
choice we can put Z?=—B? on our past light cone
w =w, without loss of generality. In fact, this defines
our choice of null radial coordinate 7 uniquely, and so
fixes the ““fitting” of the FLRW model to the real (lumpy)
Universe [21]; this in turn defines what is meant by the
perturbation quantities such as §, [22]. Essentially we
have chosen a unique ‘“‘gauge,” which defines the per-
turbed quantities.

IV. THE REDSHIFT TO FIRST ORDER

If we now write down explicitly the equation
u®u,=—1 on w=w, from the general metric (10), we
obtain

—1=—(R?>—Z*)(dw /d7y*+2(R*+B*)(dw /dT)(dF /dT)+20,(d 0 /d)(dw /d7)+2v,(d$/d7)(dw /dT)
+(R2f2+hyd0/dT)2+2h,3(d6/d7)(d ¢ /dT)+ (R F%in%0+hyy dd/d 1), (11)

where we mean here and hereafter that the equation is evaluated at w =w, unless otherwise indicated. We want to
solve this equation for dw /d r, which will give us 1+z modulo the normalization.

In our observational coordinates 7 is comoving. So d7/d7=0 and the g, component is eliminated. If we write
d0/dr=(d0/dw)(dw/dr)and d¢ /dT=(d ¢ /dw)(dw /d7) and solve Eq. (10) for dw /d r, we obtain

dw /dT=[R*—Z*—2v,(d0/dw)—2v3(d¢/dw)—(R*f?+h,, (dO/dw)*—2h;(d6/dw)d b /dw)

—(R*f%in®0+h 33 )(d ¢ /dw)*]~1/2 .

(12)

Here d 6/dw and d ¢ /dw are proper motions. Then, if we expand the brackets in Eq. (12), using only the first two terms

of the binomial series for the right-hand side, we obtain

13. Ehlers (private communication) has pointed out that it is only possible to set goo = —go, everywhere, with y a comoving coordi-
nate, in restricted cases. This affects some details, but not the overall argument, of Stoeger et al. [15,17] where it is erroneously
claimed this specialization is possible generally. Details of the required amendments to those papers will be given elsewhere.
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1 Z? v,d8/dw  vydé/dw R%f2 | hy Ry
dw/dr=—+ + 2
R ' 2R3 R3 R T ERETE (d6/dw)*+ 2R3(d9/dw)(d<;f>/dw)

R%f%in%0 + hs;

do/dw)? ,
2R3 2g7 |44/

where (considering the case of a perturbed FLRW
universe) the first term is zeroth order, and only the
second term is first order. The remaining terms are
second or third order (d6/dw and d¢/dw are each first
order, as are the non-FLRW metric components
U,y,VU3,M55,h53, and hi3). To obtain all the second- and
third-order contributions to dw /d T we would have to in-
clude the third and fourth terms of the binomial expan-
sion of Eq. (12) as well. We can easily see that the
second- and third-order terms already present in Eq. (13)
contain direct contributions from velocities of the em-
itters on the last-scattering surface and from gravitational
radiation. Later we shall study whether the first-order
term contains a gravitational wave contribution.

In what follows we shall be concerned only with the
first-order SW contributions. From Egs. (13) and (8), we
see that the redshift to first order is

2
1,2
R 2R}

(1+2)= A4, : (14)

where A, is just the quantity (R?—Z?)!/? evaluated at
the point of observation, and R and Z in the brackets are
evaluated at the point of emission. It is obvious that
when Z =0 this reduces to the usual expression for red-
shift in the FLRW case, which is just

(1+Z)FLRW=(RO/R) . (15)

Here Ry=R (w=w,, 7=0). It is important to notice
that in these observational coordinates, the points of
emission and observation have the same value of the
“time” coordinate, w =w,, because they are on the same
light cone. One parameter serves to distinguish these
events, their 7-coordinate values, and the point of obser-
vation will always be at 7=0 because it is on the
observer’s world line C. This feature of observational
coordinates is one of the reasons for the simplicity of the
SW calculation using them.

