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Hydrodynamic detonation instability in electroweak and QCD phase transitions
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The hydrodynamic stability of deflagration and detonation bubbles for a first order electroweak and
QCD phase transition has been discussed recently with the suggestion that detonations are stable. We
examine here the case of a detonation more carefully. We find that in front of the bubble wall perturba-
tions do not grow with time, but behind the wall modes exist which grow exponentially. We briefly dis-
cuss the possible meaning of this instability.

PACS number(s): 98.80.Cq, 95.30.Lz

A first order phase transition involves the nucleation of
a bubble of one phase within a medium of the original
phase. If the bubbles are large enough, they expand, col-
lide, and coalesce until the original phase has been com-
pletely replaced by the new phase. Though many of the
details of this process are not definitively knomn —the ex-
pansion rate of the bubbles, for instance —understanding
the dynamics of such transitions may provide valuable in-

sight into the conditions of the early Universe.
Of particular interest are the electroweak (EW) and

QCD phase transitions and the possible ranufications to-
wards the generation of a baryon asymmetry in the EW
case and the concentration of baryons in the QCD case.
If the EW phase transition is first order, the possibility of
baryon asymmetry generation arises [1]. Furthermore, if
the asymmetry is created by interaction with the bubble
wall, it becomes important to understand in detail the
shape and structure of the wall [2]. A first order QCD
phase transition, on the other hand, may result in baryon
concentrating effects [3]. Crucial to this is the concept of
phase separation [4]. The generation of a baryon concen-
tration may depend on whether, and how effectively, the
two phases mix during the period of bubble expansion.
The stability of the bubble wall and the possible existence
of turbulence are thus important factors when consider-
ing the effects of these phase transitions.

Recent investigations [4—6] of the hydrodynamic sta-
bility of the bubble wall restrict their attention to the case
of a deflagration front, namely a bubble wall which is
propagating at a speed slower than sound relative to the
old phase. Recent estimates support the assumption that
the bubble wall will propagate subsonically [7]. Even if
these estimates are correct, however, there may exist situ-
ations which allow for the supersonic propagation of the
bubble, i.e., a detonation front. It was suggested by
Kamionkowski and Freese [5] that the existence of an in-
stability in the deflagration front could result in the ac-
celeration of the front until it becomes a detonation, a
phenomenon which is observed in laboratories studying
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combustion [8]. It is interesting to note that once a bub-
ble becomes a detonation it does not necessarily become
stable. Indeed, in the standard theory detonations are
typically unstable [9]. The paper by Huet et al. [6] ana-
lyzed the dispersion relation obtained for a perfect rela-
tivistic fluid and concluded that there could be no pertur-
bations which grow in time in the detonation case. They,
however, only examine the region in front of the expand-
ing bubble and not the region behind it. In this paper we
employ the standard linear stability analysis used by oth-
ers [4,6, 10,11] to examine the possible existence of insta-
bilities both in front of and behind the bubble mall in the
detonation case.

Detonations and deflagrations consist of two different
phases separated by a transition region referred to as the
bubble wall. A detonation front propagates a velocity
greater than the local speed of sound relative to the origi-
nal phase. Behind the wall, the medium has a velocity
equal to or less than the speed of sound in the second
phase (see Steinhardt's article [12] for a discussion of rel-
ativistic detonation and shock waves). We choose to
move into the frame of the moving wall and position it at
x =0. To the left of the wall (x &0) is the original (e.g. ,
quark) phase, while to the right (x &0) is the new (e.g.,
hadron) phase. In region 1 (x & 0) the fluid has a positive
velocity less than that of sound (v

&
& c» & 0). In region 2

(x &0) the fluid has a positive velocity less than that of
sound (0&vz &czz) [12]. The situation is illustrated in
Fig. 1. Because of the different velocities, the behavior of
perturbations and their effect on the bubble wall mill
differ. Since perturbations cannot travel faster than the
speed of sound, we expect that in region 1 they should be
"swept amay" as the fluid passes through the wall. This
is in agreement with Refs. [5,6]. The situation behind the
wall is considerably different, there being no a priori
reason why one should expect perturbations to decay
with time.

