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Reconstructing the in8aton potential: Perturbative reconstruction to second order
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One method to reconstruct the scalar field potential of inflation is a perturbative approach, where the
values of the potential and its derivatives are calculated as an expansion in departures from the slow-roll

approximation. They can then be expressed in terms of observable quantities, such as the square of the
ratio of the gravitational wave amplitude to the density perturbation amplitude, the deviation of the
spectral index from the Harrison-Zel'dovich value, etc. Here, we calculate complete expressions for the
second-order contributions to the coefticients of the expansion by including for the first time corrections
to the standard expressions for the perturbation spectra. As well as offering an improved result, these
corrections indicate the expected accuracy of the reconstruction. Typically the corrections are only a
few percent.
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An intriguing prospect raised by recent large-scale
structure observations, particularly those of the Cosmic
Background Explorer (COBE) satellite [1], is that obser-
vations may soon provide rather detailed information re-
garding the nature of the vacuum energy driving inflation

[2—4]. In most models this vacuum energy is identified
as the self-interaction potential of a scalar inPaton field,
and its precise form is determined by some particle phys-
ics model. Since there currently exist many possible
models [5], it is of great interest to investigate whether
observations can select which, if any, of these models is
correct. As well as having detailed implications for the
initial conditions for structure formation in the Universe,
the energy scale of inflation provides a link with particle
physics at high energies, and may be a useful method of
probing models of unification.

The prime observational consequences of inflation
derive from the stochastic spectra of density (scalar) per-
turbations and gravitational wave (tensor) modes generat-
ed during inflation. Each stretches from scales of order
centimeters to scales well in excess of the size of the
presently observable Universe. Once within the Hubble

radius, gravitational waves redshift away and so their
influence is on the large-scale microwave background an-
isotropies, such as those probed by COBE [6]. Advanced
gravitational wave detectors such as the proposed beam-
in-space experiments may be able to detect the gravita-
tional waves on a much shorter (about 10' cm) wave-
length range [7]. The density perturbations are thought
to lead to structure formation in the Universe. They pro-
duce microwave background anisotropies across a much
wider range of angular scales than do the tensor modes,
and constraints on the scalar spectrum are also available
from the clustering of galaxies and galaxy clusters, pecu-
liar velocity flows, and a host of other measurable quanti-
ties [4].

Recently, we provided a formalism which allows one to
reconstruct the inflaton potential V(P) directly from a
knowledge of these spectra [8]. This developed an origi-
nal but incomplete analysis by Hodges and Blumenthal
[9]. An important result that follows from our formalism
is that knowledge of the scalar spectrum alone is
insufficient for a unique reconstruction. Reconstruction
from only the scalar spectrum leaves an arbitrary integra-
tion constant, and since the reconstruction is nonlinear,
different choices of this constant lead to different func-
tional forms for the potential. A minimal knowledge of
the tensor spectrum, say its amplitude at a single wave-
length, is sufficient to lift this degeneracy. With further
information the problem becomes overdetermined, pro-
viding powerful consistency relations which would ex-
clude inflation if not satisfied. Reconstruction of the po-
tential was also discussed in Ref. [10].

The most ambitious aim of reconstruction is to employ
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observational data to deduce the complete functional
form of the inflaton potential over the range correspond-
ing to large-scale structure. The observational situation
is some way from providing the quality of data that this
would require, and at present a more realistic approach is
to attempt a reconstruction of the potential about a single
point Po [8].

For this one requires such information as the ampli-
tudes of both scalar and tensor modes and also the spec-
tral index of the scalar perturbations at a single scale. It
is possible that such information can be deduced from a
combination of microwave background experiments that
span a range of angular scales [11]. In this paper it is our
aim to provide an improved calculation of the coefficients
of such a perturbative reconstruction.

To some extent all inflationary calculations rely on the
use of the slow-roll approximation. In the form we
present here, the slow-roll approximation is an expansion
in terms of quantities defined from derivatives of the
Hubble parameter H. In general there are an infinite
hierarchy of these which can in principle all enter at the
same order in an expansion. However, to calculate V(go)
one needs only the first derivative of H, for V'(Po) one
needs up to the second derivative of H, and so on. These
parameters can be converted into more observationally
related quantities, as we shall see.