V. THE CONSERVATION EQUATIONS

As we can see from Eq. (14), in observational coordi-
nates the redshift to first order depends only on the
metric variable Z2, since R =R (w,?) is known from the
FLRW background. If we can determine Z? and link it
to the matter variables in some way, we will have gone a
long way towards solving our problem.

It turns out, fortunately, that if we write down the con-
servation equations T"b; » =0 in the observational coordi-
nates we can easily establish this connection. The easiest
way of doing this is through the Fluid-Ray (FR) tetrad
formalism, in which the four components of the conser-
vation equations in the case of a single perfect fluid take

f
the form (Stoeger et al. [13], Egs. (29))

Ap+U+T+b+b—n—a)u+p)=0, (16a)
(I +1)u+p)+Ap+Dp =0, (16b)
a(u+p)+8p=0, (16¢)
alp+p)+6p=0. (16d)

Here p is the total relativistic energy density, p is the
pressure, /,n,b, and a are FR-tetrad spin coefficients, and
A, D, and 8 the tetrad derivative operators in the u, k,
and angular directions, respectively. Using the
differential relationships between the spin coefficients and
the metric components [16], the purely angular conserva-
tion Egs. (16¢) and (16d), which are relevant to this prob-
lem, can be written to first order (note that as these equa-
tions are entirely in the past light cone w =w,, we can

without loss of generality take Z?=—B? in evaluating
them):
+ 2 9
__HoTho 0Z P =0, (17a)
2R? 06 = 36
+ 2 9
_Ho 1290 oZ P _ (17b)
2R* 3¢ 99

Here the subscripts O and 1 refer to zeroth-order and
first-order quantities, respectively. Further, as is clear, R
is zeroth order, and Z? is first order.

Now it is clear that (to first order) Egs. (17a) and (17b)
just give Z? in terms of the pressure p, plus a first-order
function F(w,7), that is

22=2R2——1_7’_—1—+F(w,7) . (18)

HoTPo

This is the relationship we were looking for. We do not,
of course, know F(w,7). This must be determined from
the field equations and the other two conservation equa-
tions (16a) and (16b). But it turns out that for calculating
the SW effect to first order we shall not need it; F will
only contribute beginning at second order.

VI. THE SACHS-WOLFE ANISOTROPY
FOR ADIABATIC PERTURBATIONS

From Eq. (1) we see that in general the SW anisotropy
will be made up of two contributions, one from the
difference in the redshift from the observer to two
different points on the last-scattering surface, and the
other from the difference of emission temperatures at
those points on the last-scattering surface itself. If we
define the last-scattering surface as a surface of constant
free electron density 71, [7,5] then it can be easily shown
that for adiabatic perturbations (“adiabatic” in the
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cosmological sense—all components of the mass-energy
participate equally in the perturbation), the temperature
of the perturbed last-scattering surface will be that of the
background last-scattering surface and therefore will be a
constant [S]. This does not mean, however, that the per-
turbed last-scattering surface will be at the same distance
7 down our past light cone in every direction. Thus, for
adiabatic perturbations we can focus just on the first con-
tribution, which we have been concentrating on calculat-
ing above.

From (14), in this case the SW anisotropy measured be-
tween two different directions 4 and B on the plane of
the sky will be [using ‘““difference notation” for Eq. (1)]

ATy Az 11, Zy Zj

2R} 2R}

‘1Rz R,

Ty  l+z
(19)

where the last-scattering surface at points 4 and B will
be at two slightly different values of 7 on our past light
cone w=w,. In the last two terms the (first-order)
difference between R 4, and Ry can be neglected, because
Z%is already first order. This same difference in the first
two terms in Eq. (19) can be written in a differential form;
we rewrite Eq. (19) therefore as

AT
R_ 1R, L
2R},

TR RA a‘i" A

(Zz2-Z%1, (20)

where Z? at points 4 and B will be given by Eq. (18) and
A7=7;—F,. The difference between F(wy,7) and
F(wy,7,) contained in the Z? terms can be rewritten
F’| 4 A7, which will be second order and can be neglected
[F is already first order, and AF is first order]. The reason
the purely angular difference between Z?2 at two points at
the last-scattering surface cannot be neglected is because
the difference in angle can be large and is essentially
zeroth order, so the difference in the values of the purely
spatial part of Z?2 will still be first order.

