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Coalescing compact binaries are the most promising sources of the gravitational waves to be detected
by planned long-arm laser interferometers. Estimation of the parameters of such a binary, such as the
masses of its members, distance to the binary, and their distribution in the sky, will provide a wealth of
astrophysical information. An important problem, called the inverse problem, is to determine the astro-
physically interesting parameters of the binary (such as the distance to the binary and its position in the
sky) from the parameters of the detector’s response function to the gravitational wave signal of the binary.
To solve the problem one needs the network of at least three detectors. We present the solution of the
problem that gives the maximum likelihood estimators of the astrophysically interesting parameters with
the least possible errors. This involves solving a complicated set of algebraic equations. We find that for
the network of the three planned advanced LIGO and/or VIRGO detectors and for a binary consisting
of two neutron stars of 1.4 solar masses each at a distance of 100 Mpc we can expect to determine its dis-
tance to an accuracy of the order of 10%, its mass parameter to an accuracy of the order of 107° solar
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masses, and its position in the sky to an accuracy of the order of 10~ * sr.

PACS number(s): 04.30.Db, 04.80.Nn, 95.85.Sz, 97.80.Af

I. INTRODUCTION

We can expect that at the turn of the century we shall
have a network of three laser interferometric gravitation-
al wave detectors as a result of the successful accomplish-
ment of the Laser Interferometric Gravitational Wave
Observatory (LIGO) [1] and the VIRGO [2] projects.
Once the instruments have achieved their first objective
of detecting the gravitational waves, then the whole net-
work can serve as a powerful astronomical observatory
providing information complementary to that obtained
by means of electromagnetic wave observations [3,4].
The most promising source to be detected by the planned
long-arm laser interferometers is the gravitational wave
signal from a compact coalescing binary system [5]. It
has been shown by Schutz [3] that to determine the dis-
tance to the binary and its position in the sky one needs a
network of at least three detectors. An important prob-
lem called the inverse problem is to determine from the
parameters of the response function obtained by means of
linear filtering of the data in each detector the above as-
trophysically interesting parameters. The problem of
detection of the gravitational wave signal from a coalesc-
ing binary and estimation of its parameters for a single
detector has been studied by a number of authors [6-10].
In this paper we give two algorithms to find the max-
imum likelihood estimators of the parameters of the
binary system for the case of the three detectors. We
take into account the relations between the parameters of
the gravitational wave signal estimated in each detector.
This additional information about the parameters of the
three signals improves the accuracy of the determination
of the parameters of the binary. Our method is optimal
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within the maximum likelihood method. This does not
exclude the possibility that by some other method one
can find better estimators, for example, using nonlinear
filtering proposed by Davis [11]. The near-optimal solu-
tion for the case of the general burst signals has already
been found by Giirsel and Tinto [12].

The plan of the paper is as follows. In Sec. II we give a
detailed formula for the response function of the laser in-
terferometer to the gravitational wave signal from a
coalescing binary as well as its Fourier transform in the
stationary phase approximation. For the network of the
three detectors we show the relation between the position
of the source in the sky and the time delays in the arrival
of the wave in the detectors. We also briefly review the
linear filtering of the data and the parameter estimation
theory. In Sec. III we present two methods of the op-
timal solution of the inverse problem and show that the
two methods give the same errors in the estimators of the
parameters of the binary. In Sec. IV we give a detailed
numerical analysis of the accuracy of the estimation of
the parameters of the binary for the planned LIGO
and/or VIRGO network of detectors. Our conclusions
are presented in Sec. V.

II. PRELIMINARIES

A. Single-detector response function

The single-detector response function has been studied
by several authors [5,8,13—-17]. Our treatment follows
that of Schutz and Tinto [13]. Let the orthogonal Carte-
sian coordinates (X, Y, Z) be connected with a weak plane
gravitational wave traveling in the +Z direction. Then
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the metric perturbation A ,, (g,,=17,,*h,,, where 7, is
the Minkowski metric and |h uv <<1) may be written, in
matrix form, as [assuming we work in the transverse
traceless (TT) gauge]

0 0 0 0
0 hy hy O

(ha)=lo H, —h, 0] (1)
0O O 0 0

where k. and h, are the two independent wave’s polar-
izations. (Since we are working in the TT gauge, the
metric perturbation h,, equals its trace reverse h uv)
Now, following Schutz and Tinto [13], let us introduce
orthogonal Cartesian coordinates (X,y,Z) in the
detector’s proper reference frame (we assume that the
detector is nearly at rest in the TT coordinate system of
the gravitational wave). The (X%,y) plane contains the
detector, and it is tangent to the surface of the Earth; the
X axis bisects the right angle between the detector’s arms.
The direction of the y axis is chosen in such a way that
the (%,5,Z) coordinate system is a right-handed one with
the Z axis pointing outside the surface of the Earth. In
the detector’s reference frame, the three-dimensional ma-
trix H of the metric perturbation is given by

H=A4HAT, )

where A is the three-dimensional orthogonal matrix
transformation from (X, Y, Z) to (%,y,Z) coordinates [the
superscript T in Eq. (2) denotes the matrix transposition]
and H stands for the three-dimensional matrix built up
from the space-space components of the four-dimensional
matrix (h,,) from Eq. (1):

h, hy O
H=|hy —h, Of. (3)
0 0 0

In the proper reference frame of a central mass of an
interferometer, an incident gravitational wave produces
tiny oscillations of end masses. If we denote by r, the ra-
dius vector of any end mass with respect to the central
mass (the subscript O denotes that there is no gravitation-
al wave), then the oscillatory change 8r of the r, pro-
duced by the wave is

r=1Hr, . @)

Equation (4) can be derived from the equation of geodesic
deviation [13] and is valid only if the size |ry| of the
detector is much smaller than the reduced wavelength
A /2 of the gravitational wave.

The relative length change of one arm is defined as

5 _ |r+8r| —|rp)

Fo |f0,

Using Eq. (4) and dropping terms of order higher than
one in A, and A, the above equation can be written as

2=ln-1?(n ,
ro 2

where n=r,/|r,| is a unit vector parallel to an arm and
the centered dot stands for the standard scalar product in
Cartesian space R3. The difference between the relative

length changes of the two interferometer arms is thus
equal to

&
o

=ln1-ﬁn1—ln2-f1n , (5)
2 2

A 2

where n; and n, denote the unit vectors parallel to arms
Nos. 1 and 2, respectively. In the detector’s coordinate
system described at the beginning of this subsection, ob-
viously

Vi Vi

2 2

n ) (6)

272

V2 V2
_2_.3,0], oy

where we assumed that arm No. 1 lies in the first quarter
of the (%,y) plane. Taking into account Egs. (2), (3), and
(6), from Eq. (5) we obtain

A[ﬁ

, =(A4 Ay —ApAp)hy
0

+(A11A22+A12A21)hx ’ (7)

where 4;; is the component of matrix 4 occupying its ith
row and jth column. Let us introduce the functions F
and F, determined as

F,=A4,4,— A4y,
Fy=A4,Apt A4, .

(8)

The dimensionless quantity s(#)=A(8r(t)/ry) is called
the detector response function and is thus a linear com-
bination of the two independent wave’s polarizations 4
and A :

S()=F h () +Fy hy(t). 9

The orientation-dependent functions F, and Fy are
called the beam-pattern functions.