The slow-roll approximation arises in two separate
places. The first is in simplifying the classical inflationary
dynamics of expansion, and the lowest-order approxima-
tion ignores the contribution of the inflaton s kinetic en-
ergy to the expansion rate. The second is in the calcula-
tion of the perturbation spectra; the standard expressions
are true to lowest order in slow roll. In our earlier work
[8), we utilized the Hamilton-Jacobi approach [12] to
treat the dynamical evolution exactly, but were forced for
analytic tractability to retain the lowest-order approxi-
mation for the perturbation spectra. Technically there-
fore, the results were accurate only to lowest order,
though in models close to the power-law inflation limit
this hybrid approach offers substantial improvements for
certain quantities.

Until recently further improvements have not been
possible, but a very elegant calculation of the perturba-
tion spectra to next order in slow roll has now been pro-
vided by Stewart and Lyth [13]. This does not permit an-
alytic progress in functional reconstruction, but their re-
sults can be combined with the Hamiltonian-Jacobi ap-
proach to generate the complete second-order term in
perturbative reconstruction. The purpose of this work is
to calculate this correction. This serves two useful pur-
poses. First, the results allow a more accurate recon-
struction to be performed, and secondly the relative size
of lowest-order and second-order contributions provides
a useful (though not rigorous) measure of the theoretical
error in reconstruction. As we shall see, even the lowest-
order results are typically accurate to within a few per-
cent.

given by expressions improving on Eq. (3.4) of that work.
The Hamilton-Jacobi equations arise when one used the
scalar field P as a time variable, and writes the Hubble
parameter H=a /a, where a is the scale factor, as a func-
tion of P. The field equations are [12]

[H'(P) ] ——', ~ H (P) = —
—,
' a V(P),

a P= 2H—',
(2.1)

(2.2)

2 H'"(P) 2il'

The slow-roll approximation applies when these slow-roll
parameters are small in comparison to unity. The condi-
tion for inflation, a )0, is precisely equivalent to e (1.

The lowest-order expressions for the scalar (Az} and
tensor (AG) amplitudes assume [e,g, g] are negligible
compared to unity. Improved expressions for the scalar
and tensor amplitudes for finite but small [e,r), g] were
found by Stewart and Lyth [13]:

v 2K2 H2
As ——— 3, [1—(2C+ 1)e+Cg], (2.4)

AG ——
3~i H [1—(C+ 1)e],

4 3n, (2.5)

where C= —2+ln2+y = —0.73 is a numerical constant,
y =0.577 being the Euler constant. The right-hand sides
of these expressions are evaluated when the scale in ques-
tion crosses the Hubble radius during inflation,
2~/A, =aH. The spectra can equally well be considered
to be functions of wavelength or of the scalar field value.
Equation (2.7) below allows one to move from one to the
other.

The standard results to lowest order are given by set-
ting the square brackets to unity. Historically it has been
common even for this result to be written as only an ap-
proximate equality (the ambiguity arising primarily be-
cause of a vagueness in defining the precise meaning of

where overdots are time derivatives, primes are P deriva-
tives, a =8m. /m p„and mp, is the Planck mass. Without
loss of generality we may assume P )0, so that H'(P) (0.
Where square roots appear later this choice is used to fix
the sign of the prefactor.

The slow-roll approximation can be specified by pa-
rameters defined from derivatives of H(P). There are in
general an infinite number of these as each derivative is
independent, but usually only the first few enter into any
expressions. We shall require the first three, which are all
of the same order when defined by'

2 H'(P}
tr'

(
H(P)

2 H"(P) e'
(2.3)

II. TO SECOND ORDER IN SLOW ROLL

We shall use the notation and philosophy of our earlier
paper [8], except that the perturbation spectra shall be

iLet us stress that our choice P) 0 implies
v'g= —V 2/g 0'/H; one needs to be careful with the signs to
reproduce our results.
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[1—2C(e —r1)] .
A~

(2.6)

As we shall see, g is encoded in the spectral index of the
scalar perturbations, whose deviation from unity must
also be small for slow roll to apply.

A key equation in Ref. [8] is the consistency equation,
which connects the scalar spectrum to the tensor spec-
trum and its derivative. The spectra as given in Eqs. (2.4)
and (2.5) are functions of the value of ((} when the ffuctua-
tions crossed the Hubble radius during inflation. This is
converted into a dependence on wavelength A, with the
relation [9]

dA. ~Ha.
[ )

dP H' 2
(2.7)

Differentiation of Eq. (2.5) with respect to P implies that

d lnAG ~& AG

dP 2 As
[ I+(C+2)e—(C+2)q], (2.8)

and it follows that

dAG AG
[ I+3e—2'] .

