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Choice of filters for the detection of gravitational waves from coalescing binaries.
II. Detection in colored noise
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Coalescing systems of compact binary stars are one of the most important sources for the future laser
interferometric gravitational wave detectors. The signal from such a source will, in general, be com-

pletely swamped out by the photon-counting noise in the interferometer. However, since the wave form
can be modeled quite accurately, it is possible to filter the signal out of the noise by the well known tech-
nique of matched filtering. The filtering procedure involves correlating the detector output with a copy
of the expected signal called a matched filter or a template. When the signal parameters are unknown, as
in the case of the coalescing binary signal, it is necessary to correlate the output through a number of
filters each with a different set of values for the parameters. The ranges in which the values of the pa-
rameters lie are determined from astrophysical considerations and the set of filters must together span
the entire ranges of the parameters. In this paper, we show how a choice of filters can be made so as not
to miss any signal of amplitude larger than a certain minimum value, called the minimal strength. The
number of filters and the spacing between filters in the parameter space are obtained for different values

of the minimal strength of the signal. We also present an approximate analytical formula which relates
the spacing between filters to the minimal strength. We discuss the problem of detection and false
dismissal probabilities for a given data output and how a given set of filters determines these probabili-
ties.

PACS number(s): 04.30.Db, 06.50.Dc, 04.80.Nn, 97.80.Af

I. INTRODUCTION

The detection of gravitational waves has been an out-
standing problem in experimental physics for over three
decades now. Starting from the pioneering experiments
of Weber using a bar detector [1], there has been a lot of
effort in building detectors of higher sensitivity (see [2]
for a 1987 review of the bar detector program). In recent
years, several groups around the globe have been plan-
ning to build long base line laser interferometric gravita-
tional wave detectors [3—6], prototypes of which already
exist in Germany, Great Britain, and the USA. Because
of their inherent broadband nature, interferometric
detectors can be used to detect wideband gravitational
waves emitted during the inspiral of compact binary sys-
tems during the final stages of their evolution. The rate
of such coalescences is estimated to be about three per
year out to a distance of 100—200 Mpc [7].

Because of their extragalactic origin the amplitude of
these signals is, in general, expected to be too low for
them to be seen in the time series. However, since these
sources are well modeled, the nature of the gravitational
wave emitted during the inspiral is accurately known.
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With an accurate knowledge of the wave form it is possi-
ble to extract the signal out of the detector noise by the
use of a data analysis technique called matching filtering
or Weiner filtering. This technique consists of correlating
the output of a detector with a filter which, in the Fourier
domain, is nothing but the Fourier transform of the ex-
pected signal weighted by the noise power spectral densi-
ty. When the parameters of the filter exactly match those
of the signal we have what is called a matched filter. It is
well known in the theory of hypothesis testing that of all
the linear filters a matched filter performs the best in ex-
tracting a given signal buried in noisy data. The perfor-
mance of other filters will degrade, depending on the de-
gree of mismatch of the values of their parameters in re-
lation to those of the actual signal present in the detector
output. An experimenter would not know beforehand
what the parameters of the signal are and hence will not
be in a position to use a matched filter. It is, therefore,
mandatory to filter the detector output with a set of
filters, each corresponding to a fixed set of values of the
parameters. The hope is that when an arbitrary coalesc-
ing binary wave form is present in the detector output, its
parameters would be close enough to that of at least one
of the filters in the set to enable its detection. Clearly, if
the number of filters in the set is very large then the
chance of detection of an arbitrary signal will be higher.
However, having a large number of filters would mean a
heavy load on computing and data analysis. This is an
unfavorable aspect, especially because gravitational wave
detectors have formidable data output rates and filtering
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each piece of data, with a large number of filters, might
be unreasonably time consuming. On the other hand,
having too low a number of filters means a lower chance
of detection, which would defeat the very purpose of the
whole exercise. Clearly, an optimal solution is in order.
In fact matched filtering is akin to drawing a net through
the sea of parameter space. If the net mesh is very fine
then many signals will be captured but it will be very
hard to draw the net through the sea quickly, while if the
net is too coarse then the sea can be dragged quickly but
no signal will be caught. In this paper we address the
question of how to make a net optimally. More precisely,
we show how the number of filters and the distance be-
tween them is related to the ranges of parameters. The
specific objectives of this paper are (a) to estimate the
number of filters needed to filter out signals from arche-
typal binaries located up to a distance of 500 Mpc, (b) to
show how the spacing between filters in the parameter
space depends on the noise characteristics of an inter-
ferometer, (c) to relate the number of filters to the proba-
bility of detecting a signal of a given amplitude, and (d) to
obtain an analytical relation for the spacing of filters in
the parameter space in terms of the amplitude of detect-
able signals.

As mentioned earlier, we can hope to have a reason-
ably large event rate if a gravitational wave detector is
able to detect signals out to a distance of —500 Mpc. In-
terferometric detectors aim at achieving very high sensi-
tivities to match the low amplitude signals of extragalac-
tic origin. An important factor that determines the sensi-
tivity of an interferometric detector is the effective laser
power available in its arms. The sensitivity is enhanced
by a special arrangement of the optical components so
that maximum usage of the input laser light is made. The
first one of such techniques to be invented [8] and imple-
mented [9] is called standard recycling or power recycling
The detector noise in the frequency range —100—2000
Hz is chiefly contributed by the photon-shot noise. It has
been shown that when Fabry-Perot cavities are used in
the arms of the detector, and in particular when standard
recyling is employed, the noise power spectral density is
frequency dependent [2,10—12]; that is to say that the
noise in above range of frequency is colored. Normally,
the detector noise is expected to be described by a Gauss-
ian density distribution function. However, the analysis
of data from detectors at Glasgow and Garching shows
that the noise distribution is not strictly Gaussian [13,14].
This means that there are a number of other, as yet unun-
derstood, sources of noise present in the current proto-
types. In this paper we take into account the frequency
dependence of the noise power spectral density but as-
sume that the detector noise is described by a Gaussian
density distribution. It is well known that even when the
detector noise is colored, as is the case when power recy-
cling is implemented, the method of maximum likelihood
ratio and the associated matched filtering technique [15]
can be employed to detect known signals buried in a
noisy data. However, the characteristics of the set of
filters used in detecting signals with arbitrary parameter
values will depend on the noise power spectral density.
This is because, as we remarked earlier, an optimal filter

is weighted by the power spectrum of noise. In an earlier
paper (henceforth referred to as paper I) [16] we have
worked out an algorithm to make a choice of filters by as-
suming that the detector noise has a flat power spectral
density. In this paper we drop this assumption and ex-
tend the algorithm for the case of an interferometric
detector operating with power recycling.