B. Beam-pattern functions

In the case of a network of three detectors, one needs a
common orthogonal Cartesian coordinate system (x,y,z)
with respect to which a position of a source in the sky
will be determined. This coordinate system is taken from
the paper by Giirsel and Tinto [12], and it is constructed
as follows. The (x,y) plane of the system coincides with
the plane defined by the positions of the detectors. The
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center of the system is chosen to coincide with the posi-
tion of detector No. 1. The positive x semiaxis passes
through the positions of detectors Nos. 1 and 2. The
direction of the y axis is chosen in such a way that the y
component of the vector connecting detector No. 1 with
detector No. 3 is positive in this coordinate system, and
the direction of the z axis is chosen to form a right-

J

cosy cos¢p —cosf sing sinyy — (siny cosd +cosf sing cosy)
—siny sing +cosf cos¢ cosy

= |cosy sing +cosf cos¢ siny

sin@ siny sinf cosy

The position of a detector on the surface of the Earth
will be determined in the (xg,yg,zg) coordinate system
the center of which coincides with the center of the
Earth. The x; axis lies in the direction of the line pass-
ing through the center of the Earth and the intersection
of the meridian passing through Greenwich, England,
and the equator. The z; axis is chosen to lie in the direc-
tion of the line passing through the center of the Earth
and the North Pole. The y; axis is chosen to form a
right-handed Cartesian coordinate system with the xg
and z; axes. Let r; (I =1,2,3) denote the vector connect-
ing the center of the Earth with the position of the Ith
detector, and let B, and ¥ be the latitude and the longi-
tude, respectively, of the Ith detector. Then the unit vec-
tor in the direction of the vector r; has, with respect to
the (xg,yg,2g) coordinate system, the coordinates

d; =(cosB;cosy j,cosB,siny,sinf;) . (11)

Let us define the sequence of the unit vectors [19]:
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handed coordinate system. If we introduce the usual
Euler angles 6, ¢, and ¢ (where 6 and ¢ give the incoming
direction of the wave and 1 is the angle between the node
direction and the X axis of the wave coordinate system),
then the orthogonal matrix transformation B from the
wave’s coordinate system (X, Y, Z) to the network coordi-
nate system (x,y,z) is equal to [18]

sinf sing
—sinfcosd | . (10)
cosé@

The orthogonal matrix transformation C from the net-
work coordinate system (x,y,z) to the Earth’s coordinate
system (xg,yg,2g) can be written as

Sxp Pxg
c= ny p-"E
fop Py O

Ox
E
, (12)

OyE

E

where, e.g., f"s denotes the xth component of the vector

f with respect to (xg,yg,zg) coordinates.

Finally, in each detector’s reference frame, we intro-
duce the orthogonal coordinate system (X;,9;,2;)
(I=1,2,3) as described in the previous subsection. To fix
an orientation of a detector with respect to the local geo-
graphical directions, we must introduce a new angle a;,
which is the angle between the local east-west direction
and the bisector of the arms of the Ith detector (i.e., the

d,—d, d;—d, X, axis). The local east-west direction is oriented from
f= |d——dT y 8= FET ’ the west to the east, and the orientation of the angle a; is
2 3 anticlockwise [20]. The orthogonal matrix transforma-
__fXg - tion D; from (xg,yg,zg) to (%;,¥;,2;) coordinates is of
o= , p=oXf.
|f X gl the form [13]
_J
—(cosa,siny; +sina,sinf;cosy;)  cosa;cosy;—sina,sinB;siny;  sina;cosB;
D;= | sina,siny;—cosa;sinB;cosy;  —(sina;cosy;+cosa,;sinB;siny;) cosa;cosy; | . (13)
cosfB;cosy cosfsiny sinf3;

Now we are able to determine the three orthogonal
matrix transformations A4; from (X,Y,Z) to (%,,,,2;)
coordinates as

A;=D/CB . (14)

The beam-pattern functions F;, and F;, are defined, in
accordance with Egs. (8), as

Fri=(Ap) (A —(Ap(Af)y
Fr=(A)1(A)yn+(A4)(A41)y

(15)

and are the complicated functions of the three Euler an-

r

gles 6, ¢, and ¢ and the nine angles a;, B, and 7;.

The functions F;, and F;, have some symmetric
properties with respect to the angle ¢. Taking into ac-
count that the matrix A4, is the product of the Euler ma-
trix B [Eq. (10)] and another matrix (equal to D,;C), one
can show, using definitions (15), that they are a linear
combination of sin2y and cos24:

FI+ =a10082¢+blsin2¢ N
(16)
F;y=b;cos2y—a,;sin2y ,

where a; and b; do not depend on the angle ¥. Equations
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(16) imply the symmetries
Fr (Y+m=F . ({),

17)
Frx($+m)=Fx(¥) ,
o |4+ 5 [=—Fr@),

(18)
Frx [4+ 7 | =—Fix(®),
Fry ¢+% =Fr (),

(19)
Fx |+ [=—Fra).

C. Relation between the source location
and the time delays

The network of the three wideband detectors provides
two independent relative time delays which in turn deter-
mine two possible source directions. In the network
coordinate system (x,y,z), these directions are mirror im-
ages of each other with respect to the (x,y) plane, which
can be demonstrated as follows. For two detectors the
gravitational wave signal hitting the Earth gives the same
value of time delay for many different incoming direc-
tions. All these directions lie on the surface of a cone
with an axis which coincides with the line connecting the
detectors. The value of the time delay determines the an-
gle of the cone. For three detectors we have two such
cones which, in general, intersect each other along two
half lines. These half lines are mirror images of each oth-
er with respect to the plane in which the axes of both
cones lie, that is, with respect to the (x,y) plane.

Let n be the unit vector pointing at the position of the
gravitational wave source in the sky. Then, in the net-
work coordinate system (x,y,z),

n=(—sinf sing, sinb cosp, —cosH) . (20)

We denote by 7, and 73 the two independent time delays
between detectors 1,2 and 1,3, respectively. Then we
have

T =t, —1

o, Tla,TIp/C,

21
Ti3=ly Tl Tner/c,

where ta)s tay and t,, are the times of arrival of the signal

in each of the detectors, r;, and r; are the vectors con-
necting detector 1 with detectors 2 and 3, respectively,

and c stands for the speed of light. In network coordi-
nate system we have

rlz/c=(a,0,0) ’ r13/C:(bl,b2,0) ’ (22)

where in accordance with the definition of the (x,y,z)
coordinate system always @ >0 and b, >0 (cf. Sec. IIB).
Of course,

[~ 0, I3~ 0, 23)

where r; is the vector connecting the center of the Earth
with the Ith detector. If d; denotes the unit vector in the
direction of the vector r;, then

r;=Rgd; , (24)

where Ry stands for the radius of the Earth. Combining
Egs. (23) and (24) together with Egs. (22), we easily obtain
formulas for the coefficients a, b;, and b,:

Rg
a“Tjdz_d”,
2
b= 25| L —q)d,—d,) (25)
c a ’
2 172
R
b= -t |d3_d1|2—b%

Substituting Egs. (22) into Egs. (21), we obtain equa-
tions from which we compute cosine and sine functions
of the angles 6 and ¢:

sin6=~1—\/z , cosG—‘—iL\/(abz)z—A ,
ab2 abz
(26)
sin¢=—b2712 cosh= ar;3—by7y,
Va vE
where

A:(blle_aTl3)2+(b2712)2 .