We first consider the behavior of a relativistic perfect
fluid in the tmo separate regions. Using the metric
g =(+,—,—,—) the stress energy of a perfect fluid is
T""=mu "u —pg" where we have taken c = 1, with e the
energy density, p the pressure, and m =e +p the enthalpy
density. The equations of motion are
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FIG. 1. Schematic of the bubble wall in the frame of the wall.
The wall is located at x =0 with the old phase (e.g., quarks) in

the half-plane x &0 and the new phase (e.g., hadrons) in the
half-plane x & 0.

u "Bg+c,tv'„u"=0,

tvu "t)„u„—B~+u,u "Bg=0,
where u„=(y, yv) and y= 1/+1 —v . We take pertur-
bations in the velocity and pressure of the fluid about a
constant solution:

Po+5P

V —Vp+5U

This system may be solved to obtain a solution of the
form

W(x, y, t) =F(x)e

where

F(x)= ga e ' R
J

The a are constants, and R are eigenvectors. The q are
found by solving the characteristic equation for (4). Do-
ing this, we obtain the dispersion relation

1
(qvo+tv) 2 (qvo+co) —(q + vota) —(1—

v O2
)k ~ =0 .

cs

Vp
—UpX

5v =5u, x+5u y .

Keeping terms up to first order in 5p and 5v, we can write
the equations of motion as

(1—c, vo)—5p+vo(1 —c, ) 5p

+ tvc, 5v„+ 5v =0, (1)
Bx By

The solutions for q are

Up

1
q2 3= (c, —1)voto

Vo Cs

1/2
vo cs+c(1—vo) cv + k

1 —v 0

(6)

vo B B 1 B B—5p+ —5v„+ 5p+vo 5v, =0,
tvy dt Bt tvy~ Bx t)x

B B 1 B
5Uy + U o 5Uy +

2 p

(2)

(3)

A, —W+ A W+ A W=O,

where

5p
W= 5v„

5Vy

where (1) comes from the conservation of energy and (2)
and (3) are the relativistic Euler equations. It is more con-
venient to write this system as the matrix equation

—(1+c, )
67+

2 co2c~

Thus, the solution for perturbations in a perfect relativis-
tic fluid is

—iq l
x lq2x

W(x, y, t)=(a)R, e ' +a~R~e

+ &
—

q3
)

—i{~t+ky)
Q3 3e

where

These, (5)—(7), are the same as the equations obtained in
Ref. [6], Eqs. (32), (34)—(36). It will be of further interest
to note that in the case where vp =c, we obtain two solu-
tions, q, from above and
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and

1

—(q. + voco)

wy (co+voq, . )

—k

coy (co+voq )

for J =2, 3

5p= 1

r
—2y~w~v~ ( i co—)+o (co k—) b, ,

V1

When considering small perturbations, the surface term
c—r(() /dy 8—/dt )6 must be added to the right-hand

side of the momentum equation as a correction, where o
is the surface tension. Recalling that W=O in region 1,
the above equations may then be linearized to obtain, in
region 2,

We now wish to examine whether there exist any un-
stable modes of W (i.e., modes where Imco&0) which
obey the boundary conditions 8'~0 as ~+~. First,
consider region 1 (x &0). In order to satisfy the bound-
ary conditions as x ~—00, we must require either
Imq )0 or a =0. However, with some algebra, we can
show from (7) that if Imco & 0 then Imq~ & 0 and therefore
a. =O for j =1,2, 3. That is, perturbations which grow in
time cannot exist in front of the bubble wall. This is the
conclusion reached in Ref. [6]. Let us next consider what
occurs in region 2 (x & 0). Here, the x —++ oo boundary
condition requires either Imq (0 or a. =O. We find, if
Imago) 0 then Imq12 &0 and Imq3 &0. Thus, behind the
wall we need require only that a, =0. That is, since we
can satisfy the x ~+ oo boundary condition without re-
quiring a12=0, the solution for the perturbations, Eq.
(9), is not identically zero, i.e., perturbations behind the
bubble wall that grown in time may exist.