In post-linear gravity (i.e., with the post-Newtonian
corrections to the wave form and binary evolution ig-
nored) and when a single interferometric detector is used
the coalescing binary wave form is characterized by three
parameters, apart from the amplitude of the signal.
These are (i) a certain combination of the masses of the
component stars, (ii) the time of arrival of the signal and
(iii) the phase of the signal at the time of arrival. In order
to apply the technique of matched filtering for its detec-
tion it is necessary to construct a set of filters, variously
known as a bank of filters or a lattice of filters, corre-
sponding to different values of the three parameters, in
their relevant range. The amplitude of the signal at the
detector is also a signal parameter, but, as we shall see,
for a fixed amplitude the lattice of filters is uniquely
determined. Moreover, the amplitude of the signal has
negligible covariance with the other parameters since the
detectors are broadband. Hence the signal amplitude
need not be considered in computing errors in the estima-
tion of parameters: For a given amplitude the error in
the estimation of parameters is fixed. Therefore, in our
discussions concerning setting up a lattice of filters, we
will normalize the amplitude of the filter and consider the
other three quantities listed above as the parameters of
the filter.

The paper is organized as follows. In Sec. II we briefly
review the efforts in understanding the nature of the
gravitational wave from coalescing binary systems,
known as a chirp wave form. Among other things, we
also discuss in Sec. II, the assumptions made about the
noise characteristics, the Fourier transform of the chirp,
matched filters for colored noise and their normalization,
spectral density of noise in detectors that work with
power recycling, and correlation of a chirp signal with a
filter that differs from it in all the parameter values.
Since the output of a detector is a random variable, a sig-
nal is said to be present only when the detector output
crosses a preset amplitude, called the threshold. The
threshold is set so that the noise generated amplitudes are
most unlikely to exceed this value in a given duration of
time. In Sec. III, we first discuss how to estimate the
threshold for the filtered output for a given event rate of
the signals. We then present an algorithm for the con-
struction of a bank of filters to detect signals buried in
colored noise. These results are then applied to the case
of power recycling. The random nature of the detector
output has one other implication. It is impossible to
definitively assert that a signal is present in the data train
even when the detector output exceeds the threshold
value. When the output of a detector is of a certain am-
plitude there is only a definite probability that the output
actually contains a signal. This is known as the detection
probability. In Sec. IV we discuss the detection probabil-
ities for filtered signals and whether or not a choice of a
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detection probability changes the nature of the set of
filters obtained in Sec. III. In Sec. V we summarize our
results.

II. CHIRP WAVE FORM AND OPTIMAL FILTERS

%ith the aid of the point mass approximation Peter
and Mathews [17] predicted the fiux of gravitational
waves from a system of binary stars and showed that the
system radiates energy in the form of gravitational waves
at an average rate that increases as the inverse fifth power
of the distance between the two stars. The gravitational
waves also carry away the angular momentum of the sys-
tem. The energy and angular momentum are carried
away in such a balance that elliptical orbits become circu-
larized on a time scale smaller than the time scale for the
two stars to coalesce. In particular, circular orbits
remain circular. As the two stars approach each other
there will be an increase in the orbital frequency and a
consequent enhancement in the amplitude and frequency
of the waves. Eventually, the two stars coalesce emitting
a burst of gravitational waves with a very characteristic
wave form. The nature of such a wave form was worked
out by Clark and Eardley [18] in the quadrupole approxi-
mation using Newtonian orbits for the point mass stars.
More recently, Kochanek [19] and Bildsten and Cutler
[20] have made a more realistic analysis of the coales-
cence of a binary system. The analysis of the nature of
the waves emitted by the system at the very last stages is,
as yet, an unsolved problem in general relativity. In the
past couple of years a lot of effort has gone into the un-
derstanding of the nature of the late time signals using
the post-Newtonian and the post-Minkowskian formal-
isms [21—28]. Several groups have tried to simulate the
evolution of the system and estimate the associated emis-
sion of gravitational waves by numerical methods using
fast computers [29]. However, the final word on the na-
ture of the signal during the very last stages of the evolu-
tion has not yet been said.

In spite of a lack in our understanding of the wave
form there is already an extensive discussion, in the
literature, of the application of the matched filtering tech-
nique to the detection of the Newtonian wave form
[2,30,31] and the first order post-Newtonian correction to
it [12,32]. Such an effort is to be expected in view of the
worldwide proposals for building large scale inter-
ferometric detectors. These investigations give us an idea
of the order-of-magnitude estimate of the average signal-
to-noise ratio to be expected for such systems.

A. The chirp wave form

In the transverse traceless (TT) gauge the gravitational
wave emitted by a coalescing binary system is described
in terms of the two po1arizations usually denoted by
h+(t) and h„(r). The noise-free reponse of the detector
is a linear combination of the two polarization ampli-
tudes with coe%cients depending on the orientation of
the detector relative to the direction of propagation of
the wave [2, 33—35]. In paper I it has been shown that
the effect of an arbitrary relative orientation of the detec-
tor and the plane of the orbit of the binary is only to alter

the amplitude and the phase of the signal at the site of the
detector without affecting its time dependence. There-
fore, for our purpose of constructing the matched filter, it
is enough to consider, say, the + polarization which wi11

be the noise-free response of the detector when the detec-
tor is optimally oriented and the plane of the orbit coin-
cides with that of the sky. The wave form from such a
system of total mass M and reduced mass p located at a
distance r is given by

h (t):—h+ (t) =Nba(t) 'cos 2n.f f(t')dt'+4
a

(2.1)

The quantities appearing in the above equation are
defined as follows.

t, and 4 are, respectively, the time of arrival and the
phase of the signal when the instantaneous gravitational
wave frequency of the signal reaches some fiducial fre-
quency, say f, .

Af, =(p M )'~ is called the chirp mass; the Newtonian
wave form depends only on this parameter instead of the
two individual masses of the stars.

g is the time taken for the two stars to theoretically
coalesce starting from a time when the instantaneous fre-
quency is f, :

(=3.00
0

—sz3

100 Hz
(2.2)

The coalescence time g serves as a parameter to charac-
terize the wave instead of the chirp mass JM, .

a(t) is the time-dependent normalized distance be-
tween the stars [normalized to a (t, ) =1]:

' 1/4
tga(t)= 1— (2.3)

The constant NI, is given by

N& =2.56X10
3 sec

r
100 Mpc

a

100 Hz
(2.5)

The wave form (2.1) is derived in the quadrupole ap-
proximation assuming that the system consists of two
point masses in orbit about each other. It is now realized
that the secular corrections to the wave form arising from
the post-Newtonian terms are far more important than as
was thought previously [28,36]. When we have a better
understanding of the wave form the work described in
this paper needs to be readdressed. The time dependence
of the amplitude and the frequency of the signal are given
by Eqs. (2.3) and (2.4), respectively. They both diverge in
the limit of r~t, +g. However, much before that the
physical assumptions made in deriving them break down.
Near coalescence, the post-Newtonian and other higher

f (t) is the instantaneous gravitational wave frequency
given by

(2.4)
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order corrections became important so that the wave
form (2.1) is valid for orbital frequencies ~400 Hz or
equivalently for gravitational frequencies ~ 800 Hz [32].
Nevertheless, in this paper, we work with the above wave
form. %'hen the full form of the signal is known it is

straightforward to extend the present analysis.