The above formulas determine the angle ¢ uniquely,
while for the angle 6 we have two possible values.

D. Response functions to the gravitational wave
signal from a coalescing compact binary system
and their Fourier transforms

We restrict ourselves to the Newtonian regime in
which the gravitational waveform is calculated using the
quadrupole formula. Moreover, we assume that when
the gravitational wave signal enters the observational
window of the laser interferometer (frequency above 10
Hz) the orbit of a binary is nearly circular due to radia-
tion reaction forces.

The dimensionless response s; (I =1,2,3) of the Ith re-
ceiver is, as usual, the linear combination of the two
wave’s polarizations h; . and h;:

sp(t)=F; hp () +Frhpy (1), tztal . (27)
To compute the functions h; , and h;., one must first fix
the orientation of the X and Y axes of the wave coordi-
nate system (X,Y,Z) from Sec. Il A with respect to the
binary (the Z axis is along the direction of propagation of
the gravitational wave). To do this let us define the
binary coordinate system (xg,ys,zs). The zg axis is along
the binary orbital angular momentum vector. The xg
axis is the projection of the Z axis onto the orbital plane
(if the Z and zg axes coincide, then there is no preferred
direction for the xg axis). The yg axis is chosen to form a
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right-handed coordinate system. Now we can define the
X and Y axes to be simply projections of the xg and yg
axes, respectively, onto the plane perpendicular to the Z
axis (i.e., onto the sky). Let us note that the ys and Y
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axes of such defined systems coincide (cf. Sec. III A of
[8].

In the (X,Y,Z) coordinate system defined above, h;
and h;y are the following functions of time [5,8,9]:

(28)

Let us rewrite the response function of the Ith detector
in a slightly different form:

]
/3573 5/3 2
=28 M s, PO o5, ) +81
Cc
2/3~5/3 5/3
hys )= M 11, M) Pcosesinlg (131, ,M)+5]
c R 1 1
{
where
gltst, M)=2m [ f(t'5t, ,M)dt’ . (29)
a

R is the luminosity distance from the Earth to the binary,
M is the chirp mass defined by M=p3" m?/%, where
m=m;+m, is the total mass of the binary and
p=m;m,/m is its reduced mass. The angle € is the an-
gle between the line of sight toward the earth and the
binary orbital angular momentum vector; 8 is an initial
phase of the orbital motion. The function f=f (t;taI,JVl)

is the frequency of the gravitational wave (twice the or-
bital frequency) and is given by

5/8
= |
f(t,tal,./l/t)— G
3/8
1121 L , (30
w | 256 M373 to(tal,./i'l)—t

where ¢, is the time at which coalescence occurs. The
time ta, of arrival of the signal is defined in such a way

that f( ta, ;taI,./l/t )= f;, where f; is the initial frequency of
the wave. Substituting l, instead of ¢ into Eq. (30), we

easily obtain that the coalescence time ¢ is the following
function of the parameters ta, and M:

5/3
S 1 1
(ﬂf-)8/3 m5/3 :
i

to(tal,./l'l)=tal+—5—

756 (3D

G

Taking into account the time delays 7, and 7,3 be-
tween the detectors 1,2 and 1,3, respectively [cf. Eq.
(21)], the response functions s; can also be written in the
form

S (O)=F hy (O)+Fxhx (1),
S (O)=Fy hy (1 —T) tFyxh (=7, (32)
S3(t)=F3+h1+(t_7']3)+F3xh1x(t“'7']3) .

The very form of the detectors’ response functions [cf.
Egs. (27) and (28)] together with symmetries (17)-(19) of
the beam-pattern functions F;, and F; entails that the
detectors’ response functions do not change under the
transformations (Yy—¢+m7, §—8) and Yy—yY+u/2,
8—8+). Therefore, from gravitational wave observa-
tions, we are only able to determine the angle ¥ up to
/2 and the angle 6 up to 7.

sp(1)=A [ f(£;1, , M) sin[g(t;1, , M) +£;]
t>t, , (33)
1

where
2
A= 423G373 m33 1+cosZe
I - c4 R I+ 2
172
+(Fycose)? ) (34)

and where the initial phases &; of the signals are given by
the equations

FI+1+<;osze
sin(§;—68)= Y 77 >
F,+E% +(F;cose)?
(35)
cos(é;,—8)= Frxsose 77 -
FHL‘L‘;O_S?_ +(Fxcose)?

The Fourier transform 3;(f) of the function s;(¢) can
be calculated to a good accuracy by means of the station-
ary phase approximation [5,21,8,9]:

SN =k, f 7 expli®(N)], f=f;, (36)
where
__1 |5 1/ZGS/6 M3/ 1+ cos’e :
I 2m3 |6 ¢332 R I+
172
+ (F;ycose)? ,
O(f)=—2mf1, +&—T——L _w(f) (37)
ar I 4 M573 ’
1 [ ] sef 3 8
YH=15 |G (ﬂf,-)s/3+(1rf)5/3 (1rf,~)5/3J
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E. Linear filtering of the data
and the parameter estimation theory

In general we know the form of the signal as a function
of a number of parameters. For example, in the case of
the signal from a coalescing binary the unknown parame-
ters can be the time of arrival of the signal, the chirp
mass, the amplitude, and the initial phase of the
waveform. The classical estimation method proposed
here is the maximum likelihood estimation [11,22-26].
In this subsection we summarize the maximum likelihood
method for the case of the Gaussian noise. Our treat-
ment follows Ref. [23]. A different treatment is given in
Ref. [7].

Let 6=(6,,6,, .. .,0,,) be the set of unknown parame-
ters of the signal s(¢;0). As in the case of the completely
known signal, we can consider two probability density
functions p,[x(¢);0] and p,[x(2)] [where x(¢) is the sto-
chastic process in question] depending on whether the
signal is present or absent; i.e., when x(¢)=s(¢;8)+n(t)
[where n (2) is the noise in the detector], we have p,, and
when x(#)=n(t), we have p,. Then we form the likeli-
hood ratio A[x(1);0]=p,[x(1);0]/po[x(¢)]. Maximum
likelihood estimators (MLE’s) 6 are those values of the
parameters 6 that maximize the likelihood ratio
A[x(¢);0]. Thus the MLE’s can be found by the solution
of the set of simultaneous equations

d

2, Alx(2);0]=0 . (38)
In the case of the Gaussian noise, the logarithm of the
likelihood ratio is given by [27]

nALx (0;0)= [ x(0g(1;0)dt— 3 [ s(t;0)q(t;00dt

(39)
where ¢(z;8) is the solution of the integral equation [28]
s(t;0)=fOTKN(t,u)q(u;G)du (40)

and where we assume that we make observations over a
certain interval of time [0,T]. K,(t,u) is the autocorrela-
tion function of the noise in the detector.

