
PHYSICAL REVIEW D VOLUME 49, NUMBER 4 15 FEBRUARY 1994

Graviton creation in an in8ationary universe
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Graviton creation in an expanding universe is studied. Following the work of Parker, we calculate ex-

plicit expressions for the Bogoliubov coefficients a and P as functions of time, valid in the high-frequency
limit and for an exponentially expanding phase of the universe. The power spectrum of the created grav-

itons is investigated.
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I. INTRODUCTION 2%1 'r2
a(r)=a& for ~&&~&~, ,

27] r
(2a)

As far as we know, Schrodinger was the first to realize
that, in a universe expanding with acceleration, pairs of
particles would be created, a phenomenon that he
classified as alarming [1]. The fascinating thing is that,
rather than pursuing the subject and exploring its conse-
quences, Schrodinger decided instead to investigate those
situations where this phenomenon would not occur.
Later, in 1957, the problem of quantized particle creation
in an expanding system was treated by Takahashi and
Umezawa [2]. But the formalism we shall be using
throughout this paper is the one developed in 1969 by
Parker, in a pioneering work, for an expanding universe
[3]. Important references are also the works of Zeldovich
and Starobinskii [4] and of Birrell and Davies [5]. For a
review on cosmological gravitational waves see Ref. [6].

In this paper we address the problem of the stochastic
gravitational-wave background calculating, using directly
the second-quantized formalism developed by Parker in
Ref. [3], the Bogoliubov coeScients ak(~} and Pk(r) as a
function of time. During an accelerated phase the
creation of gravitons could be an important phenomenon
[7—17]. We study the especially simple case of an ex-
ponentially accelerated phase and restrict ourselves to the
high-frequency limit of the spectrum of the created gravi-
tons. The problems related to the low-frequency end of
the spectrum, for power-law expansion, were discussed in
Refs. [20,21].

We shall closely follow Ref. [3], adapting it to the
present situation, and use, with slight modifications,
Allen's notation [16] for the exponential infiationary
phase. For convenience we take a spatially flat universe
and write the line element in the form

ds =a (r)( —dr +dx ),
treating the gravitational metric as an unquantized exter-
nal field. We have an inflationary phase between r2 and
rI, undergoing at r, a transition to a radiation-dominated
universe. The scale factor in the conformal time of the
metric (1) obeys

with

a2(2r) —rz) =(8n Gp„„/3)'

and

271 r2
a(~)=a2 ~ for r&~, .

1

(2b)

We shall write the gravitational perturbation
[g„„=a (~)(5„„+h„„)]as a Fourier expansion in terms
of the creation and annihilation operators and of the two
polarization states of the gravitational plane wave [21]:

h+ =g [az +(r)P(r)exp(ik x)+H c ]. . .
k

(3a)

The physical frequency is ro=ck/a (~) (we take c = 1 and
k = ~k~} and az +(r) and a& +(r) are the corresponding
creation and annihilation operators, which we take as
time dependent. The gravitational perturbation thus
written must satisfy the equation

h + (r )+2(a'/a )h+ +k h+ =0, (3b)

where primes denote d/d~. As Parker did, the function
P(~) will, in what follows, be written in the general form

1 1
P(~)= 3zz exp i W(k, r')d—r'

a W(k r)
(3c)

with W(k, r) an arbitrary function of k and ~, but on
whose choice the form of the operators az +(r) will obvi-
ously depend. These time-dependent operators obey the
canonical commutation relations

[a&+(~),a&+(~)]=5&& all the others being zero,

(4a)

as can be proved by following a procedure exactly similar
to the one developed by Ford and Parker in Ref. [21]
[Sec. III; in particular, from Eqs. (3.30) up to (3.38)] and
Parker [3],prouided that a condition similar to Eq. (10) of
Ref. [3] holds:

dh~(r} 1 1a)+(r) exp i k x —I W(k, r')d~'
d~ „' d~ a'~' &W(k, r)

-+H. c. (4b)
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a„~(r)=a„'(r)W„~+p,(r)Wt „~ (5b)

defining the Bogoliubov coeScients, which, later on, will
be seen to obey the condition lak(~)l —Ipk(r) I

= 1.
Exact solutions of (3b},corresponding to a choice of an

infinite-order adiabatic vacuum state, where
ak =const= 1 and pk =0 in (5b), are known for the cases
(2a) and (2b) and correspond to the choices for P(r) [16]:

P(r) =(az/a ) t I+i(a la2)[I/k(2ri —v2)]]

X exp[ iK(—r r2)—], (6a)

for the inflationary phase, and

This condition in our case is also satisfied for all times.
We now introduce an arbitrary time ~3 such that a&+ is
given at that time by

ak +(r3)—Aq +,
for later times we assume that a„+(r) evolves as deter-
mined by the ansatz

quantity, which expresses the probability of finding at the
time ~ zero particles corresponding to. the wave number
k, can be expressed in terms of ak(r }and p„(r). It is also
shown in Parker that the average number of particles
present at time v, in the mode k is [3]

& &k (~}&
=

I pk(r }I' .

The interesting thing in Parker's formalism seems to be
the possibility of choosing a no-particle initial condition
at a finite time in the past. For such a no-particle condi-
tion defined with respect to the infinite-order adiabatic
vacuum state, we need to guarantee that our state,
defined by (3a) and (3c) is, at the time r&, sufficiently close
to this infinite-order adiabatic vacuum state to warrant
such a definition of the initial condition. We show in Sec.
III that this indeed happens in the cases under study; at
the moment, we just assume that ~2 ~3 ~ ~&. In the actu-
al practice ~3 is such that, prior to ~3, all the created
gravitons will be so redshifted that their contribution to
the power spectrum can be ignored.

P(r) =(az/a)exp[ ik(~ —r, )]—, (6b)

for the radiation-dominated phase.
The inflationary phase can be preceded (for r & r2) by

another phase, but this is not important now.
The important point to realize is that, due to the ex-

pansion of the Universe, the state l0), which we define as
the state that contains no particles at a certain instant of
time ~3 with respect to the infinite-order adiabatic vacu-
um state (Ai, +l0) =0, for all k), will evolve in such a
way that, if we define l0),= U(~)l0), U(r) a well-defined

unitary operator [3], as the state which contains no parti-
cles at a time r )~3, then

l & Ol0), l&1. The square of this

II. CALCULATION
OF THE BOGOLIUBOV COEFFICIENTS

Our purpose now is to find the functions ak(~} and
pk(r}. To do that we first derive a pair of integral equa-
tions for these functions, which we then solve using an
iterative method. The solution is given by Eqs. (25a) and
(25b) below. To establish a connection with Parker's no-
tation note that his function h (i) is now given by

h(r) —= v'a(r) a„(r)exp i f W—(k, ~')dr' +Pk(~)exp i f W(k, r')dr'
W(k, r) 2 T2

(8a}

where h is an arbitrary constant (left for normalization
purposes). In what follows we shall suppress the explicit
mention of the index k and use h as the function defined
by this relation. Equation (16) of Ref. [3] then becomes,
in conformal time,

h T
h (r) = —i a(r) a(r)exp i f k —d~'

&k T2

+P(r)exp —f k dr'
T2

(8b)

h" —(a'/a)h'+ [k + —,'(a'/a )
——', (a "/a )]h =0 (9a) We now assume the initial conditions

and, of course, a solution of this equation is a' P(~),
with P given by (6). From Eqs. (4), (29), and (30) of Park-
er [3] it is shown that his condition (10) is satisfied at all
times and without any mathematical constraint on W,
leaving W as an essentially arbitrary real function of k
and time. Exactly the same happens here with our condi-
tion (4b). We shall make, in what follows, the choice
W =k. This is the simplest choice that we can make and
also allows us, later on, to establish in a simple way a
connection with the solutions written by Allen represent-
ing the infinite-order adiabatic vacuum state [see Eqs.
(26) and (27) below]. With this choice of W, we write the
solution of Eq. (9a) in the form

a(r3) =1 and P(~3)=0, (10)

which differs from Eq. (9a) only in the numerical
coefficient multiplying a" /a. Equation (9a) can then be

for some convenient ~3, with ~2 v.
3

& ~, . Later on ~3 will
be taken equal to 72.