B. Modeling the noise

There is as yet no viable model of the noise in the en-

tire bandwidth of the interferometer. In the frequency
range of 10—100 Hz to a few kHz the detector noise is

chieAy contributed by the photon counting noise. If we

restrict ourselves to this range of frequencies then we can
make the following assumptions about the character of
the noise. (A detailed discussion of the noise in the

present prototypes can be found in [31].)
(i) At each instant of time t, the noise n (t) is a random

variable with zero mean; i.e., (n(t) ) =0. Here the angu-

lar brackets denote the ensemble average.
(ii) The noise is stationary. This means that it can be

described by the one sided po-wer spectral density Sh(f)
defined by the equation

(n(f)n'(f')) =S„(f)6(f f'), — (2.6)

In specifying a matched filter, in addition to the above

modeling of the noise we need to know the Fourier trans-
form of the signal. In the stationary phase approxima-
tion, the positive frequency components of the Fourier
transform of Eq. (2.1) are given by [16,38]

h(f)= f h(t)exp( —2mift)dt=lVh&gH(f), (2.7a)

where
—7/6

exp[i/( f)],

where n(f)= I" n(t)exp( —2vrift)dt is the Fourier

transform of the noise.
(iii) The seismic vibrations cause the noise in an inter-

ferometric detector to steeply rise below a certain fre-

quency f, . We thus assume that Sh(f)= ~ for f ~ f, .

This is equivalent to introducing a lower frequency cutoff

f„ in the frequency response of the detector. In the
present prototype detectors f, is between 200 and 400
Hz. In future interferometric detectors it is expected to
be around 40 Hz initially and in advanced detectors it
will be lowered to about 10 Hz by using special seismic
isolation techniques [3,37]. We choose f, =100 Hz to
compute specific physical quantities but we retain f, as a
free parameter in much of our discussion.

(iv) Finally, we assume that the noise can be described

by a Gaussian distribution function. In what follows we

use assumptions (i)—(iii) while (iv) will be used in Sec.
III A in estimating the threshold for filtered signals.

C. Fourier transform of the chirp

Since h(t) is real, the negative frequency components can
be found by using the relation h( f—)=h '(f), where
here and below a + denotes the operation of complex
conjugation. The quantity H(f} is chosen to have unit
normalization, i.e.,

2 f,
"

~H(f) ~
df=1 . (2.8)

D. Matched Alters and their normalization

We are now ready to define a matched filter along the
lines of [31]. Consider an output data stream o(t) of a
detector. This output consists of two components: the
noise n (t) and the signal s (t),

o(t)=n(t)+s(t —t, ), (2.10)

where we have assumed that the noise is simply additive
and that the arrival time of the signal is t, : s(t t, ) =0, —
for t & t, . If the coalescence time of the signal is g then

s(t t, )=0, f—or t) t, +g. Let q(t) denote a linear filter.
The correlation of the output of the detector with the
filter q (t) with a time shift b, t of the filter is defined as

C(bt)= f o(t)q(t+bt}dt

= f o(f)q*(f)e' ' 'df, (2.11)

where o(f) and q(f) are the Fourier transforms of o(t)
and q(t), respectively. The second equality in the above
equation follows by transforming the first integral to the
Fourier domain and using the property of the Fourier
transform for real functions: q (f ) =q( f ). The corre-—
lation C(bt) is a random variable and it is the statistic
used in determining whether or not a given signal is
present in the data stream. C(b, t) is sometimes referred
to as the filtered output. Notice that if the time-series
noise n(t) is Gaussian then it follows that C(b, t) too is a
Gaussian random variable since it has been obtained by a
linear operation on the Gaussian random variables n(t)
(see, e.g. , Helstrom [15]). The ensemble average of the
filtered output is given by

(C(bt)= f (o(f))q*(f)e ' +'df .

The lower limit in the integral is taken to be f, and not
zero since, as discussed earlier, the detector response has
a lower frequency cutoff. With the aid of (2.7) we see that

2f,"~h(f)~'df-=X„'g. (2.9)

We shall see below that in setting up a lattice of filters to
detect a signal h(t) it is both sufficient and convenient to
deal with the normalized Fourier transform of the wave
form H(f) instead of h(f). Notice that the inverse
Fourier transform of the function H(f) contains all the
time dependence of the wave form (2.1) diff'ering from it
only in the constant part (2.5) of the full amplitude.

a(f}=—8 —3
5 f,

—5/3

4 (f ) = 2~ft, +2~f, g—a(f ) +4+—, (2.7b) As a consequence of the assumption (i) above, the ensem-

ble average of the filtered output is independent of the
noise and is equal to the correlation of the filter with the
signal. For this reason it is called the filtered signal and
we denote it by 4'(t):
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g(t)=(C(ht)) =f s(f)q'(f)e ' df, (2.12)

f S (f) I q(f) I'df
(2.15)

It is well known in the theory of hypothesis testing that
when the noise is stationary, among all linear filters the
filter that produces the maximum signal-to-noise ratio for
any time shift b, t is given by ([15, 16, 38-40])

where s(f) is the Fourier transform of the signal s(t)
Consider now the variance of the correlation. The signal
being just a constant does not contribute to the variance
of C. The only contribution to the variance comes from
the noise. The variance V(C)=(C ) —(C) is given by

V(C)= f df f df'q*(f)q(f')

Xe2ni(f f')ht—( tt(f)I +(f') ) (2 13)

The square root of this variance is the noise of the filtered
output or correlation noise and we shall denote it by JV.
With the aid of Eq. (2.6) we have

JV—:V(c)= f lq(f)l2S»(f)df . (2.14)

From (2.12) and (2.14) we see that the signal to noi-se -ra-
tio, for the filtered output, is

We now set out to obtain the normalization constant

Nf for chirp wave forms. In what follows we take s(f) to
be the normalized Fourier transform of the signal H(f)
given by (2.7b}. The normalization constant Nf is ob-
tained from (2.17) by substituting for q(f) the expression
for the optimal filter (2.16). Thus,

(2.18)

where we have introduced a constant So of dimensions
Hz ' for future convenience and the dimensionless quan-
tity J is given by

2S f" IH(f)l'df 4S ~4y3f" df
f. S»(f) 3 ' f, f ~ S»(f)

(2.19)

For white noise, the power spectral density is a constant.
If this constant is equal to So we have J= 1 as a conse-
quence of (2.8).

Standard recycling Whe.n the noise is colored we need
to know the noise power spectral density in order to com-
pute the normalization. The power spectral density of
noise in detectors that employ Fabry-Perot cavities in
their arms and use standard recycling to enhance the in-

tensity of light in their cavities has been shown to be of
the form [2]

s(fq(f)=Nf (2.16} S»(f)=so 1+ (2.20)

where Nf is an arbitrary constant. Such a filter is called a
matched filter. Notice that the signal-to-noise ratio (2.15)
is independent of the choice of Nf. Two filters that only
differ from each other by a constant factor produce the
same signal-to-noise ratio. We use this fact to our advan-
tage and choose Nf so that the variance of the correlation
is unity. Since S»(f)= ~ for f &f„this choice of nor-
malization implies that

2f Iq(f)l'S»(f)df =1 (2.17)
a

This equation completely fixes the normalization con-
stant Nf of the filter. There are several advantages in
normalizing the filter in this way. Notice that the above
normalization of noise, together with the assumptions
(i)-(iii) above concerning the noise characteristics of a
detector, imply that C is a standard normal variate with
mean zero and standard deviation equal to unity. More-
over, with this choice of normalization the optimal
signal-to-noise-ratio, that is the signal-to-noise ratio ob-
tained by using an optimal filter, is just the correlation of
the signal with the filter. We shall soon see other advan-
tages of this choice of normalization.