The maximum likelihood estimators 6 are random
variables since they are functionals of the random vari-
able x(¢) determined by the set of equations (38). Let '
be the matrix the components of which are given by

aZ
Fu="% 136,36,

InA[x(1);0] | , 41)

where E means the expectation value. I' is called the
Fisher information matrix. We say that the estimate 8 of
the set of parameters 6 is unbiased if the expectation
value of @ equals the true values of the parameters: i.e.,

E6)=6 . 42)

There is a general result called the Cramer-Rao inequali-
ty [22] which provides bounds on the covariances of un-
biased maximum likelihood estimators:

E[(6;,—8,)0,—8,)1=("""),; . 43)

It can be shown that the right-hand side of the Cramer-
Rao inequality is the better approximation of the covari-
ance matrix of the estimators of parameters of the signal
the higher the signal-to-noise ratio [23]. Following Hel-
strom, we shall call the inverse of the Fisher matrix the
covariance matrix. However, one should remember that
the inverse of the Fisher matrix provides lower bounds on
the accuracy of the estimation of the parameters and in
practice the errors will always be greater. The question
arises how big should the signal-to-noise ratio be in order
that the inverse of the Fisher matrix approximates well
the covariance matrix. In a paper by one of the authors
[29], where simulations of the detection of the gravita-
tional wave signal from a coalescing binary and estima-
tion of its parameters were performed, it was found that
at a signal-to-noise ratio of 25 the agreement between the
variances of the estimators obtained from numerical
simulations and the theoretical covariance matrix is very
good, whereas at a signal-to-noise ratio of 8 the variances
of the estimators from the simulations are distinctly
greater than that given by the inverse of the Fisher ma-
trix.

In the Gaussian case, the Fisher information matrix is
given by

i 3’H(6,,6,) s
936,00, |8,=6,=6’
where
T
H(ol,ez>=fo q(;0,)s(t;0,)dt 45)

and q(¢;0) is the solution of Eq. (40). The integral H is
called the ambiguity function or the correlation integral.
With the filter given by Eq. (40), the correlation integral
is given by

3(f;0,)5*(f;6,)
S,(f)

where 3 is the Fourier transform of the signal (§* is the
complex conjugate of 3) and S, is the one-sided spectral
density of noise.

If we have three detectors such that their noises are in-
dependent, then the likelihood ratio for the network of
detectors is given as a product of the likelihood ratios of
each detector, and consequently if the noises in each
detector are Gaussian, the logarithm of the likelihood ra-
tio for the network of detectors is given by

H(91,02)=4f0°°Re df , (46)

3 pT
InALx;(0;01= 3, [ "x;(t)g;(1;0)dr
I=1

1 & T
=3 2 [ sti0a0r @7)

where 6 denotes the set of unknown parameters and
q,(t;0;) is the solution of the integral equation
s,(t;6)=fOTKN(t,u)q,(u;())du . (48)

We assume that the autocorrelation function of the noise
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in all three detectors is the same. Hence, in the case of
Gaussian noise, the MLE’s can be obtained by passing
the data in each detector through a bank of linear filters
for suitably spaced values of the parameters and each of
the filters being determined by solution of the integral Eq.
(48). The values of the parameters that maximize the
sum of the outputs from linear filters from all three detec-
tors are maximum likelihood estimators.
The correlation integral for the network is given by

3 T
H(0,,6,)= 3 fo ;(2;0,)s,(t;0,)dt 49)
I=1

and is a sum of correlation integrals H; in each detector.

With the filters given by Eq. (48) each correlation integral

is given by

5(f;6,57 (f,6,)
S, (f)

H,(01,02)=4f0°°Re

]df . (50)

III. OPTIMAL SOLUTION TO THE INVERSE PROBLEM

A. Estimation of the parameters k;, £;, ta)s
and M; in each detector

In this subsection we generalize the solution of the
maximum likelihood equations for one detector given in
Ref. [10] to the case of three detectors. Let us first write
the signal s;(¢) in each detector as s;(¢)=uA ;h;(z). Then
one can write the filter as ¢;(¢)=uA ;r/(t), where r;(t) is
the solution of the integral equation [cf. Eq. (40)]

hy ()= forKN(t,u y(u)du . (51)

From Eq. (39) the logarithmic likelihood ratio InA; in the
Ith detector is now given by

lnA,[x,(t);ﬂl ,g]ytat 1‘/n1]
=A, [ (0w (0de =A% [Tri(omgode . (52)

Solving the equation dlnA; /34 ;=0, we get an explicit
formula for the maximum likelihood estimate of the am-
plitude A ;:
N fOTr,(t)x,(t)dt
Az=—F7————— . (53)
JIr(ohy(0d

Let us substitute the estimate A 1 for A in the likelihood
ratio (52). We get

L U o (e P
2 [Tr(ohy(ndt

lnAI[xl(t);ﬁIagl’ta,"/nI]=

Now the estimates of the remaining parameters of the
chirp (phase, time of arrival, and chirp mass) are found
by maximizing the above functional. We shall next show
that an explicit formula can be found also for the esti-
mate of the phase &;. Let us write h;(t) as

h(t)=h,(t)cos&; +h, (t)sing; , (55)

where

hjs(t)=[f(t;taI,-/nI)]Z/JSing(t;tal,-/nI) ’
(56)
hIc(t)=[f(t;taI’MI)]2/3c°Sg(t;taly‘/nI) .

The function g is defined in Eq. (29). Let r;, and rj be
solutions of the integral equations

h,c(t)=fOTKN(t,u)r,c(u)du :

(57
T
hp ()= fo Ky(t,u)rg(u)du .
Consequently, r;(¢) can be written as
ri(t)=rp(t)sing; +r(t)cosé; . (58)

Let us now consider the denominator in Eq. (54). It can
be written, by virtue of Egs. (55) and (58), as

r = T a2 T 2
fo h[rldt lf() hIcrcht]Sln §1+ lf() hlsr[sdt COS 51

T T .
+ [fo hpridt+ fo h,sr,cdt]smé', cosé; .
(59)

It can be shown (see Ref. [10]) that the following equa-
tions are satisfied:

T T

S hersedt= [ byt (60)
T T

S hierdt= [ “hyriedi=0 . (61)

If all the signals s;(¢) are entirely contained in the time
interval [0,7], then all three integrals of the type (60) are
independent of the times of arrival and are equal to each
other:

T T T
@=fo hlcrlcdt=fo hzchCdt=f0 hyraedt . (62)

Moreover, € is positive. Taking Eqs. (60) and (61) into
account, we easily show that the denominator given by
Eq. (59) is equal to @ defined in Eq. (62). Consequently,
the solution of the equation for the estimator of the phase

&r

aiglln/\,[x,(t);o?t,g,,t‘,l,m,]=o , (63)
is given by
R [ relox (e
§;=arctan | ————————— (64)
fo ris(x,(0)dt

Substituting the estimate of the phase into the likelihood
ratio (54) we get

A, [x (034 1,671, M, ]

=2_1@_ [ [foTrlc(t)xl(t)dt]2+ [forr1s(t)X1(t)dt]2] .

(65)

The above procedure determines the optimal analysis
of the data to find the maximum likelihood estimates of
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the parameters of the chirp in each detector. First, one
passes the data in the Ith detector through two banks of
linear filters: r,c(t;tal,./l/l,) and r(t; l, ,M ;) for suitably

and M.
imum likelihood estimate of the tlme of arrival t and
and M, that max-

spaced values of the parameters ty, The max-

chirp mass M ; are those values of t,
imize the functional

1 T 2
Pty M) =5 5 [ [fo r,c(t)xl(t)dt]

2
+ [ I OTr,S(t)x,(t)dt } (66)

Once maximum likelihood estimates of l, and M, are

found by linear filtering, we calculate the maximum like-
lihood estimates of phases and amplitudes from formulas
J

Hi(kpis k81581 ta, o ta o M M)

/s cos[2mf (¢, z_ta”)‘*"‘l’(f)(1/./%3/3—1/./%?/3)—
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(53) and (64) with 1, =7, and M, =J;. In practice, one
can perform the correlations in the above functional us-
ing the fast Fourier transforms. Then one shall need two
banks of only one parameter filters parametrized by chirp
mass M ;. The position of the maximum of the functional
F; will determine the time of arrival. The fact that one
needs only two filters to determine the phase of the
coalescing binary signal has been discovered by Dhuran-
dhar and Sathyaprakash [21]. The above analysis is a
systematic derivation using the maximum likelihood
equations.