We now must evaluate the first term on the right-hand
side of Eq. (20). This is the contribution to the tempera-
ture anisotropy due to the slightly different distances at
which we encounter the last-scattering surface as we look
down our past light cone in different directions. As we
mentioned above, this is clearly a first-order effect. We
take ‘““last scattering” to be defined by the place where the
optical depth becomes unity; this in turn occurs when
matter becomes ionized, because the main effect here is
Thomson scattering, arising when the CMBR tempera-
ture exceeds the ionization level of matter in the
Universe. That is, we characterize the last-scattering sur-
face in the real space-time as a surface of constant free-
electron density, this density being equal to the zero-
order (background model) electron density on the back-
ground last scattering surface.

Characterizing the region of decoupling as a surface of
constant free-electron density is still only an idealization,
but a very helpful and appropriate one. The transition
from collisional to free photons takes the order of one
Hubble time at the epoch of coupling. So the decoupling
region is actually a layer or shell of some thickness in

1849

redshift A,z. However, as Hogan et al. [23] point out, if
z,;>1000, A = +2z4, that is, the thickness of the decou-

pling shell will be relatively narrow, from our point of
view as observers. And we recall that we are assuming
that 1+z,=1200. Thus, it makes sense to idealize it as a
surface, and particularly as one of constant free-electron
density. A more precise treatment of the last-scattering
region would demand a more sophisticated description of
the photons and their interaction with the free electrons.

Further justification for this idealization of the last-
scattering region as a surface derives from “the compen-
sation effect” [S]. Because the redshift in the radiation
after last scattering goes like T and the change in the
temperature of the matter scattering the radiation goes
like 1/T, since the baryonic matter is still coupled to the
radiation until the time of last scattering, the two effects
cancel out or compensate. Thus, within the last-
scattering layer itself, one may calculate the Sachs-Wolfe
anisotropy from any location, as long as one uses the ap-
propriate temperature at that location: The difference in
redshift due to placing the point of emission at a different
null radial coordinate position will be exactly compensat-
ed by the different temperature of the matter at that posi-
tion. This in itself enables one to collapse the last-
scattering shell to a surface

With this idealized description of the last-scattering re-
gion as a surface of constant free-electron density,
Panek’s result [7] holds:? calculating the displacement of
the real last-scattering surface from the background one,
we find

1 D
3+D8"+ 4(3+D)

(R/R)Agn=(R'/R)AfF= 5, . (1)
Here the overdot signifies partial differentiation with
respect to the conformal time 7, and prime with respect
to 7. D is a parameter containing the functional depen-
dence of the free-electron density on baryon density and
on temperature along with the first derivatives of this
dependence [7]. 8, and 8, are the perturbations in the
baryons and the radiation, respectively, as measured rela-
tive to the background last-scattering surface. The A,
operator refers to differences between values on the per-
turbed last-scattering surface and on the background
last-scattering surface. This will be different from our A7,
which is the difference in 7, or equivalently in conformal
time, between two points on the perturbed last-scattering
surface itself. But obviously, for our situation, A7 can be
related to Ag7.

Because the position of the last-scattering surface in
the FLRW background is at constant 7, the A7 will equal
the variation of Ay7 with direction. That is, we can write

R’
R

RI
R

AF=
4

[(A07)B—(AO7)A] . (22)
A

Now, for adiabatic perturbations and a Planckian radia-

2Detailed derivations of all Panek’s equations are given by
Katz [24].
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tion spectrum, 8, =38, and Eq. (21) reduces to [7,5]

R!

1

Now we can write down our final result, from Egs. (18),
(20), and (23):

Lo+ Po (P13=P14) - 24
This equation can be read either from right to left (the
conventional sense), predicting the CMBR anisotropy
directly from conditions on the last-scattering surface; or
from left to right (the sense of the “observational cosmol-
ogy” program mentioned in Sec. I), determining relations
on the last-scattering surface from observational quanti-
ties.