The time ht which appears in the definition of the
signal-to-noise ratio has a special meaning. We noted
earlier that ht is the relative time shift between the filter
and the output o(t) When an optim. al filter is used, the
signal-to-noise ratio will peak at a time shift ht= —t,
and for other values of the time shift the signal-to-noise
ratio will be lower. It is in this sense that the signal-to-
noise ratio is to be thought of as a function of time.

4 2 ~ dx
3 ) x 7/3( 2+ y2)

(2.21)

For coalescing binary signals, the maximum signal-to-
noise ratio (or equivalently J) can be obtained by choos-
ing f» tobe [2]

f»=1.44f, . (2.22)

where so =const Xf» and f» are constants depending on
the parameters of the detector. The quantity f» is the
so-called knee frequency which the experimenters can set
by an appropriate choice of mirror re6ectivities. We ob-
serve that the power spectral density of noise in standard
recycling is roughly a constant for frequencies below the
knee frequency but rises quadratically above it. It there-
fore becomes increasingly harder to extract the signal at
higher frequencies. This means that hardly any improve-
ment in the signal-to-noise ratio can be achieved by in-
creasing the upper frequency cutoff beyond a certain
value determined by f». Such an analysis is made in Ref.
[41] and here we merely mention the result that for the
case under consideration, viz. , standard recycling in
Fabry-Perot cavities, it is sufBcient to sample coalescing
binary filters up to about 400 Hz: By the time the signal
reaches this frequency more than 98% of the signal
power is extracted.

If we identify the constant so appearing in Eq. (2.20)
with the constant So defined earlier and make a change of
variables to x =fIf, and y =f» If„then the quantity J
is given by
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For this value of ft, (i.e., y = 1.44) a numerical integra-
tion of Eq. (2.21) gives J=0.62.

E. Strength of a signal

We now define the strength of a signal along the lines
of paper I. Consider a coalescing binary signal h (t) and a
matched filter q(t} T.he correlation of the signal with the
filter is defined as usual by

C(ht)= I h(t)q(t+b, t)dt .

C(b, t) now stands for the correlation of the filter with a
pure signal and not with the detector output which is
contaminated by noise. Therefore, it is a deterministic
quantity and not a random variable. Now, a signal is said
to be of strength S if the maximum of the correlation
function C(ht) has the value S:

S=—maxC(ht) .

Using Eqs. (2.16), (2.7}, and (2.18} in the above equation
we obtain

detector with a filter. It is therefore essential to have an
understanding of the behavior of this correlation function
in setting up an algorithm to construct a set of filters for
the detection of arbitrary signals. In this section we con-
sider the noise-free correlation function of a chirp wave
form with a normalized filter. The effect of noise will be
discussed in Sec. IV.

Consider the chirp h ( t, g, 4) and a filter
q(t, (+kg, 4+6,4) whose coalescence time and phase
difFer from that of the signal by b,g and b,4, respectively.
The correlation function of these two wave forms is given
by

C(bt, g;bg, @,b4)= J h(t, (,C)

Xq(t+bt, f+bg, 4+DC }dt .

(2.24}

Note that as in Sec. II E above, C is a deterministic func-
tion. Going over to the Fourier domain and using the
stationary phase approximation for the Fourier trans-
form of h (t), Eq. (2.7), we have

' 1/2
C(h, t, b,(,AC )

2.23aS=Np
So

Substituting for Nt, from Eq. (2.5) we obtain the strength
of the signal in terms of r, g, and f, :

—1/2 —2

„cos[2m fb t +2mct( f)f,b g +h4)
=N,

C f S„(f)
(2.25)

S(r, g,f, ) =44. 5
3 sec

X
100 Mpc

100 Hz

So

10 Hz

—1/2

F. The correlation function for colored noise

The statistic used in deciding the presence or absence
of a signal is the correlation function of the output of the

(2.23b)
There are several points to be noted. In our definition of
the strength of a signal we have incorporated the sensi-
tivity of a detector through the quantity of J. Hence, the
strength of the signal as it appears here is what is seen in
the filtered output. Secondly, the choice of our normali-
zation of the filters also means that the signal-to-noise ra-
tio is just equal to the strength of the signal S. Finally, it
may appear that the standard recycling noise is lowering
the signal strength as compared to the case when the
detector noise is white, since J & 1 in the former case and
J=1 in the latter. However, recall that we have chosen
the constant power spectral density of white noise (So}to
be the minimum level of noise in standard recycling
which occurs at f=f, . This was done purely for the
purpose of illustration and in reality this is not the case.
What the experimenters achieve by implementing stan-
dard recycling is to lower the value of So. Hence, the sig-
nal strength will, indeed, turn out to be larger in the case
of standard recycling if we use realistic values of So for
the two cases. However, in this paper we shall continue
to use the same value of So for both the cases.

where N, = 4, f, g' Nt, Nf. As in the white noise case
treated in paper I here also the correlation function de-
pends only on the differences b, t, hg, and b,4 in the pa-
rameters of the two wave forms. Hence, we have
dropped the dependence of C on g and P and have ex-
pressed it as a function of just the three variables b, t, hg,
and h4.

We note the following properties of C.
(i) The maximum value of C is C(0,0,0)=Nt, +glSo J.

[Cf. Eq. (2.23a).]
(ii) Reflection symmetry about the maxitnum,

C(b, t, b,(,64)=C( —b, t, —b,g,
—h4), (2.26)

+C( b, t, hg, m /2)sink@, {2.27)

which states that the correlation of a signal with a filter
of arbitrary phase can be expressed as a linear combina-
tion of its correlation with two filters: one with the phase
equal to 0 and another with the phase equal to n. /2.

There is a word of caution about the statements made
about the properties of the correlation function. The ex-
pression for the Fourier transform of the chirp is derived
in the stationary phase approximation and it is this ex-
pression which has enabled us to show the simple depen-
dence of the correlation function on its parameters.

as is obvious from (2.25). For our purposes it is impor-
tant to note that the maximum, over ht and h4, of the
correlation function, for a fixed b,g, depends only on its
modulus.

(iii) Finally, let us note that

C(ht, 5(,h4 }=C(b t, b (,0)cosh@



49 CHOICE OF FILTERS FOR THE. . . . II. . . . 1713

Therefore these properties are also approximate and as
discussed in detail in paper I they hold good only for
values of coalescence time more than about 0.3 sec. It is
important to remember this while generating a set of
filters for low values of the coalescence time which corre-
spond to high values of the chirp mass.