Let us choose as the parameters of the chirp signal in
the Ith detector the constant k; given by Eq. (37), the
phase &;, the time of arrival ta,» and the chirp mass JM;.

Then, from Eq. (50) and the formula (36) for Fourier
transform of the chirp, the correlation integral in each
detector is given by

(glz_gn)]

=4k kp ffl

daf , (67)
f7/3Sn(f) f

where the function W(f) is defined in Eq. (37) and S, (f) is the spectral density of noise in the interferometer referred to
the dimensionless response s;; f; is the initial frequency of the chirp, whereas f/ is its final frequency. The components
of the Fisher information matrix I'; for the Ith detector are computed from the ambiguity function given by Eq. (67) by

means of Eq. (44). They are given by the formulas

(F,)k1k1=4fffmdf (T e, =(Cpli,, =(Cplkepy, =0
(Tp), ., =16m%k] ff f1/3s s (F,),alm,=:3;;’3f f4/3s vdf
(68)
(ry), & 87Tk12ff{f f“/sén(f) af , FI)M,«“,: 91_/(:40;:;3 f f7\£ja(£ af ,
(Crm,e, = 32;’;3]. f7/3S yar s (C))e,e, =4k [ f{ffv/s—;[v(fjdf :

The covariance matrix C; for the parameters k;, &;, ta,»

and J; is the inverse of the I'; matrix.

The I' matrix for the single detector in a different set of
coordinates has been obtained by Finn and Chernoff [8].
They also give explicitly the components of the covari-
ance matrix.

B. Estimation of the parameters
of a coalescing binary: An algebraic method

The first optimal method of solving the inverse prob-
lem relies simply on compilation of the data obtained in-
dependently in individual detectors. The starting point
here is the set of 12 parameters which we group into one
vector 7 of 12 components:

kis81ta s Misky 65080, s My k3,685,145, M3) . (69)

Twelve-dimensional Fisher information matrix has the

f

block structure [which immediately follows from Egs.
(44) and (49)]

ry o 0
r,= or, O0f, (70)
where I'; (I =1,2,3) denotes a four-dimensional Fisher

matrix computed for four parameters kl,g,,tal,./l/l ; mea-

sured by the Ith detector and @ stands for the 4 X4 ma-
trix of all components equal to zero. The problem is to
estimate values of the astrophysically important parame-
ters knowing the estimated values of the 12 parameters
grouped into the vector 7.

The parameters that we are looking for are collected
into the eight-dimensional vector pu:

p=(R,t,,M,0,4,1,€,8) . (7D
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t, and M denote here the improved values of the time of
arrival of the signal in the first detector and the chirp
mass, respectively. Improvement relies on taking into ac-
count information from all three detectors. We also must
estimate the covariance matrix C, for the parameters p.
To do this we assume that the covariance matrix C, for

the 9 parameters is given by the inverse of the Fisher ma-
trix (70):

Cn=T,'. (72)

The parameters p and 7 are related to each other by
means of the following set of 12 equations:

k;=K;(R,M,6,¢,9,€), I=1,2,3, (73)
£,=E2,(6,4,1,6,8), 1=1,2,3, (74)
ty, =ty » (75)
te, =t, —712(6,4) , (76)
t,, =t, —713(6,4) , a7
My=M, 1=1,2,3. (78)

The functions K; are given by Egs. (37),
12 G5/6 576

32 R

1
27?7

5

6

K(R,M,0,¢,9,€)=

2
1+cos?e

X
2

FI+(0’¢’¢)

172

+[F;(6,0,9)cose]? , (79)

whereas the functions Z; are determined by Egs. (35),
Z,(6,¢,1,€,8)

F;.(6,8,9)(1+cos%)
2F;«(6,¢,¢)cose

=§-+arctan (80)

The functions 7, and 7; can be easily obtained from
Eqgs. (200-(22):

T12(0,¢)= —a sinBsing ,

. . (81)
713(6,¢)=sinB(b,cos¢ — b sing),

where the coefficients a, b, and b, are given in Egs. (25).
There does not exist a unique way of solving the set of
algebraic equations (73)—(78) with respect to the new pa-
rameters p, because the set is overdetermined. For exam-
ple, knowing the three times t,, we are able to compute

the angle ¢ and the two possible values of the angle 6 by
means of Egs. (76) and (77) (see Sec. II C); then, by com-
bining the three equations (73), we can compute the an-
gles ¥ and €, choose the true value of the angle 6 out of
the two possible values, and after that compute the dis-
tance R (in fact, in three different ways; see the next sub-
section). However, instead of Eqgs. (73), we can use Egs.
(74) to obtain the angles ¥ and € (and 8). Each of these
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possibilities will give in general different values of the un-
known parameters. To use optimally all the information,
we must apply an iterative procedure well known in the
context of the least-squares method (see, e.g., [30], Sec.
9.2). Let us shortly denote the set of Egs. (73)—(78) as

= i(p)=0, k=1,...,12. (82)

To perform the iteration we must know the first approxi-
mation of the parameters 7 and u. As the first approxi-
mation of the vector 1, we take the values of these pa-
rameters measured by the individual detectors. To obtain
the first approximation for the vector p, we must algebra-
ically solve the set of Egs. (73)-(78) with respect to u.
This we shall do in the next subsection. The procedure
described in detail, e.g., in [30], Sec. 9.2, gives also the co-
variance matrix C, for the parameters p and the im-
proved covariance matrix C‘,, for the parameters u after
each step of iteration:

—(JT -1
C,=J'rhH, (83)
& o— T
c,=JC,J", (84)
where the Jacobi matrix J is given by
5]
,,,,,=a£"', m=1,...,12, n=1,...,8. (85)

All the derivatives 9f,, /du, can be computed by means
of Egs. (73)-(78) together with Egs. (79)-(81).

At the end of this subsection we mention that there are
other methods of inverting an overdetermined system,
e.g., the singular value decomposition [31].

C. Algebraic solution to the inverse problem

In the first step from the two independent time delays,
we calculate the two possible positions of the source in
the sky: (6,,¢) and (6,,4), where 6,+6,=m (see Sec.
IIC). We must thus find a procedure which also chooses
the true angle 0 out of the angles 6, and 6,. In the first
place we derive equation for the angle ¥. Dividing k? by
k2% and k2 by k2 by virtue of Egs. (73) we obtain

2
1+cos?
2 |F e —25€ | 4(F,cose)
k, 2
2
F2+—1l2°s£ +(F,y cose)?
2
BT F1+____1+<;ose +(F,xcose)?
k—l = 5 , (87
2
} F3+_____1+c20se +(F;x cose)?