The first, nonpressure, term in (24) is just the usual SW
result arrived at in the standard calculation and often
quoted in the literature. For the pressure-free case, this
is the result—the pressure terms going to zero. But for
p7#0, we have the second contribution, which is traceable
to the nongeodesic flow of the emitters (due to pressure).
This term is not recovered in the standard calculations
(see, for example, Panek [7]) because they usually do not
treat the p70 case, which will be important only for
low-density Universes (,<1). For the two-component
situation, where baryons and photons are present Eq. (24)
leads to

ATR (SbB—B,,A )(/—Lb)

= . 25
T 3(uy+4u,/3) 29

Here the baryonic pressure p, is neglected and the adi-
abatic condition 8, =43, is used. In a situation where ra-
diation dominates completely at last scattering, Eq. (25)
has the limit

ATy
Ty

=0, (25a)

for in that case the pressure contribution exactly cancels
the density-perturbation contribution in Eq. (24). On the
other hand when p, is much less than u,, then (25) be-
comes

ATy 1
TR :?(SbB —5“ ) )

(25b)

which is the normal Sachs-Wolfe effect. For a general
mixture of baryons and radiation, in which pressure is
important, the result (25) will be somewhere in between
the standard result [Eq. (25b)], and that for the radiation
dominated case [Eq. (25a)], valid for a pure radiation
fluid, or when the universe is so hot that all particles are
essentially relativistic. The exact result depends on the
value of ;. Specifically, because 1, goes as 1/R * but p,
goes as 1 /R 3 the ratio of densities at last scattering is

1+z,) . (26)

But Q,,h*=4.18 X107 °h? [25,26] where h is the Hubble

constant in units of 100 km/secMpc. Taking
1+2z,=1200 we find
-2
By | Z2X10 7 27)
Ho o h*Qy
This tells us the ratio of the terms in Eq. (25). Let
Hp
=777 28
4 By T4, /3 @8)

which is the fraction of the usual SW result (25a) that
holds in the Universe with pressure [given by (25)]. Then
we see that

1
= . 29
f 140.067/h2Q,, 29)

At the low density end, Q;,=0.04 gives f =0.13 (h =0.5)
to 0.37(h =1.0); while at the high density end, Q,=1
gives f=0.79(h =0.5) to f=0.94 (h =1.0). Thus the
maximum suppression of anisotropy that can be attained
through the pressure term, in practice, is to about 13% of
the SW result—a very significant reduction. If we take
the observationally preferred middle range of Q,, we find
for Q,=0.1 the factor f is in the range 0.27 (h =0.5) to
0.6 (h =1) and for Q;=0.3, the factor f is in the range
0.53 (h =0.5)to f =0.82 (h =1).

This reduction in CMBR anisotropy due to the pres-
sure term could be significant in assessing the microwave
background anisotropy limits for various galaxy forma-
tion scenarios, and in estimating the amplitude of density
perturbations at the epoch of recombination, in low-
density universes (while these are unfashionable because
of the prevailing inflationary universe dogma, they are
certainly a possibility which must be taken into account if
we want to determine which of all possible scenarios are
compatible with observations, and which are not). One
should notice also the sensitivity of the results to the
value of the Hubble constant, basically because the radia-
tion energy density u,, is accurately known independent
of the value of H,, but (for given p,) Q, scales with & ~2.

In particular, the reduction of the SW anisotropy in
the radiation-dominated case has the interesting conse-
quence that if the matter density is low, the magnitude of
the SW effect for a given-density perturbation 8p can be
considerably less than we anticipate if we ignore the effect
of the pressure term, and simply use the usual SW formu-
la. This means that the low measured value of the
CMBR anisotropy, sometimes taken as evidence that Q
must be very close to 1, could be compatible with lower
values of Q (and still allow formation of galaxies and
large scale structures).

However, one needs to know the equation of state on
the last-scattering surface before we can use the CMBR
anisotropy to set limits on Q; the result is quite sensitive
to this equation of state.