III. CHOICE OF FILTERS

A. Threshold and minimal strength

In the absence of the signal, the correlation function
C(ht) is a random variable and is in general a function of
the parameters of the filter; for each filter we have a
different random variable. However, since the filters are
all normalized [cf. Eq. (2.17)] and no signal is present, all
these random uariables are identically distributed and all
of them are described by the same probability density
function. In Sec. II D we have shown that, for a station-
ary, Gaussian time-series noise, the noise in the filtered
output is also Gaussian with mean zero. A great
simplification brought about by the choice of our normal-
ization is that the correlation noise has unit variance.
Had we not normalized the filters in accordance with
(2.17) the variance would depend on the filter parameters
as can be seen from Eqs. (2.14), (2.16), and (2.18). The
probability density function for the correlation noise,
with our choice of normalization, is therefore given by

e
—C /2 (3.1)

This enables us to find the threshold for filtered data. Be-
cause of the random nature of noise there is a definite
probability, called a false alarm, that the noise amplitude
crosses a preset level, called the threshold, even when no
signal is present in the data stream. Because of the same
reason, there is also a definite probability, called a false
dismissal, that when a signal of a given strength is present
in the data stream the output amplitude is below the
threshold. Similarly, the probability that the output
crosses the threshold when a signal is present in the
detector is called a true alarm, and the probability that a
decision in favor of the absence of a signal is made when
the output has no signal in it is called a true dismissal. In
detection problems normally the threshold is set by con-
sidering some combination of the false alarm and the
false dismissal probabilities depending on the risks in-
volved in making a false decision.

Here the aim almost certainly is to avoid a false alarm.

In this section we first discuss the nature of the proba-
bility density function of the correlation noise when the
time series noise is colored. Using a certain false alarm
probability we obtain a threshold for filtered signals. We
then introduce the idea of minimal strength Th. e
minimal strength will then be related to the spacing of
filters in the parameter space. Towards the end of this
section we give an approximate analytical relation for the
spacing between filters as a function of the minimal
strength. The details of the calculation are given in the
Appendix. This relation will be shown to hold good for
values of minimal strength close to the threshold.

Hence the threshold must be set high enough so that the
false alarm probability is very small. The threshold g is
set by the requirement that the number of times the
statistic C exceeds the threshold in a given length of data,
purely due to noise, is much smaller than the expected
number of true events. Following paper I, we consider a
data segment for a one year period, and allow for just one
false alarm in this period; i.e., the expected number of
times C can cross g just due to noise fluctuations, in a
year's time, is one.

Let po be the probability that one sample of the output
consisting only of noise cross the threshold g. For a sam-
pling rate of a few kHz there are thus N-10' samples in
a year's data. The probability that at least one of them
registers as a signal is then given by 1 —(1 po) —-Npo
for po sufBciently small. Assuming that there are m
filters we obtain m filtered outputs. We take m to be
—1000. Now for the sake of simplicity we also assume
that the filtered outputs are uncorrelated. This is certain-
ly not the case and a detailed analysis of this aspect needs
to be performed. However, if we take signals with larger
strengths which allow coarser filter spacing, then the co-
variances between the fi1tered outputs will be relatively
smaller and we may not be unjustified in neglecting them.
Here we ignore the covariances and do a rough analysis
to get an idea of the threshold. Since each filtered output
is a normal deviate with zero mean and unit variance we
get the following relation for po..

' 1/2 m
1

(3.2a)
2m'

1 —p =

(3.2b)

which for g »1 yields
1/2

2 e g/2
1 —po-1 — — m, g»1 .

For 1V-10', m —1000 we get g=7.5. If C exceeds this
threshold value of g, we say that the signal is detected;
otherwise it is not.

The effect of the covariances between filtered outputs
can be gauged qualitatively. Consider the extreme case
when the m filtered outputs are perfectly correlated (this
will almost certainly not be the case here); then effectively
we have just one independent filtered output and the
threshold can be obtained by putting m =1 in the above
equation, which in this case would give g-6.6. Howev-
er, here we have an intermediate case, so that efFectively
we have less than m independent filtered outputs and
hence the values of the threshold will be reduced from
the one corresponding to m independent outputs. In our
case, the threshold value is insensitive to these
modifications and will be marginally reduced from the
value quoted above, for which all filtered outputs were
taken to be independent.

Clearly, we can only filter the data through a finite
number of filters, with each filter corresponding to a dis-
tinct set of values of the parameters. In other words, we
can only have a discrete lattice of filters. The discrete na-
ture of the lattice dictates that the minimal strength of
detectable signals should be somewhat larger than the
detector threshold. The reason for this is the following:
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A signal present in the output of a detector will have a
definite set of values of the parameters. For such a sig-
nal, the signal-to-noise ratio will be the largest when it is
filtered using a template that matches all its parameters.
In a discrete lattice of filters it is very unlikely that there
will be a filter that exactly matches all the parameters of
the signal. In that case for a given signal, the maximum
signal-to-noise ratio is obtained with a filter that has the
least mismatch with the actual parameters of the signal.
This will, in general, be less than what one gets using a
perfectly matched filter; the reduction in signal-to-noise
on the average is less, if one uses a larger number of
filters. Thus, in order to detect a signal with unknown
parameters we need a large number of closely spaced
filters in the parameter space.

Consider signals of such a strength that they produce a
correlation just above the threshold when they are
filtered with perfectly matched templates. It is clear from
the foregoing discussion that it is unlikely that such sig-
nals will be detected using a discrete lattice of filters: On
the average such signals will produce a correlation lower
than the threshold as they will not find a perfectly
matched filter in the lattice. We shall therefore consider
constructing a lattice of filters for signals of a certain
minimal strength S;„slightly larger than the threshold:

Smin =+& &
(3.3)

where ~) 1; i.e., the minimum strength of the signal is K

times the threshold. This means that with a right filter (a

filter whose parameters exactly match those of the signal)

the correlation of a signal whose strength is larger than
the minimal strength will be at least ~q. The aim now is

to construct a bank of filters so that every signal of
strength greater than or equal to the minimal strength
S;„will be detected. It is to be expected that the param-
eter ~ we have introduced here determines the bank of
filters.

B. Bank of filters

We now consider the problem of constructing a bank
of filters so that, given an arbitrary chirp wave form of
strength larger than the minimal strength, at least one
filter in the bank obtains a signal-to-noise ratio larger
than the threshold. We follow the same procedure as in

paper I but the results obtained here are quantitatively
different since the power spectral density Si, (f) is fre-

quency dependent. For the sake of completeness we give
a brief description of the procedure.