The above work, however, is not enough to prove that
instabilities do, in fact, occur. It is still necessary to im-

pose the constraints of the boundary conditions across
the bubble wall to determine whether the instabilities do
not contradict the relevant conservation laws. Let us use
notation where the subscripts of one or two indicate
quantities in region 1 (x &0) or 2 (x &0), respectively.
Also, we assume that there exists a perturbation of the
bubble shape of the form

g( t) D i(cut+ky)—

We require, conservation of energy,

2 = 2
W1$1V1 =W2/2V2

I + V1 U2 I
Vx ( iso—)h+ 1—

I U1 I 2r2W2V2

(10)

5v =(u, —vz)( ik)—b, , (12)

5p
YA=— 5v

5v

(13)

Matching solutions (9) with (13) we get

W(0+,y, t)=(a, R+a R )e

= YDe -&[~&+k»

This equation may be rearranged into a single 3 X 3 ma-
trix equation where the columns of the matrix are the
vectors R, , R 2, and Y:

where I'+=1+yzz8zvz and Hz= I+ I/c, z. Then (10)—(12)
give us the perturbations just interior to the bubble, i.e.,
as x ~0+. Since we require a3 to be zero for x &0 we
are left with a1, a2, and D as undetermined constants. By
matching the general solution for perturbations for x & 0,
Eq. (9), with Eqs. (10)—(12), we obtain three equations
for these three unknowns. We will always have a solution
for such a system provided that the determinant of the
coefficient matrix vanishes. Let us write Eqs. (10)—(12) as

conservation of momentum,

W1$1V1+P1 =W2$2V2+P222 = 22

and continuity of transverse velocity,

(R ( I
R z I

I')
a,

Bb, (}b,
V 1y +U 1

=U 2y +U 2
By taking the determinant of the above 3 X 3 matrix we
obtain anequaiionin~ q2 k ~i 2 1 U2 andcs2

U1
i [(I —2v~)co +v (I —2)q co +(2uz —I v, )v k co —I u, v q k ]

V2 CO V2 q2

—k+ [[I —I (1+2u )]co +(I —31 )v q co+2t u k ] =0.
2y2W2U2

(14)

Combining Eqs. (7) and (14) and solving for co we can eliminate qz and obtain an equation for co as a function of v &, vz,
c,2, 0. /w2, and k. By studying this equation we can determine if there exist any cases where co has a positive imaginary
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solution, thereby establishing that the detonation has a self-sustaining instability.
Of particular relevance is the case of a Chapman-Jouget detonation. This occurs when the velocity behind the wall is

equal to the speed of sound (U2 =c,2). Steinhardt showed that any detonation with spherical symmetry must be of the
Chapman-Jouget type [12]. It has also been postulated that any "naturally" occurring detonation will meet this condi-
tion [11]. In order to examine this case we use the value for q2 given in Eq. (8). It is interesting to look at the case
where the surface tension is zero (o =0); there are four solutions to co, two of which are positive imaginary. The solu-
tions are

C$2U1
CO

—+1
22 —c$2

1/2
1

c$2k, co —+1
1 C$2

1/2

C$2k .

The full equation with surface tension cannot be solved analytically. Instead we look at the behavior of co under
different limits. In the long wavelength limit (k ~0), keeping terms up to second order in k, Eq. (14) becomes

3cr(1 —c, ) U,
—c, 0(l —c, )

(1 c, )cu—+i (c, —3c, +2)co + [ —c, +—', (c, —1)]k co

2 $ V1 W2C$

c$
+i( —c,'U, —e, +c,u, +2)c, k co =0 . (15)

1

Notice that the quantity cr/to& provides a natural length scale. In Fig. 2, the behavior of Imago was plotted as a function
of k with values of U, =1.5c, and c, = I/&3. The particular choice for U, is arbitrary; the behavior of Imago is not al-
tered significantly for different values. We have chosen a solution which matches with an unstable mode in the zero
surface tension case, and we see that the rate of expansion increases slightly slower than linearly with the wave number,
an effect of the surface tension. The discontinuity which appears as k increases is an artifact of the small k approxima-
tion; its location approaches the origin as the surface tension is increased. That is, with a larger surface tension we
must go to a larger wavelength in order to insure that the k ~0 approximation is valid, as we expect.

Next, consider the short wavelength limit. As k goes to infinity only higher orders of k contribute and we get

(1—,') U,
—c, 0(l —c, )

[ c, + ',—(c, 1—)]k a—) +i( —c, u, —c, +c,v, +2)c, k co—
2 $ U1 W2

c,k co+i(U& —c, )c, k =0 .

Figure 3 shows Im~ as a function of k with the same
values as in Fig. 2. Here we notice that as k gets larger
Imago quickly approaches a constant value of approxi-
mately 0. 144m 2 /o . Unlike in the deflagration case,
where the surface tension results in there being a lower
limit cutoff in the wavelength of instabilities, with a
Chapman-Jouget detonation the growth rate does not

drop to zero with shorter wavelengths, but rather reaches
a maximum positive value.