VII. THE SACHS-WOLFE EFFECT
IN THE NONADIABATIC CASE

In the nonadiabatic case, in which the equation of state
is perturbed, we will not be able to find such a simple re-
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sult as that we have just calculated in the adiabatic-
perturbation case. Equations (18), (19), and (20) will still
hold, but we will have to use the perturbed equation of
state to put the redshift contribution to the anisotropy in
a form such as that of Eq. (25). Furthermore, now the
contribution from the variation of the temperature along
the surface of last scattering itself will be nonzero.

In this case we can write the temperature on the last-
scattering surface as [5]

|3

TEz(TE)O 3+ D

)

where (T), is the temperature on the FLRW back-

ground last-scattering surface, and Y =48, —48,. Using

this in Eq. (1) and in calculating (R'/R)AF, we obtain
ATy P17 P14
T Botpo

=3(86p =8h4)—Xpt X4~ ,  (30)
where the pressure term will depend on Y and on the
equation of state, assuming that radiation dominates over
the baryons (but not necessarily the total matter).

VIII. DISCUSSION

Comparing our calculation of the CMBR anisotropy
with those in the literature, for example those of Sachs
and Wolfe [3], Peebles [6], Panek [7], and Abbott and
Schaefer [8], we see a number of features which distin-
guish it and which demand explanation.

First of all, some more recent calculations [7,8] have
been carried out in terms of Bardeen’s [27] gauge-
invariant variables. It is important that the result be
gauge-invariant, that is, that it be immune to small
changes in the coordinate system in the perturbed space-
time and thus free from purely coordinate perturbation
modes, which have no physical significance. One way of
handling this is to write the result in such gauge-invariant
variables. But if a scalar, vector, or tensor vanishes in the
background, then it is automatically gauge invariant [22],
even if it is not written in explicitly gauge-invariant quan-
tities. This is the case with our result, even though the
observations we deal with are essentially two-point rela-
tions and thus not directly covered by the Stewart-
Walker theorem [28]. Both sides of Eqgs. (24), (25), and
(30) are given in terms of differences in physically deter-
mined quantities (temperature, density, pressure) at
points on either the real last-scattering surface (left-hand
side) or the background last-scattering surface (right-
hand side) corresponding to two different directions on
the plane of the sky. In the FLRW background these
differences vanish. They are thus gauge-invariant, as may
be explicitly checked in the case of scalar perturbations
by using the Bardeen equations (3.3) and (3.7) [27]. Thus
the fact we have determined the result in a particular
gauge does not matter; the result will be the same in any
gauge.

The theoretical results usually given are not often ex-
plicitly in terms of such differences, which are the obser-
vationally relevant quantities. Instead, they are given in
terms of the differences between the background quantity

and the perturbed quantity on one null ray—that is, in
one direction; but this is gauge dependent. The difference
of this quantity in two directions will generally be
equivalent to our results, and will be gauge invariant also.
But that is not what most workers have written down.
Furthermore, (a) they often discard small terms (see, for
instance Panek [7]) in the single-direction anisotropy they
calculate. If what is observationally significant is the
difference in such quantities in two different directions,
this could be the source of significant error; what is dis-
cardable in one direction may not be negligible when we
are taking the difference of a quantity in two directions.
(b) Even if gauge-invariant variables are used, the result is
not gauge invariant unless the position of the last-
scattering surface is fixed in a gauge-invariant (physical)
way [4]; but this is not always done (in many calculations
it is assumed that the last-scattering surface is given by
the same equation in the real space as in the background
space; but this is a gauge-dependent, nonphysical
prescription).

With some effort we can construct gauge-invariant
quantities relative to observational coordinates and have
done so (Stoeger, unpublished)—these will be different
from those of Bardeen, because the observational coordi-
nate system is “far”” from the coordinate system Bardeen
and others employ. We can write our result in terms of
these observational-coordinate gauge-invariant quanti-
ties. But, since the result is already automatically gauge
invariant, there is no need to do so. In fact, in the case of
the background radiation anisotropy, the gauge-invariant
variables complicate the result and make it very hard to
interpret physically, except in simple cases and after the
use of the evolution and conservation equations. This is
seen clearly in Panek [7], and Abbott and Schaefer [8].