Let us first note that the expression

h
ho(~) = —v'a exp i f kdr'—

v'k T2

satisfies the equation

ho' —(a'/a)ho+ [k +—,'(a'/a )
—

—,'(a" /a )]ho=0, (12)
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rewritten as

h"—(a'/a )h" + [k + ,'(a—'/a ) —
—,'(a "/a )]h =2kSh,

(9b)

where the left-hand side (I.HS) is the same as Eq. (12) and
S is given by

2kS—:(a "/a) . (13)

From this equation we see that S =0 in a radiation-
dominated universe where a-~', we also know that no
gravitons are produced in this case due to a conformal in-
variance in the equations [17]. S =0 and no gravitons are
produced, also in the 1imiting case where a is constant.

Let us introduce the function

G (k, r, r')— 1 i &a(r}
exp i —f kdr" —exp i f kdr"

2i k a(r') (14)

this function satisfies Eq. (12) and the conditions G(k, r, r)=0 and BG( k, rr')/Br= 1, at r=r' Fro. m a comparison of
Eq. (9b}with Eq. (12), we are then led to write h (r) in the form

h(r)= &a(r) exp i f—k dr' +f G(k, r, r')2kS(r')h(r')dr',
k T2 . T3

(15)

which we can check to be a solution of Eqs. (9). If we use expression (Sb) for h (r) on both sides of (15), we finally find
the system of integral equations for a(r) and P(r):

a(r) =1+if dr'S(r') a(r')+P(r')exp 2i f k dr"
T3 T2

P(r)= i f —dr'S(r') P(r')+a(r')exp 2i f—k dr"
T3 T2

(16a)

(16b)

From Eqs. (16), their derivative, and conditions (10), we derive

(17)

a condition that a and P must satisfy at all times. As stated at the beginning of this section, our purpose is to solve the
system of Eqs. (16). In order to simplify our task, following Ref. [18]we express a and P in terms of two new functions
ri and g:

r

a(r)=ri(r)exp i f dr'S(r')
T3

P(r) =g(r)exp i f dr'S—(r'}
T3

(18a)

(18b)

with g(r3}= 1 and g(r3) =0, as required from (10). From these equations and Eqs. (16) we get the system of equations

g'(r) =iS (r)g(r)exp[ i 8(r) ]-,
('(r}=—iS (r)ri(r)exp[ie(r)],

where we introduced the function

e(r)=2 f dr'S(r') 2k(r r2) . — —
3

(19a)

(19b)

(20)

(21b)

S(r)= 1

k(2r, —r)

and

It is Eqs. (19) that we are going to solve iteratively. Taking into account the conditions on ri and g at r3, the result of
this procedure is to express ri(r) and g(r) through the expansions

ri(1 )= 1+f dr' f dr"S(r )$(r")e '@~'1'@~ '
T3 T3

+ f dr' f dr" f dr"' f dr""S(r )S(r )S(r )S(r )e + . (21a)
T3 T3 T3 T3

g(r) = i f dr'S(r—')e'@ ' i f dr' f d—r"f dr"'S(r')S(r")S(r"')e'@~'
T3 T3 T3 T3

where it is important to notice that S(r) and 8(r) are known functions of r; a and P can then be obtained with the help
of Eqs. (18). In the case of the inflationary phase, with a(r) given by (2a), we have

2 1 18(r}=-
k 2~, —~ 2~, —~~

—2k(r —r2), (22)
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where, from now on, we take r3 =v—z. We calculate (21) in the high-frequency limit case, kw) 1, where the series (21)
rapidly converges and only the first few orders in 1/kr will be necessary. To do this we rewrite the functions
exp[i8(w) ], appearing in Eqs. (21), in the form of a series in 1/kw as

—»k(~ —~2) g 2 2 1 2 2

2k (2r, —7 } (2r, —r2)
(23)

»k(H ~2)

i — di'S(i'}e' = i—dr' 1+—i 8(v') ~ 1 2 2

k(2g( —r')2 k 2r) r' —2w) —
wp

(24)

The integrais in (21) are calculated by parts leading, in the high-frequency limit [19], to a rapidly convergent series in
1/kr As.an example, consider the first term in g(~):

r

Both the expansion of exp[i8(r)] and the integrations by parts must be made up to the required order in I/kr,
remembering that, each time we integrate by parts the exponential term exp[ —2ik (v' —r2)], we get an extra factor 1/k.
Doing this in a systematic way, rearranging the terms and introducing the notation x—:{2r,—~), y:—(2r, —r2),
a —=exp[ —Zik(r —r2)], and b =exp[2ik(r r2—)]=a *, we find, for the first few terms of p(r),

p(~) = i—i a 1 2 a 1

2 ~ 2
y

2 2k 3 ~ 2y y
3

1 a 1 1+—
2 Q 2

+ 4k'
a 1 4a 4a

r

+O(1 /( kr) ) exp i-
k 2~,

1

k {2~,—r~
(25a)