AG dA, A~
(2.9)

As expected this agrees with the expansion of the corre-
sponding expression in Ref. [8] for the special case E=q

the density perturbation}, though the precise normaliza-
tion to lowest order was established some time ago by
Lyth [14] (see also the discussion in [4]).

The improved expressions for the spectra in Eqs. (2.4)
and (2.5) are accurate insofar as e and g are sufficiently

slowly varying functions that they can be treated adiabat-
ically as constants while a given scale crosses outside the

Hubble radius. Corrections to this would enter at next
order. This differs from the usual situation in which H is
treated adiabatically. For the standard calculation to be
strictly valid H must be constant, but provided it varies
sufficiently slowly (characterized by small e and ~g~), it
can be evaluated separately at each epoch. This injects a
scale dependence into the spectra. There is a special case
corresponding to power-law inflation for which e and g
are precisely constant and equal to each other. In this
case there are expressions for the perturbation spectra
that are exact [13,15]. Furthermore, the corrections to
each spectrum are the same and they cancel when the ra-
tio is taken. In the general case e and g may be treated as
different constants if it is assumed that the time scale for
their evolution is much longer than the time scale for per-
turbations to be imprinted on a given scale. This assump-
tion worsens as g is removed from e, which would be
characterized by the next order terms becoming large.

Throughout we shall be quoting results which feature a
leading term and a correction term linear in the slow-roll
parameters. We shall utilize the symbol "="to indicate
this level of accuracy throughout. The correction terms
shall be placed in square brackets, so the lowest-order
equations can always be obtained by setting the square
brackets equal to one. A useful relationship can be ob-
tained from Eqs. (2.3)—(2.5):

This equation is interesting in its own right, but for per-
turbative reconstruction its use is restricted to the remo-

val of derivatives of the tensor spectrum.

III. PERTURBATIVE RECONSTRUCTION
TO SECOND ORDER

d lnAs(A, )

d ink.
(3.1)

To lowest order in slow roll one can show that the spec-
tral index is given by [8]

1 —n =4@—2g, (3.2)

which provides the route to determining g. Conceptually
we are passing from these three observables to the three
parameters that describe the potential, which are the
slow-roll parameters e and g, and the overall normaliza-
tion. In terms of the observables, therefore, the slow-roll
approximation amounts to an expansion in both AG/Az
and (1 —n), which give corrections to the same order.
We shall see that the correction term for V"($0) requires
the introduction of the third slow-roll parameter g, re-
quiring a new independent observable to determine it.

One obtains directly from the field equation Eq. (2. 1)

and the definitions of the spectra in Eqs. (2.4) and (2.5) an
expression for the amplitude of the potential:

3 A (A)
V(go) = AG(AO) 1+ —+2C (3.3)

A (A, )

48~3 A (A )

AG (Ao) 1+0.21
As(A, O)

(3.4)

In Ref. [8], we gave the numerical factor on the second-
order term as —

—,', which incorporated only the dynami-

cal slow-roll corrections. In fact, the spectral corrections
to V($0) dominate the dynamical ones for any inflation

model, reversing the sign of the correction, which may be
significant if the tensors are important. However, the rel-

ative contribution of the scalar and tensor modes to large
angle microwave anisotropies with our spectral normali-
zation is given approximately by R [8], where

24 A~R=
25AG

(3.5)

Even if the contributions to the anisotropies from scalar
and tensor modes are equal, the correction term in the
potential is only 2%%uo. This is a powerful indication that

The aim now is to obtain expressions for the potential
and its derivatives about a single point Po, given informa-
tion regarding the spectra at the scale A,o which left the
horizon at $=(to. The four main quantities of observa-
tional interest are the amplitudes and spectral indices of
the two spectra. However, in view of the consistency
equation, Eq. (2.9}, only three of these are independent.
We shall concentrate on the two amplitudes and the sca-
lar spectral index, since these are probably the easiest to
measure. The scalar spectral index n is de6ned by
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even the lowest-order perturbative reconstruction prom-
ises to be very accurate.