Second, we notice that in our calculations and results
there are no time integrations, and no use of the evolu-
tion equations for the perturbations along timelike world
lines, as there are in other calculations and results [we do,
however, use the conservation equations, but along the
light cone, not along timelike world lines]. Time integra-
tions are not necessary—we do not need to solve the null
geodesic equation through an explicit integration, be-
cause the redshift (1+z) is already given in a simple form
fitted to null cone data, the geodesic equation having
been implicitly integrated through use of suitably adapted
coordinates. Furthermore, in observational coordinates,
everything in the calculation is done at one specific obser-
vational time, wy,=const. The result is given in terms of
the differences in density, pressure, and Y, at pairs of
points on the last-scattering surface which intersect our
past light cone. The history of those values is not needed
in the calculation, however important and interesting it
might otherwise be. As we have seen, this significantly
facilitates the calculation of the anisotropy.

Third, the observational coordinate system is
“privileged” from an observational point of view. Our
past light cone is defined by our observational context.
The angles on the plane of the sky give the direction of
the null rays generating the light cone and connecting us
with the sources we are observing. The only coordinate
we use that is not “privileged” in this sense is 7, which
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measures distance down the generators of the light cone.
In other words, our observational situation gives us au-
tomatically an observational time w,, and observational
angles, but it does not give us a natural measure of dis-
tance down the light cone which is easily usable. This
partially “privileged” character of the coordinates is
another way of describing why the calculation of the an-
isotropy is relatively simple and is done all at one “time”
w =wy=const.

Fourth, a related difference is that we do not have to
decompose the perturbation modes into scalar, vector,
and tensor contributions, as is usually done. Nor have we
had to separate the growing and decaying modes, and ar-
gue the neglect of the decaying mode. We simply get a
first-order result for the cosmic microwave anisotropy,
without having to worry about the detailed dynamics of
the key contributions. In the usual calculations, one ends
up with three separate contributions to the anisotropy —
a scalar, vector, and tensor contribution (see Panek [7],
and Abbott and Schaefer [8]). The total anisotropy is the
sum of these. These can be difficult to interpret in the
general case, when all three occur.

Fifth, in the Panek [7] and Abbott and Schaefer [8] cal-
culations, there are vector and tensor contributions,
which seem to have no parallel in our first-order result.
The vector contribution in the simplest cases will have
only a decaying mode, which people usually argue they
can neglect; the tensor contribution will have both a
growing and a decaying mode [8]. The growing mode
will represent the contribution of gravitational waves to
the anisotropy. There are transverse, traceless metric
tensor contributions in the scalar and vector parts of the
anisotropy also, but these are not in themselves gauge-
invariant and do not represent real gravitational radia-
tion. However gravitational waves can change the dis-
tance from us to the source, i.e., reposition last-scattering
surfaces relative to the point of observation.

The velocity contributions are found both in the scalar
and vector components of the decomposition. If we look
at the details of our calculation, especially at Eq. (12)
above, we see that the transverse velocities (proper
motions) begin to enter our results only at second order,
and the terms involving h,,,h,3, and h;;, which will car-
ry some of the gravitational wave contribution, enter only
at third order. Furthermore, the first-order term Z?2 can-
not contain angular gravitational-radiation effects; for the
zero-pressure case, Z > must be independent of 6 and ¢ to
first order, and, for the pressure case, the angular depen-
dence is completely determined to first order by the con-
servation equations. There will in general be higher-
order angular gravitational contributions from Z?2, how-
ever. In our calculation where are the first-order
gravitational-radiation contributions and first-order ve-
locity contributions analogous to those of Panek and oth-
ers?