As in the white-noise case of paper I, here too, a two-
dimensional basis exists for the signal parameter N. A
chirp filter of arbitrary phase can be expressed as a linear
combination of two filters: one with phase equal to 0 and
another with phase equal to ~/2. Consequently, the
correlation of a given data set with a filter of arbitrary
phase can be expanded in terms of the correlation of the
same data set with the two basis filters [cf. Eq. (2.27)].
Moreover, the phase of the filter which maximizes the
correlation can be found analytically once the correla-
tions are calculated with the basis set: the maximum
correlation (with respect to the phase) is just the square

f, +g
max h;„ t+ht,

&

—A, A4 q t, 2, 0 dt =g .
b, t, bC

(3.5b)

Note that the b,g in the above equation is the solution of
(3.5a). Equation (3.5b) can be solved using the reflection
symmetry of the correlation function [cf. (2.26)]. Thus,
we have the relation gz+b, g=g, b,g,or—

4=(i—2~4 . (3.6)

The process is then repeated until the upper end of the
range of the chirp mass is reached. Thus, the (k+1)th
filter has the coalescence time

root of the sum of squares of the correlations obtained
from the orthogonal basis set (see paper I for details).

In constructing a lattice of filters for the chirp mass, or
equivalently for the coalescence time, we make use of the
symmetry of the correlation function, namely, that it de-
pends only on the difFerence, and not on the absolute
values, of the coalescence times of the signal and filter.
We fix the phase to be zero, i.e., 4=0. The set of filters
for 4=+/2 are going to consist of the same set of chirp
masses as the set of filters for 4=0.

We start with the chirp mass JR, at the minimum of
the range of chirp masses which the filter bank has to
span. This corresponds to a coalescence time, say, g, . A
typical value of JK, could be 0.5Mo which for f, =100
Hz corresponds to (,=9.54 sec. This gives us the first
filter in the set, namely, q(t, gi, 0).

The next filter q(t, gz, 0) is obtained as follows: We
consider the set of all signals, h;„(t,g, 4), of minimal

strength with g ~ g, and 0 ~ 4 + 2m. By the definition of
the minimal strength we have the relation

+g

f h,„(r,(,C )q(r, (,4)dr =iraq . (3.4)

Consider the signal h;„(t,gi, 0). The correlation of
;„(t,(„0) with the first filter is arl. If we reduce the

coalescence time of the signal slightly, say to g=g, —b,g
where b,g) 0, then the correlation will drop below aq.
We now solve the following equation for b,g:

t, +g
max f h, „(t+At, g, Ag, b 4 )q(t,—$, ,0)dt =g .
bf, b@

(3.5a)

The maximization with respect to ht and h4 has been
carried out to obtain the largest possible value of b,g and
leads to the coarsest possible lattice. The maximization is
necessary as there is a covariance between the parame-
ters. Thus, a signal of minimal strength with g=gi —Ag,
where hg is the solution of Eq. (3.5a), is just about picked
up by the first filter. If g (gi

—b,g for a signal of minimal

strength then this signal is not picked up by the first
filter. Therefore, there ought to be some other filter in
the bank which should pick up this signal. We choose gz
such that the maximum value of the correlation with
respect to b t and b,4 of the filter q(t, gz, 0) with a signal
of minimal strength having g=gi —hg is rl. That is, gz is
the solution of the equation
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gk+ i
=g,

—2k kg . (3.7)

We observe that the filters in the g dimension are spaced
with a constant spacing of 2b,g. By employing iterative
methods to Eqs. (3.5a) and (3.5b) one can numerically
solve for b,g. Such numerical computations corroborate
our analytical result (3.7) except at the higher end of the
range of the chirp mass, where the stationary phase ap-
proximation breaks down.

How many filters do we need? If we take the upper
limit to the chirp mass as =10Mo then the correspond-
ing g «gi and hence the number of filters with 4=0 are
just g, /2b, g. The full set of filters is obtained by includ-
ing the filters with phase m l2 and with the same set of gk.
Therefore, the total number of filters n& is

2xg
(3.8)

r,„=630m 'J
3 sec

a

100 Hz

—2
So

10 Hz

—1/2

Mpc .

(3.9)

In the limit of infinite number of filters, ~=1, r,„ tends
to a maximal limit ro which is determined only by the
threshold.

C. Bank of Slters for the standard recycling case

In this section we present the numerical analysis for
setting up a bank of filters. Specifically, we state a formu-
la relating the number of filters to the spacing between
them for different values of the minimal strength. We as-
sume that the noise power spectral density is that of a
detector in standard recycling configuration. We take the
knee frequency f„ to be 144 Hz. We obtain an approxi-
mate analytical relation for Lg, which is half the spacing
between the consecutive filters in the bank. The details of
the calculation are given in the Appendix.

Using the algorithm developed in Sec. III it is straight-
forward to find the spacing between the filters given a
certain value of a.. Equation (3.5a) is first solved numeri-
cally for hg. This gives half the spacing between the first
two filters. Having determined the spacing between the
first two filters in this manner, one can construct the rest
of the filters in the lattice with the aid of Eq. (3.7). This
procedure is accurate enough for most of the filters in the
lattice. However, since the properties of the correlation
function for low values of coalescence time (/&0. 3 sec,
the exact value depending on the value of a) may not
strictly hold good, it is necessary to adopt the iterative
method, discussed in detail in paper I, for such values.
Following such a procedure the bank of filters has been

From Eq. (2.23) we also obtain the furthest distance r,„
up to which a coalescing binary could be detected with a
bank of filters corresponding to the minimal strength ~g.
Thus,

—1/2

obtained for a '=0.8 and 0.9. The filters labeled by
their chirp mass have been presented in Tables I(a) and
I(b), respectively. We observe that the quantity hg is
more or less constant for a given value of ~ and grows

A (Mo)

JK + 1.530
1.542 A + 2.375
2.413 (A, + 2.796

2.856
2.920
2.988
3.060
3.138
3.221
3.311
3.408
3.512
3.626
3.750
3.886
4.036
4.202
4.388
4.598
4.839
5.116
5 AAA

5.835
6.319
6.928
7.729
8.790
10.298

(a)

hg (ms)

18.6
18.7
18.8
19.0
18.9
19.0
19.0
19.2
19.2
19.2
19.0
19.2
19.1
19.2
19.2
19.0
19.2
19.2
19.2
19.2
19.5
19.5
19.8
19.8
19.9
19.2
18.6
18.5

JK + 2.004
2.016&%,& 3.897
3.976 A, 4.929

5.075
5.229
5.399
5.588
5.797
6.028
6.285
6.571
6.885
7.250
7.670
8.156
8.750
9.509
10.529
11.957
14.044

(b)

10.1
10.2
10.0
9.7
9.9

10.0
10.1
10.1
10.1
10.0
9.7

10.0
9.9
9.8

10.0
10.5
11.0
11.3
11.3
10.3

TABLE I. Banks of filters labeled by chirp masses for two
different values of pc '. (a) z '=0.8, (b) g '=0.9. The distance
between filters in the parameter space is a constant except for
high values of the chirp mass.
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larger for lower values of a '. For ~ '=0.9 and 0.8,
b,/=0. 010 and 0.019 sec, respectively. The number of
filters nf is related to hg and g, [or equivalently At, as
given in Eq. (3.8)]. Table II displays for various values of

' (column 1), the distance hg for white noise (column
2) and standard recycling noise (column 3) and the num-

ber of filters nf in the standard recycling case for
At&=0. 25 (column 4) and 0.5MO (column 5). Note that
the distance between filters is roughly doubled in the
standard recycling case as compared to white noise and
consequently the number of filters is halved. For exam-
ple, for a '=0. 8 and At, =0.5Mo, the number of filters
is 513 as compared to 1150 in the case of white noise.