After solving Eq. (86) with respect to cos’e we obtain the
only root such that 0 <cos?e < 1:

cos’e=a—Va?—1, (88)

where
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e —p KiFox ZK3Fix
k %F %+ —k %F %+
Substituting Eq. (88) into Eq. (87), after some algebraic
manipulations, we obtain the equation for the angle 1:

k%(F%XF§+ _ngF%+ +k%(F§xF%+ —F%xF§+ )
+k3(F} F3, —Fi F}.)=0. (89)

Equation (89) does not change under any permutation of
the detectors’ labels. Because by virtue of Egs. (16) the
functions F;, and F;y are linear combinations of sin2¢
and cos2y, Eq. (89) is in fact a polynomial equation of
second order in the two variables sin4y and cos4y.
Coefficients of this equation are very complicated func-
tions of Euler angles 6,¢ and the angles a;,B;,y; deter-
mining the positions and orientations of the three detec-
tors. Using the software MATHEMATICA we have been
able to simplify this equation considerably. In compact
form it can be rewritten as

mzstsok% +m31p310k% +m 12P120k§

2 2 2
my3pryki+mypypky +mpppi ks

tandyp=—4 (90)

where my; and p;jx are determined by means of the equa-
tions

Fy i Fyy —Fy Fy =my;
Fy Fix —F Fyx=my,
Fi Fox —Fy Fix=my,,
Fy  Fyq tF3 Fyx =p)3ocosdyp+pyy sindd
F3, Fix tFi Fyx =p3ocosd+pysindy,
Fi 4 Fyx T Fy Fix =pycosdy+pyy sindy .

Let us note that combinations of the type
F, F;—F; F;, do not depend on the angle ¥. The
coefficients m;; and py; are still complicated functions
of the angles 6,¢ and a;,B;,7;-

For each of the two values of the angle 6, we obtain
from Eq. (90) the two values for the angle ¥ from the in-
terval [0,7/2[. Of course, the difference between these
angles is equal to 7 /4. Then we substitute these values of
the angle ¢ into Eq. (88) to calculate cos’¢. It turns out
that for a fixed value of the angle 6 only one out of the
two possible values of the angle 3 gives cos’e which
satisfies the condition 0 <cos?¢ <1. This can be demon-
strated as follows. Let us denote by a, and a, the values
of the quantity a from Eq. (88) for the angle ¥ and
1+ /4, respectively. By virtue of Egs. (19), there is a re-
lation between a; and a,:

T ©1)
1+a, %

Equation (91) implies that if a; > 1, then always a, <1.
In the extreme case a; =1, we have a, =1.

In the current stage of our procedure, we are able to
calculate for each of the two values of the angle 6 the one
angle ¥ from the interval [0,7/2[ [by virtue of Eq. (90)]

and the one value of cos’e [by virtue of Eq. (88)). For
some true values of the angle 6, it may happen that the
nontrue value 7— 6 yields [by virtue of Eq. (88)] the con-
dition cos?e <0 (it means that then a <0). In such a case,
evaluation of cos®e is already a criterion of choosing the
true value of the angle 6 out of the two possible values.
But this is not the general case. In general, after substi-
tuting the two possible values of the angle ¥ and cos?e
into any of the three equations (73) we obtain the two
possible values of the distance R to the binary. To
choose the true values of the distance, the angle v, and
cose, we must use information contained in the phases £;
of the signal.

Equations (74) can be solved with respect to the sind
and cos8. For example, for cosd we get

__cjcos§; +dysing;
\/c,2+d12

cosd (92)

where

1+cos’e
¢;==*coseF;y , d,=-~i——

F;, .

The =+ sign in the equation for the coefficient ¢; results
from the fact that we do not directly calculate cose but
only cos?e [by virtue of Eq. (88)]. The right-hand side of
Eq. (92) can be calculated three times (i.e., for =1,2,3)
for the plus sign and three times for the minus sign. For
the true values of the angle 8, the angle 1, and cose, one
obtains the same number, whereas for the nontrue values,
three different numbers. This completes the procedure.

D. Estimation of the parameters
of a coalescing binary: A linear filtering method

In the previous two subsections, we have presented the
first solution of the inverse problem. We linearly filter
the data in each detector and obtain the estimates of the
amplitude, phase, time of arrival of the signal, and also
the sharp mass. Then we perform the iterative procedure
described in Sec. IIB to obtain the parameters of the
binary. The second method is the filtering of the data
from all three detectors directly for the parameters of the
binary taking into account the two constraints relating
the angles 6 and ¢ determining the position of the binary
in the sky and the two independent time delays between
the detectors. To find the optimal procedure, one has to
solve Egs. (38) directly for the parameters of the binary
and take into account the two constraints. We shall find
that the estimates of the distance R and the phase 6 can
be determined analytically. We also can find an equation
for the angle €; however, this equation is unmanageable.
We still find that it is optimal to linearly filter the data in
each detector. We take the constraints into account in
the following way. The filters are parametrized by angles
6 and ¢. For each set of these angles, we calculate the
time delays. We shift the outputs from the linear filters
in the detectors according to the calculated time delays
and then add the outputs (with suitable weights). We
proceed until we find the maximum of the sum.

Let us write the response function s; in the form
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B
s,(t)=—R;I—[h,s(t)cos(xl+8)+h,c(t)sin()(,+8)], 93)

where A ;=3B;/R, x;=§&;—§, and the functions h; and
hj, are defined by Egs. (56). Consequently, the filter func-

tion can be written as
|

3 1 3
InA[x/(thpu]=— 2R2 2 fg
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B
ar(1)="2"Ir(cos(x;+8)+ri (Dsin(x; +8)] , (94)
where r;. and r;, are solutions of the integral Eq. (57).
Let us now substitute s; and g; given by Eqgs. (93) and (94)
into the equation for the logarithm of the likelihood ratio
InA [see Eq. (47)] and let us use Egs. (60)—(62). Then we
get

B, [sin()(,+8) forx,(t)r,c(t)dt+cos()(,+8) forx,(t)rk(t)dt] ] , 95)

where u denotes the eight-dimensional vector of the parameters of the binary, given by Eq. (71). We can easily analyti-
cally solve the equations for the maximum likelihood estimators of the distance R and the phase &:

dlnA _ dlnA _
R 2 a5 O
We get
3
e B
R=— - =1 - , (96)
> {ﬂl[sin(x1+8)fo x,(t)r,c(t)dt+cos(x,+8)f0 x () (2)dt ]}
I=1
3
S (B,[siny; fOTx,(t)r,c(t)dt-—sin)(, foTx,(t)r,s(t)dt]}
tand= ?1 - - 97)
2 {B;[siny; fo x;(8)r()dt +cosy; fo X (8)r(£)dt ]}

~
II

After substituting the above equations for the estimators of R and § into Eq. (95) we obtain

InA[x;(t);R,8,v]= 13 [ z B, {smx, f x(t)r(2)dt +cosy; fOTxl(t)r,S(t)dt] ]
2@ I3 B}
I=1
3
+ [2 B, [cos)(,foTx,(t)rk(t)dt—sinx, forxl(t)r,s(t)dt} ] ] ’ (98)
=1
f
where v denotes the remaining six parameters of a ’H(n, (1), m(ps,))
binary. We attempted to find the analytic solutions for (L= FYET P
the estimators of the angles € and ¥; however, we found 1) e
the equations unmanageable. We only found the follow- o 3’H(n,,1m,) ony 9n,
ing equation of the fourth order for the cosine of the an- & MOy |my=ny=n O O,

gle e:
co+c cose+cycos’e+c cos’etegcoste=0,  (99)

where cg, ¢, and c, are very complicated functions of the
Euler angles 6, ¢, and .