To obtain V'($0) we need the scalar spectral index at
A p denoted by no. Differentiation of the potential with
respect to P, followed by some straightforward algebra,
gives

it is not enough to use the first-order expression for g in

terms of the spectral index. One must instead use the
second-order result, as given by Stewart and Lyth [13]:

1 —n =4e 2—ri+ 8(1+C)e (—6+ 10C )Eq+ 2Ceg (3.10}

(our ri being the negative of their 5}, which leads to

96m
V'($0) =— AG(A, O) [1+(C+2)e+(C—

—,
' )ri]

S 0

AG(AO) [1+1.27m —1.06']
As ~0

AG(AO) AG(AO)
1 —0.85

A, (~.)

3
G

1 + 4—2C + C —3 + C (
1 "0

~s

Substituting this into Eq. (3.9) yields

(3.11)

4C+4 5C+3 C 1 "o
e+g=3e 1+

3 3 +3 2
ri+—

+0.53(1—no) . (3.6)

(3.7}

Note that for power-law inflation, which has [6]

AG(A, O}
(1 no) =—

4~ A,'(X, )
'

the corrections in the square brackets nearly cancel, but
other models [16,17] can feature larger corrections, e.g. ,
16% for natural inflation with no =0.7.

The calculation for V"(Po) is much more involved.

One can show a precise relationship
V"($0) =3(e+ri) (q +—eg) . (3.8)
&'(0o}

A new observable will be needed to determine g, the easi-

est example being the rate of change of the scalar spectral
index. This would be substantially harder to measure,
and it is fortunate that it only enters at second order. [It
would, however, enter at leading order in V'"($0).] From
Eqs. (2.5) and (3.8), we can obtain the second-order
correction to V"($0) in terms of the slow-roll parameters:

V„(~ )
144m G 0 4C+10 C —33A (A, )

A(A} 3 3 3

24m
2 AG(AO)(1 —no)[1+(2C+2)e]

K

16~
A ( +m))

K
(3.12)

where the last term is entirely second order. Note that
there are two lowest-order terms. An interesting case is
ri= e, cor—responding to H ~ P'~, for which the lowest-
order term vanishes identically and the final term of Eq.
(3.9} is the only one to contribute. The second derivative
of the potential is the lowest derivative at which it is pos-
sible for the expected lowest-order term to vanish.

The final step is to convert the second-order terms into
the observables. As they are already second order, one
only needs the lowest term in their expansion to convert.
From the expression for the spectral index, one finds to
lowest order that

48m
V"(po) = AG(AO)(@+71) I+(2C+2)e

K

1 dn'=2 dl ~
(3.13)

vP+ ~g

3(e+ri)
It is, however, harder to convert the prefactor into ob-
servables, because there are now lowest-order terms in
both e and q. To generate the correct second-order term,

I

Note that the derivative of the spectral index is of order
e . To lowest order we also have

ri =2e —
—,'(1 —no), e = (3.14)

S
Progressively substituting all these into Eq. (3.12) yields

AG(~0) AG(AO)
V"(Po)= AG(AO) 9 ——(1—no)+(36C+2)

As(A, O)

1 AG(~0) 3C —1 dn——(1—no) —(12C —6) z (1 no)+—
4 A&(g, )

' 2 dink g,
(3.15)

where the first two terms are lowest order and the
remainder are second order.

2Factoring out the lowest-order terms as in previous expres-
sions leads to a very complicated result, so we break our con-
vention regarding the use of square brackets.

For power-law models, the last term is zero and the
remaining correction terms nearly cancel each other,
though they are not small individually. For natural
inflation models the correction terms are all individually

small, with an overall correction of about 4% at no =0.7.
[In natural inflation, (dn/d 1nA, )~z —-g =(1—no) /16

0

[13].]
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IV. DISCUSSION AND CONCLUSIONS

To conclude, we have calculated the full second-order
corrections to the perturbative reconstruction of the
inflaton potential. The first-order terms agree with those
we found previously [8], while the second-order terms
ofFer an improvement. They serve to quantify the expect-
ed errors in the perturbative reconstruction, and in gen-
eral these errors are small. Even in cases where tensors
provide a substantial contribution to the large angle rni-

crowave background anisotropies and/or the spectral in-
dex deviates significantly from unity, the corrections are

typically only a few percent. Consequently, example

figures based on plausible data sets that we presented in
our earlier papers remain valid.
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