This can be understood in the following way: The
noise rises very quickly once f increases beyond f„, so
that when f ~400 Hz, the signal is basically drowned in
the noise. This implies that the Fourier transform of the
matched filter, q(f), decreases rapidly in amplitude as f
increases beyond fk so that the signal is effectively cutoff
beyond about 400 Hz. Thus, most of the contribution to
the signal-to-noise ratio comes from f &400 Hz. Now,
the time rate of change of the frequency, df (t)ldt, of the
chirp wave form increases with time and the chirp mass.
This means that if a signal is cut off prematurely, it is
harder to determine the chirp mass, as the rapid accelera-
tion in the frequency, in the final stages, is not detected.
Consequently, the correlation function near the peak be-
comes Qatter. Figure 1 depicts the correlation functions
for the white noise and the standard recycling noise. It is
clear from the figure that a wider spacing of filters results
in the standard recycling case.

This has the following important implication: In the
case of standard recycling the computing time is consid-
erably less than in the case of white noise for a similar
value of ~. This is because (i) lesser number of filters are
required to span the same range of chirp mass (by a fac-
tor of about 2) and (ii) the template can be cutoff'at about
400 Hz, so that a lower sampling rate —1 kHz is ade-
quate as compared to the 2 or 2.5 kHz rate required for
the white noise.

The saving in computation time is not due to any speci-
ality of the algorithm that we have developed. Even in

I I I I I
I

I I I

0.9—

0.8 I—

a

(Q 0 7
k,
0

L

0.6
P-

—0. 1

t I I I I I

—0.05 0 0.05
Distance between filters d( (in ms).

0. 1

FIG. 1. Plots of the correlation functions for standard recy-
cling noise and white noise with their maxima normalized to
unity. The correlation function corresponding to standard recy-
cling noise drops slower than that corresponding to the white
noise counterpart. This behavior implies that in the standard
recycling case the filters are more coarsely spaced.

the case of white noise we could have chopped off the
template at 400 Hz and got similar results. But then that
would have meant a drop in the signal-to-noise ratio.
However, in the case of standard recycling, the sensitivity
of a detector is enhanced in a relatively narrow band of
frequencies at the lower end of the detector bandwidth at
the cost of a greater noise at higher frequencies. There-
fore, the signal power at higher frequencies cannot be ex-
tracted. Thus, in the standard recycling case we can con-
sider a frequency limited template without an appreciable
loss of signal-to-noise ratio. Another advantage of stan-
dard recycling is that, for a given computability, a lower

TABLE II. Distance between consecutive filters for power spectral density corresponding to white
noise (column 2) and noise in interferometers with standard recycling (column 3) for different values of
the parameter ~ (column 1). The spacing between filters in the latter case is smaller since the template
in that case filters only the lower frequency part of the signal where it is harder to distinguish between
two chirp wave forms of different chirp mass values. Also quoted are the number of filters required in
the case of standard recycling for two different ranges of the chirp masses: JN. E [0.25, 20]MO (column
4) and At F [0.5,20]Ms (column 5).

0.95
0.90
0.85
0.80
0.75
0.70
0.65

hg (ms)
White noise

3.4
4.9
6.4
8.2

10.2
12.2
15.4

b,g (ms)
SR noise

6.2
10.1
14.1

18.6
24.0
30.4
38.2

Elf

JK1 =0.25MO

4914
2994
2152
1631
1261
995
793

)if
0.50MO

1548
943
678
513
397
313
249
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value of ~, or equivalently a lower minimal strength, can
be chosen than in the white noise case.

We now derive an approximate analytical formula for
hg as a function of a. This is achieved by Taylor expand-
ing the correlation function about the peak and taking a

I

"slice" at C=~ 'C(0, 0,0}. The intersection is an ellip-
soid in the parameter space, from which the spacing be-
tween filters can be obtained. The details of the computa-
tion are given in the Appendix. Denoting the analytical
value of the distance between filters by hg, „,we have

1 r„r„—r„2
2 2 22', I &&I 2zp —(p„+23 22 ]3+p„p»)+ 2pf2 23

1/2

+2(1—x '), (3.10)

where the I matrix is

S x

and

S(x)
a(x)

d
S(x)

dx
S(x)

(3.11)

0.54 —0.34

1.00
(3.13a)

and for the white noise (with lower frequency cutoff at
100 Hz and upper frequency cutoff at 2.5 kHz) we get

15.30 —11.37 2.70
I = + 9.36 —1.34 (3.13b)

1.00

detector. For the standard recycling case, with y =1.44,
we get

3.07 —1.02 1.58

S(x}=x (x +y ), a(x)= —' ——'x —x
—1

and A=
S x

{3.12)

The I' matrix is symmetric and the "stars" in the matrix
denote elements obtained by symmetry. When the noise
power spectral density is flat [i.e., Sz(f)=const] most of
the integrals in the above formula diverge. However, for
a realistic detector the frequency response is band limited
and therefore we can replace the limits in the above in-
tegrals with that corresponding to the bandwidth of the

The values quoted are obtained by numerical integration
of the integrals in (3.11).

The filter spacings obtained in this way are given in
Tables III(a) and III(b), for the white noise and standard
recycling noise, respectively. For values of ~ ' (column
1} close to 1 there is indeed a good agreement between
the numerical (column 2) and the analytical (column 3)
results since the quadratic approximation is expected to
be adequate.

We comment that the matrix appearing in Eq. (3.11) is
the so-called Fischer information matrix and its inverse,

)'J [~ ]V ' (3.14)

TABLE III. Distance between consecutive Slters in a partic-
ular lattice, speci5ed by K ' (column 1), found by numerical
methods {column 2) using Eqs. {3.5a) and (3.5b) and by analyti-
cal formula (3.10) (column 3), for (a) white noise and (b) colored
noise. In evaluating the integrals numerically, the lower fre-
quency cutofF is taken to be 100 Hz and the upper frequency
cutofF is chosen to be 2.5 kHz. The analytical method becomes
less accurate as K

' decreases.

is the expected covariance of errors of the various param-
eters of the signal, namely, t„g,4, or more accurately,
the scaled dimensionless parameters p&,p2,p3, defined in
the Appendix. The square root of the diagonal elements
of y, namely, (y;; )', represent the expected errors in the
parameters p;. A detailed discussion of this is being pub-
lished elsewhere [41] (also see Refs. [38,40]).