The optimal filtering procedure presented above would
be very complicated since it would require a five-
parameter bank of filters for the chirp mass MM, the three
Euler angles, and the inclination angle €.

The accuracy of the second method described here is
given by the Fisher matrix I', for the parameters p.
There is a simple way of computing I', knowing I';. By
means of Eq. (44), we can write

or, in matrix notation,

r,=JTr.J, (100)

where the Jacobi matrix J is given by J;; =37, /du;. The
covariance matrix C, is the inverse of I’ u- Comparing
Eq. (100) with Eq. (83) we see that the two methods give
the same errors of the parameters u.

IV. NUMERICAL EXAMPLES
A. Positions and orientations of the detectors

In Table I we find the geographical latitudes B; and
longitudes y; of the three planned long-arm laser inter-
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TABLE 1. Positions and orientations of the detectors used in
the calculations. B; and y; are the latitude and longitude of the
Ith detector; a; is the angle between the bisector of the arms of
the detector and the local east-west direction.

Latitude Longitude  Orientation
No. (D) Site B; (deg) v (deg) a; (deg)
1 Louisiana 30.6 —90.8 243
2 Washington 46.5 —119.4 171
4 Pisa, Italy 43.6 10.25 117

ferometric detectors as well as their orientations a; with
respect to the local east-west direction (see Sec. II B for a
detailed definition of the angle «;). For this network of
detectors, the coefficients a, b;, and b, describing the
spatial separations between the detectors [32] [given in
Egs. (25)] have the values

a=9.99ms, b;=2.76 ms, b,=26.20 ms .

B. Model of the noise, the value of the recycling
knee frequency, and the signal-to-noise ratios

Following Finn and Chernoff [8] we take into account
the five main sources of the noise in a laser interferome-
ter; therefore, the total spectral density of the noise is the
sum of the spectral densities related to the different noise
sources:

Sn(f):Sshot(f)+Ssusp(f)+sim(f)

+Sseismic(f)+squantum(f) . (101)
Shot 18 the photon shot noise:
2
L A f
=——— - . (102)
Shot (f) aly L Sk 7 , ]
Susp and Sj, denote the thermal noise in the suspensions
and test masses, respectively:
2kgTf,
Sausp(f)=—3 T a0 —, (103
T mQoL[(f*—f5) +(ffo/Q0)"]
2kpTfin
S )==5 Rt — . (104)
TmQin L(f "= fine) "+ ([ fin /Qint)7]
S ceismic Stands for the seismic noise:
So
S seismic (f) = (105)

TAVASS I
The value of the proportionality constant S, we calcu-

late, following Finn and Chernoff [8], from the relation-
ship

(10 Hz)=S,,,(10 Hz)+S;,(10 Hz) .

N seismic susp

We get S, =1.54X 102! Hz. Last, S quantum 1S the quan-
tum noise:
2%

Squantum (f) =
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The meaning and the values of all quantities appearing in
Eqgs. (102)-(106) are given in the Table II (taken from
Finn and Chernoff [8]).

The frequency f) in Eq. (102) denotes the recycling
knee frequency. We fix the value of f, by maximizing
the signal-to-noise ratio for a coalescing binary signal.
The square of the signal-to-noise ratio is given by the for-
mula [23]

s

N (107)

2
_, I s
4ffi S,(f) a

where f; and f, stand for the initial and final frequencies
of the signal, respectively. By means of Eq. (36), the
squared signal-to-noise ratio for a chirp signal s; in the
Ith detector is equal to

N

N

2 5 .
—ar2 [/

M s iy
Assuming f; =10 Hz and f,=1000 Hz and taking into
account the total spectral density of the noise given by
Eq. (101), we maximize the integral on the right-hand
side of Eq. (108) with respect to f;,. We get f, =109 Hz.
This optimum value of the knee frequency equal to 100
Hz has been obtained by Finn and Chernoff in Ref. [8] for
f =00,

In Fig. 1 we find the contour plots of the signal-to-
noise ratios in the three detectors as functions of the an-
gles 0 and ¢ for a chirp signal coming from a sample
binary system defined by the numbers

(108)

m,=m,=14M¢ ,
R =100 Mpc ,
M=1.22M, ,
¥=30",
€=45",

(109)

5=0°".

We use 100 Mpc as a canonical distance for the neutron
star binaries. Recent estimates [33,34] have shown that
at such a distance one can expect only one binary inspiral
per three years. Therefore, to get a reasonable number of
events, one has to go to farther distances. The accuracies

TABLE II. Advanced Ligo interferometer characteristics.
The spectral density of the noise in the interferometer depends
on the details of the interferometer instrumentation. We con-
sider in this paper the advanced LIGO instrumentation that is
expected to be available much after the LIGO facilities first
come on line [8].

Temperature (7) 300 K
Pendulum frequency (f) 1 Hz
Suspension quality (Q,) 10°
End mass (m) 1000 kg
End mass fundamental mode (f;,) 5000 Hz
End mass quality (Qjp,) 10°

Effective laser power (Iy7) 60 W
Laser wavelength (1) 5139 A
Mirror losses (A2) 2X10°°
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FIG. 1. Signal-to-noise ratios in the three
detectors as functions of the angles 6 and ¢ for
1%=30" and €=45°. The signal comes from a
binary system of M~1.22M@, R =100 Mpc,
and 6=0°.
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of the determination of the parameters scale in a simple
way with distance as shown at the end of this section.
The distance sensitivity of the LIGO and VIRGO detec-
tors has been discussed in Refs. [8,35]. The contour plots
reveal that for each detector there are four distinct re-
gions in the sky, where the signal-to-noise ratio is very
low and the two regions where the signal-to-noise ratio is
very high (for the case presented in Fig. 1, the maximal
value of the signal-to-noise ratio is about 60). It is clear
from the plots that there is no simple transformation re-
lating them.

C. Comparison of the one-detector accuracy
with the network accuracy

The accuracy of the estimators of the parameters of the
chirp signal in the Ith detector (i.e., k, £, ¢, , and M) is
given by the four-dimensional covariance matrix C; being

the inverse of the four-dimensional Fisher matrix I'; of
J

olk)=0(k,)=0(k;)=1.20X10"2 s~ 1/6
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components given by Egs. (68) [see discussion after Eq.
(43)]. The accuracy of the estimators of the same param-
eters for the whole network describes the 12-dimensional
covariance matrix C, of Eq. (84). To compare these two

accuracies, we considered a sample binary system defined
by the numbers

m;=m,=1.4Mg ,
R =100 Mpc ,
M=1.22M, ,
6=10°, ¢=20°,
€=45°, §=0".