For a(r} we get-

a(r) = 1+ i i 1 1 1 1 1 1 b+ — +- +0(1/(k~) )
y3 4k 2y 2 z z2y2

1
Xexp i

k 2v, —~
1

k(2r, —r, )
(25b)

We can check by direct substitution that h (r ), as defined by (Sb) and (25), is indeed a solution of Eqs. (9) and that a and

P also obey
~
a

~

—
~P ~

= I +O(1/( k r ) ).
We now establish the connection between our solutions (Sb) and (25) and the solutions found by Allen [16],which we

can write in the form

h(r)=a&i/a(r) 1+i exp[ —ik(r —rz)]
1

k (2r; —r} (26)

and its H.c.
Any other solution of Eqs. (9) can be expressed as a linear combination of the solutions (26) and, indeed, this is what

happens in our case. Expanding the exponentials

exp[+i (1/k (2r, r) 1/k(2r, ——rz) )—]
that appear in the expressions for a and p, and taking (10) into account, we find after some algebra that

h(r)-&a 1+ exp[ ik(r r2—)] — — 1+ exp[ ik(~ r2}—]—
1+ exp[ ik (7 r2) ]- —

2k'(2r, —~,)' k(2r, r)—
1 — exp[+ik(~ )r]+O—(1/(k )r)

2k (2r, —v2) k 2r) —r (27)

the terms in 1/(kr) canceling among themselves. Why
and how does such a series appear? Where do the terms
of higher order in 1/kr come from? We may try to un-
derstand it in the following way. Notice that the solution
(26) does not r'educe, at the finite instant of time

l

&=r2 ——w, , to the form h(rz)-+a(r~), as it should,
given the form (Sb) for h (~) and the initial conditions
defined in (10). In order to have h(&2) —Qa (~2}, we see
that we need to subtract from (26) a term
&a(w)i /k(2r, —r2) giving to (26) the form
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h(r)-&a 1+
k (2ri —r)

l

k (2r, —r~)

Xexp[ —ik(r —r~)] . (28)

h(r)-&a 1+
k(2r, —r)

l

k (2r, —rq)

But now (28) is no longer a solution of Eq. (9); to regain a
solution we have to add a further term, which will be of
order 1/(kr) .

where we take ~0 as being the present time, for reasons to
be explained below. From relations (30)—(32) and Eq.
(2a), we can see that r2 = —10 r, and that any r, separat-
ed from 7~ by several e-folds, will be negative and will
have an absolute value several orders of magnitude larger
than r& T. he result is that our solution h(r) in (27) be-
comes practically equal to Allen's solution and our initial
state is very close indeed to the infinite-order adiabatic
vacuum state, as required by our considerations at the
end of Sec I. Then we have that, at r=r„P is reduced to
the expression

l2

k (2r, —r2)(2r, r)—
exp[ —2ik(r, —r2) ]P(r=r, ) =

2k r
(33)

Xexp[ ik(r—r2) ]—, (29)

which, although again a solution of (9), does not reduce
to h (r2)-Qa(r2); this in turn means that a new term, of
still higher order in 1/kr, must be added. In this way a
series in 1/kr is constructed, which has its origin in the
fact that we chose our no-particle initial state at a finite
time r2=r3 in the past. [Of course, this procedure of
adding terms does not lead to a unique way to construct
such a series for h (r)—for example, there are important
phase factors that might easily be left out; moreover we
would still need to separate the two series for a(r) and
P(r), a difficult job to perform without direct appeal to
Eqs. (16) and (17).) However, as we show in the next sec-
tion, for any reasonable inflationary model the most im-
portant contributions come from the first terms in Eqs.
(25) and (27).