Physically, we expect a cutoff wavelength because the
surface energy associated with a perturbation of ampli-
tude A goes like ek A . The existence of a cutoff elimi-
nates the problem of a divergent energy at extremely
small wavelengths. In the present model, when the veloc-
ity behind the wall is less than that of sound (Uz (c, ), we
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FIG. 2. Perturbation growth rate (Imago) as a function of
wave number (k) in the limit k~O, plotted with parameter
values c, =1/&3, vi=1.5e, in units of m&/o. .
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FIG. 3. The same as in Fig. 2, but in the limit k ~~.
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obtain a critical wave length below which perturbations
are stabilized. In fact, in the limit where v2 «c, «1 the
critical wavelength is the same as the one obtained by
Link [4] for a deflagration. It is only in the case where
vz ~c, that the cutoff wavelength drops to zero.

In order for these instabilities to be dynamically
relevant the mode with the fastest growth time scale must
be less than the time scale associated with the phase tran-
sition. The QCD transition lasts a time tH —10 s and
has a value of tr /we —1 fm [4]. We showed above that
Imago reached a maximum value of -0.14wz/0. , corre-
sponding to a time of -2.3X10 s. Thus, there is am-
ple time for the instabilities to mature.

The scales associated with the EW phase transition are
much smaller. In this case, using the formulas and pa-
rameter values as given in Ref. [13],we have a -0.09T,
and w2-40T, where T, is the critical temperature. With
a critical temperature of 150 GeV we get
trlw2-3X10 fm. This leads to a maximum value of
Imago of —5 X 10 fm ' corresponding to a time of
-6.7X10 s. Since the phase transition lasts a time
-0 005t& .[13],where the Hubble time is tH —10 "s, we
see that there is sufficient time for the instabilities to
grow.

Our general picture of the instabilities, then, is the fol-
lowing. For very large wavelengths the instabilities grow
only very slowly with time, vanishing as A. approaches
infinity. As the wavelength decreases Imago rapidly in-
crease with smaller A, until a maximum rate is reached.
Thus, unstable modes exist at wall wavelengths. Even
though these calculations were done for a Chapman-
Jouget type of detonation, it is unlikely that the science
and time scale of the instabilities is so sensitive to the ve-
locity behind the wall that this picture would be very
much altered should v2 & c, . Additional work beyond the
scope of this article would need to be done, however, to
verify this assertion.

Note that these instabilities do not exist in front of the
bubble wall, but rather behind it and at its surface.
What, then, are the ramifications on the bubble wall and
the fluid inside it? To answer this, let us examine similar
types of instabilities which exist in the laboratory.
D'yakov and others [10]have calculated the stability con-

dition for shock waves in a classical nonrelativistic fluid.
Though a shock wave and denotation are not identical,
the fluid dynamics are quite similar. It is possible to es-
tablished conditions in the laboratory which violate this
stability requirement; that is, under certain circumstances
there are unstable modes which exist on the surface of
and behind the shock wave. Thompson et al. [14] have
recently done experiments which violate this shock stabil-
ity condition. In their report they show a series of photo-
graphs where we see shock waves transform from planar
to a billowy cloudlike surface as the stability condition is
violated. The surface of the wave is traveling faster than
the speed of sound, and the instabilities do not propagate
forward from the shock. The transformation of the
shock surface from planar to irregular is described by
them as "transition to turbulence" of the fluid behind the
shock.

It is possible that a similar situation exists with the in-
stabilities described above. The growth of perturbations
behind the bubble wall may result in turbulence and a
highly irregular surface. Such effects may entail an alter-
nation in the picture of the phase transition proceeding
through the growth of uniform spherical bubbles. This
may very well be relevant when considering the possibili-
ty of baryon generation and concentration in the EW and
QCD phase transitions, respectively.

Whether detonations actually do arise, though, is not
yet known. A more highly first order transition would
likely result in an increased possibility of detonations.
Another mechanism could be the existence of instabilities
in deflagrations as described in Ref. [5]. The above
analysis, however, is limited to the linear regime and does
not take into account any nonlinear effects that may
arise. The result of such effects may be to stabilize the
perturbations, as has been observed with deflagrations in
the laboratory [8]. It remains to be seen whether non
linearities are indeed important.
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