This question requires further study. Certainly, the
first-order velocity and gravitational-radiation terms in
Panek, for instance [7] are due to velocity components in
the radial direction and to gravitational-radiation fields
also in the radial direction, respectively. These latter
must be due to gravitational waves traveling transverse to

the generators of our past light cone, not along them, ac-
cording to the transverse traceless condition. It turns out
that gravitational waves are already incorporated impli-
citly in our first-order result. Why do we not see them
explicitly in our calculation? The answer is because the
splitting into scalar, vector, and tensor contributions is
purely heuristic, and depends on the gauge, as does the
splitting of redshift into velocity and gravitational effects,
as remarked by Sachs and Wolfe [3]. As we have
remarked elsewhere [4,5], we can change this scalar-
vector-tensor splitting by changing the gauge; it is only
preserved under a very restricted set of gauge transforma-
tions. (Those considered by Panek [7] and Bardeen [27],
whose “gauge-invariant” formalism Panek employs, con-
stitute such a very restricted set—essentially the
infinitesimal coordinate transformations from FLRW ex-
pressed in the usual 3+1 coordinates with a conformal
time coordinate. Relative to our observational coordi-
nates, those coordinates represent a very “large” gauge
transformation.) Thus the scalar-vector-tensor splitting
is not present in any truly covariant results. It may be
useful to make such a splitting for heuristic or interpreta-
tional purposes, but the resulting analysis will not be
completely gauge invariant. One of the strengths of our
observational-coordinate calculation here is that we do
have to introduce this splitting. We have automatically
included all three types of contribution (scalar, vector,
and tensor) precisely because we do not use such a split-
ting.

Finally, one might wonder why we do not recover a
dipole-anisotropy contribution in our formulation. Since
we have set up our problem with the observer moving
with the cosmological fluid flow, it does not appear. This
is reflected, in particular, in the form of the FLRW
metric in observational coordinates, given in Eq. (9). If
we had freed the observer from following the cosmologi-
cal fluid flow, allowing him or her to have a velocity with
respect to it, then we would have recovered the dipole-
velocity contribution. Then, too, the background FLRW
metric in observational coordinates with respect to our
observer would have been “tilted,” with time-angle cross
terms [20,16].

IX. CONCLUSIONS

We have calculated both the redshift and the SW tem-
perature anisotropy of the CMBR to first order in obser-
vational coordinates, recovering the standard results plus
a pressure contribution. In doing so we have demonstrat-
ed that this formulation has a number of advantages over
the usual formulations. The results are relatively simple
and straightforward, and easy to interpret. There is no
need to harmonically analyze the equations or to separate
them into their scalar, vector, and tensor components—
nor is there a need, to first order, of knowing the solu-
tions to the field equations. The results are given simply
in terms of the differences in the density contrasts and the
pressures (if p70) at the two points on the last-scattering
surface being compared. Furthermore, it is clear that the
results are gauge invariant, that is, the values of the tem-
perature anisotropy given by Egs. (24), (25), or (30) will be
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independent of the coordinate system in which they are
calculated. Though the underlying formalism is not
gauge invariant (everything is worked out in a particular
coordinate system-—observational coordinates), the
differences in the quantities contributing to AT /TR all
vanish in the FLRW background, and are gauge invari-
ant, as can been seen in our formulation.

There are essentially three contributions to the temper-
ature anisotropy. The first is the variation of the emis-
sion temperature on the last-scattering surface itself.
This is zero in the adiabatic-perturbation case (see, e.g.,
Ellis et al. [5]). The second contribution is due to the
first-order variation in the distance 7 the last-scattering
surface is found in different directions on the plane of the
sky. This is the dominant contribution and is indepen-
dent of pressure. It is determined by examining the
consequences of demanding that the last-scattering sur-
face is one of constant free-electron density, as Panek [7]
has done. The third first-order contribution is due to the
difference in the pressures on the last-scattering surface.

This is essentially the result of the nongeodesic flow of
the emitters.

We find that the additional pressure term can
significantly depress the SW effect when Q is low, or
when radiation pressure dominates matter pressure at
last scattering. This shows that CMBR anisotropies are
depressed in adiabatic low-density universes where the
radiation pressure can dominate at the surface of last
scattering.

In the near future, we hope to employ this formulation
of the SW effect to investigate more fully first-order ve-
locity and gravitational-wave contributions and the
second-order contributions to the anisotropy of the mi-
crowave background.
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