III. THE POWER SPECTRUM

2T] Tj
=a2(2r, r2)ln (30)

relating the comoving time t to the conformal time ~,
where

We begin this section by showing that, for the usual
parameters defining the inflationary epoch, the first terms
in expressions (25a) and (25b) are indeed the most impor-
tant ones. We begin with the equation

t =Q2 27
& v2 2'T]

in agreement with Allen's result [16],apart from a phase
factor, giving

(8n Gp„„/3)
4cop(ap /a

&
)

(34)

the index 0 again referring to the present time.
In the limit of a very short transition to the radiation

period and with the choice made for 8; giving h (r) in
the appropriate form for the radiation phase, we can take
our calculation of P across r&, to r&+e Equa. tion (34)
may then be interpreted as giving the number of gravi-
tons at the beginning of the radiation phase. Had the
phase transition been a slow one, lasting a finite interval
of time hr, as investigated by Ford in Ref. [15], our cal-
culations would have to include such an interval of time
and P would have to be calculated at the end of the tran-
sition period. In fact, in this case, to call it a phase tran-
sition would be a slight misnomer, such a period being an
integral part of the expansion itself. This is seen in Fig. 1

of Ref. [15], where the dilution in the number density of
created particles (gravitons) is slightly compensated by
the creation of new particles (gravitons}, as shown by the
small increase in na . An entirely different situation is
the one where a new physical phenomena, such as a
quantum tunneling effect, takes place; in this case P(r, )

would have to be composed in the usual way with the P
corresponding to the phase transition to get Ps„,&.

Multiplying (34} by the density of states co den/2m c
and summing over the two polarization states, we find,
taking as a reference a frequency today of 10 rad/s,

Sm.Ga, (2r, —r, ) = p„„3

—1/2
P(cop)deep—-0.83 X 10 ' (p„„/ppi) (10 /cop)

X(10 a, /ap) drop erg/cm (35)

a(r=r, ) a, 67 1029
a(r=r2) a2

and also that

a (rp) ap =10
a(r, ) a,

(31)

(32)

the initial value ~; can be made equal to ~2, without loss
of generality, and in chaotic models of inflation we can
still take, if we wish, 72 —7p&. To be definite, we assume a
minirnurn model where inflation lasted for about 67 e-
folds.

During the radiation phase no further gravitons will be
produced and we shall neglect the gravitons created dur-
ing the dust-dominated phase, a reasonable approxima-
tion to make (with S-a"/a —1/r, late times give a
small S and, thus a P=0). The next gravitons we have to
take into account are those produced by the transition
between the radiation- and the dust-dominated phases.
Following Allen's considerations on the adiabatic
theorem [16] (see also Ref. [15]),we do not expect effects
from these gravitons on the power spectrum, for frequen-
cies above 10 ' rad/s, these effects being then restricted
to the frequency interval 10 ' ~coo& 10 ' rad/s, where
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the lower-frequency cutoff comes from the present hor-
izon of = 10 cm. For frequencies today too=to(ro), such
that

8m
ck~, = Gp„„

3

—1/2
ap

cop ) 1
a&

which corresponds to the high-frequency tail of Fig. 2 in
the first part of Ref. [16), the power spectrum is well ap-
proximated by (35).

We see that P (coo) varies with the eighth power of the
mass scale defining the inflationary era [p„„-M and

p„„appears squared in (35)], giving 32 orders of magni-
tude difference between an inflationary model character-
ized by a mass scale of the order of the Planck scale
Mp& 10 GeV, like the chaotic models, and a model
characterized by the grand unified theory (GUT) scale
M~ —10' GeV. This may be the difference separating
the possibility of detecting or not detecting a cosmologi-
cal gravitational-wave background. When it is detected,
using expressions such as (35) we will be able to fix some
of the parameters that characterize inflation. Constraints
are also obtained from the cosmic microwave background
(CMB) radiation and from the cosmological nucleosyn-
thesis. To derive these consequences the low-frequency
part (kr(1) of the gravitational-wave background is

necessary to calculate the integrated power spectrum.
This is now under investigation and will be the subject of
a future publication.

To conclude, we have derived the Bogoliubov
coefficients a and P as functions of time, for the case of
an inflationary expanding phase of the Universe [Eqs.
(25a) and (25b)], using the formalism derived by Parker;
this allowed us to calculate the gravitons produced and
their power spectrum, in the high-frequency limit, Eq.
(35). The connection between our solution and the
known solutions was also established.

Note added. After this work was already completed, I
came across a recent and excellent paper by Marcio Maia
(Sussex) [22] also dealing with relic gravitons and their
spectrum, albeit by an entirely different method than the
one used in the present paper.
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