=30 (110)

The single-detector one-sigma errors of the estimators
of the parameters of the chirp signal from the sample
binary system are given by

0(£)=0.795 rad, 0(§,)=0.753 rad, o(&;)=0.606 rad ,

(111

0(!01)28.26 ms , U(taz)=7.82 ms , a(ta3)=6.30 ms ,

o(M)=6.05X10"My , o(M,)=5.73X10"°M , o(M;)=4.61X10 My ,

where o(7;) is the square root of the diagonal element (C;);; of the four-dimensional covariance matrix C,. For the net-

work the errors are given by

o(k,)=0.920X 108 s~ /6

o(ky)=0.916X10"2 5716 | g(k;)=1.18 X107 B s71/¢ |

0(£,)=0.4064 rad , 0(£,)=0.4063 rad , 0(£;)=0.4065 rad ,

(112)

U(ta]):4'2172 ms , o(taz):4.2171 ms , U(ta3)=4.217l ms ,

a(M)=0(M,))=a(M;)=3.09X10"°M, ,

where o(7);) is now the square root of the diagonal ele-
ment (C,); of the 12-dimensional covariance matrix C,-
We see that the errors of the phases &;, the times of ar-

rival ta,s and the chirp mass are about 1.5-2.0 times

smaller, whereas the errors of the amplitudes are only
1.0-1.3 times smaller. The reason that the errors in the
parameters are smaller for the network than for individu-
al detectors is that in the calculation of the 12-
dimensional covariance matrix the constraints, between
the parameters are taken into account, i.e., the relations
between the times of arrival [Eqgs. (75)-(77)] and the fact
that all detectors observe the same signal and consequent-
ly the chirp mass is the same [Eq. (78)]. The additional
information contained in the constraints increases the ac-
curacy. These numbers are also typical for other values
of the angles 6, ¢, ¥, €, and 8.

D. o(R)/R, o(M) /M, and AQ as functions
of the angles 6, ¢, ¢, and €

In this subsection we compute the relative error
o(R)/R of the luminosity distance R to the binary, the

f

relative error o(M)/M of the chirp mass M, and the
measure AQ of the solid angle inside which we are look-
ing for the source in the sky. The standard deviations
o(R) and o (M) are defined as

a(R)=V(C,)gg » o(M)=V(C,)yu »

where (C,)gg and (C,) 4y are the diagonal elements of
the eight-dimensional covariance matrix C, given in Eq.
(83). The solid angle AQ corresponds to the ellipse of
semiaxes 0(6) and o(¢). It is given as

AQ=msinfo(6)o(¢) ,
where
0(9)=\/(C,‘)99 , U(¢)=\/(C,‘)¢¢ .

As in the previous two subsections, we consider a
binary system of two stars of equal masses:
m;=m,=1.4M0, M~=1.22M0©), with luminosity dis-
tance R =100 Mpc; we also put §=0°. Figure 2 shows
the contour plot of o(R)/R as a function of the angles 0
and ¢. Figures 3 and 4 are the contour plots of o (M) /M
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FIG. 2. Fractional standard deviation
o(R)/R of the distance R to the binary as a
function of the angles 6 and ¢ for ¥=30° and
€=45". The signal comes from a binary system
of M=1.22M @, R =100 Mpc, and §=0".

FIG. 3. Fractional standard deviation
o(M)/M of the chirp mass M as a function of
the angles 6 and ¢ for =30 and €=45°. The
signal comes from a binary system of
M=1.22M @, R =100 Mpc, and §=0".

FIG. 4. Error AQ in the source location as
a function of the angles 6 and ¢ for ¥=30° and
€=45". The signal comes from a binary system
of M=1.22M, R =100 Mpc, and §=0".
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and AL, respectively, as functions of 8 and ¢. The value
of the inclination angle € for plots from Figs. 2-4 is
equal to 45°, whereas the value of the polarization angle i
is set to 30°. In Fig. 5 we find o(R)/R, o(M)/M, and
AQ plotted as functions of the inclination angle € for the
remaining angles fixed, whereas Fig. 6 shows these quan-
tities as functions of the polarization angle ¢ (for remain-
ing angles fixed).

The analysis of the plots in Figs. 2—4 shows that for
the fractional chirp mass error there are two distinct

DISTANCE ERROR (8 = 10 deg, ¢ = 20 deg, ¥ = 30 deg)
1.00

(a)

0.75

0.50

0.25

0.00

10 30 50 70 90 110 130 150 170
€[deg]

CHIRP MASS ERROR (6 = 10 deg, ¢ = 20 deg, 1 = 30 deg)

5.0x106
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2.00x10-4sr
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1.50x10-4sr
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0.50x10-4sr

cldeg]

FIG. 5. Fractional standard deviation o(R)/R of the dis-
tance R to the binary, the fractional standard deviation
o(M)/M of the chirp mass M, and the error AQ in the source
location as functions of the angle € for 6=10°, $=20°, and
1=130°. The signal comes from a binary system of M =~1.22M @,
R =100 Mpc, and §=0".
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“bad” and two “good” regions in the sky, whereas for
fractional distance and location errors the structure of
“bad” and ‘“‘good” regions is much more complicated.
Detailed analysis of Fig. 5 shows that the plots of
o(R)/R and A are not symmetric with respect to
€=90°, whereas the plot of o(M)/M is symmetric.
Moreover, it is worth noting that o(M)/M and AQ are
smallest for e=0° and €=180°, where the o(R)/R is the
largest. o(R)/R, o(M)/M, and AQ are all periodic with
respect to the angle ¥ with period equal to 90°. Compar-

DISTANCE ERROR (8 = 10 deg, ¢ = 20 deg, € = 45 deg)
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[] 10 20 30 40 50 60 70 80 90
[deg]

FIG. 6. Fractional standard deviation o(R)/R of the dis-
tance R to the binary, the fractional standard deviation
o (M) /M of the chirp mass M, and the error AQ in the source
location as functions of the angle ¢ for 6=10°, $=20°, and
€=45". The signal comes from a binary system of M ~1.22M ¢,
R =100 Mpc, and 6§=0".
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ison of plots in Figs. 5 and 6 shows that all the three er-
rors depend on the angle € more strongly than on the an-
gle .

o(R)/R ,0(M)/M, and AQ depend on the angles 6,
#, ¥, and € in a rather complicated way. The dependence
of these quantities on the luminosity distance R is simple:

o(R)/R~R , o(M)/M~R , AQ~R?*.

V. CONCLUSIONS

From our numerical results, it follows that a typical
compact binary at a distance of 100 Mpc can be located
within its cluster of galaxies and its distance can be deter-
mined with 10% accuracy. Using an idea due to Schutz
[3], one can expect to determine the Hubble constant to a
good accuracy; however, a careful investigation is need-
ed. How to measure cosmological parameters from ob-
servations by a single detector has already been investi-
gated by Finn and Chernoff [36]. The chirp mass M is
determined to a very impressive accuracy [38]. One
reason for this is that the same chirp mass is estimated by

the three independent detectors. However, a far more
important cause for such an accuracy is the fact that the
data analysis method presented here relies on correlating
the signal for hundreds of cycles. Thus even a small
difference in the chirp mass between the signal and filter
results in a large phase difference over many cycles and
consequently affects the value of the correlation
significantly. These are spectacular examples of how a
network of laser interferometers can serve as a powerful
astronomical observatory.
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SIGNAL-TO-NOISE RATIO IN THE 1ST DETECTOR
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FIG. 1. Signal-to-noise ratios in the three
detectors as functions of the angles 6 and ¢ for
¥=30" and €=45". The signal comes from a
binary system of M =1.22M@, R =100 Mpc,
and 6=0".
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FIG. 2. Fractional standard deviation
o(R)/R of the distance R to the binary as a
function of the angles 6 and ¢ for ¢y=30° and
€=45°, The signal comes from a binary system
of M=~1.22M, R =100 Mpc, and §=0".
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FIG. 4. Error AQ in the source location as
a function of the angles 6 and ¢ for ¥»=30" and
€=45°. The signal comes from a binary system
of M=1.22M@, R =100 Mpc, and §=0".