K

0.95
0.90
0.85
0.80
0.75

0.99
0.98
0.97
0.96
0.95

3.4
4.9
6.4
8.2

10.2

(a)

(b)
2.49
3.54
4.47
5.35
6.19

hg (ms)
Numerical

hg {ms)
Analytical

3.7
5.2
6.3
7.3
8.1

2.15
3.04
3.73
4.30
4.81

IV. DETECTION PROSABILli iES

The foregoing analysis needs some modification if we
are to apply it to a given output data train. The filtered
output C(ht) with a given filter, g and 4 fixed, is a ran-
dom variable for each value of b,t as seen from Eq. (2.11).
However, in an actual data analysis problem we have to
consider the fact that we have only one random output
C(ht) to contend with and the decision whether the sig-
nal is present or absent has to be made based on this out-
put. The analysis in the previous sections is valid only
when we consider the expectation value (C(ht)) of
C{ht)

Let a signal of strength greater than the minimal
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strength be present in the detector output. Although in a
given situation (, C(b, t)) may exceed the threshold for
some filter, there is no guarantee that C(bt) will also
exceed the threshold, as there is noise present in the out-
put. It may so happen that for a particular time shift At
when (,C(ht) ) exceeds the threshold, a sufficiently large
negative noise component "pulls" C(ht) below the
threshold level, leaving the signal undetected. The re-
verse may also take place: a correlation whose expecta-
tion value is below the threshold can get "pushed up"
above the threshold due to a positive noise component.
There is also the added problem that when the arrival
time of the signal is t, the statistic C(ht) may not peak at
a time shift ht= —t, . In other words, the maximum,
over the time shifts bt, of C(bt) will, in general, be
different from the maximum of ( C( b.t ) ) .

In this section we give a lower bound on the minimal
strength of the signal that it be detected with a certain
probability, called the detection probability, typically
95%. We find that we need to modify the previous re-
sults to some extent. We also justify below that consider-
ing just the maxirnurn of the correlation function is
suScient to decide a detection. This is done in Sec. IV A.
Section IV B deals with detection probabilities and the
modified thresholds.

A. Covariance of the correlation at different time shifts

Consider a signal h (t, g, 4) such that g is closest to the
filter with (=g;, i.e., g=g; b, go where 0—& ~Ago~ &bg.
Let us consider the case b,go&0. The argument for
b, go & 0 is analogous. The correlation of h ( t, g, 4) with
the filter with g=g; is given by

C(bt, bgo, b@)=h(t,g;
—6(0,4)o q(t+At, g, ,4+64),

(4.1)

where the o denotes the operation of correlation. Note
that to obtain the filter for a general 4 a suitable linear
combination of the filters for 4=0 and 4=~/2 has to be
taken. Let us denote the values of ht and A4 at which C
attains a maximum by ht and h4, respectively, and
consider the function C(ht, Ago, h@ ) for different
values of ht. In Eq. (2.25) we fix b,g= b,go and

and allow ht to vary. Our aim is to find out
the time scale in which the correlation drops to zero. If
Si, (f) is basically fiat near f, (as in the case of white
noise or standard recycling), the steep wall at f, due to
the seismic noise, and the rapid falloff in the power of the
signal (~f ~ ), produces a Dirac-b;like function with a
peak at f &f, . From Eq. (2.25) we see that the correla-
tion function C is approximately proportional to
-cos(27rf, 5t) where b, t=b, t +5t. This leads to the
correlation function dropping to zero for 5t —+1/4f, .
For f, =100 Hz, 5t —+2. 5 msec. This agrees with the
numerica1 contour plots obtained for the correlation
function by Schutz [42].

We argue that this is the same time scale over which
the correlation at different instants is correlated. (The
time instant in these discussions corresponds to the time
shift ht of the filter relative to the output of the detector. )

Since the C is a random variable the probability that a
decision in favor of detection will be made, when a signal
is actually present, is not unity. Since the noise is as-
sumed to be Gaussian, the C at the time shift ht is also
a Gaussian variate with mean 7)= t, C(ht, g; b, (o, —
b4 ) ) and variance unity.

We give below a rough estimate of the detection proba-
bilities. The relevant statistic here is the maximum of the
filtered outputs and this in general not a normal deviate.
As in Sec. III A here too we derive the results for the case
when the filter spacings are fairly large (ir '-0.8 or even
less) and the correlation of the signal with, say, the ith
filter, denoted by C; in short, is much larger than its
correlation with the neighboring filters. Ignoring covari-
ances between the filtered outputs we argue that the max-
irnurn of the filter outputs has roughly the same distribu-
tion as C; and hence is approximately a normal deviate.

Let us consider C, +, . We examine the case when

Ago«b, g and a '-0.8. Then the mean of C;+, denoted
by (C;+i) will be less than v '7) (more like 0.6 7) for

'-0. 8). For 71-7.5 this number is about 4.5, i.e.,

three times the standard deviation away from the mean of
C, . Therefore, C +] wil1 have very little effect on the dis-
tribution of the maximum of C, . The effect of other
filters on the maximum is even less and we ignore it in
our analysis. Therefore, in this case the distribution of
the maximum of C,- over i is approximately the same as
that of C, itself. The detection probability gd is given by

Qz- f exp — dC .1 (C —7))

&2m
(4.3)

For example if g is just the threshold level q then by Eq.
(4.3), Qd =0.5. This implies that there is an equal chance
that the fluctuations due to the noise may either bring C
down or push it up above the threshold. It is desirable to
have the detection probability as high as possible. For

It is not too hard to show that the covariance of the
correlation between the instants ht and ht+6t is given
by

(C(t3t, Ago, M )C(bt +5t, bgo, b& ))
—tC(bt, bg, , b@ ))(,C(bt +5t, hg, , h@))

cos(27rf 5t ) dff f7/3g (f)

where B is a constant. This equation again shows by the
foregoing argument that the covariance icos(27rf, 5t)
and goes to zero over the time scale 1/4f, . The quantity
5t is also called the decorrelation time [31] and basically
gives a time scale over which the correlations computed
at instants differing by a time interval greater than 5t are
uncorr elated.

The above considerations show that over the time scale
when ( C(b, t ) ) is appreciable it is correlated to C(b t )

and hence it is not unjustified if we base our conclusions
on the statistic C(ht ) to decide the presence or absence
of a signal.

B. Detection probabilities
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example, if Qd =0.975, then rj =9.5. Therefore, the effect
of the noise for a given data output is to increase the
threshold level higher than the basic threshold level g if
we impose the condition of high detection probability.

When Ego is chosen to have a larger value -b,g, near
about the filter spacing, the above approximation breaks
down since the means of C; and C;+, are more or less
equal. Thus, the maximum of C; and C;+& is no more a
normal deviate. However, when Ego-b, (, i.e., when the
signal lies exactly between the two filters, both C; and

C;+ &
are distributed identically with mean g and variance

unity. If we ignore the covariances, the maximum of C;
over i, denoted by C,„,has the probability density

p(C,„)=„ I(C)'= d
(4.4)

V. CONCLUSIONS

In this paper, the analysis of setting up a bank of filters
to extract arbitrary Newtonian chirp wave forms buried
in noisy data is investigated. Earlier analysis carried out
for the case of white noise has been extended to the case
of colored noise.

The detector noise is assumed to be stationary, charac-
terized by the Gaussian normal distribution. The well-
known technique of matched filtering is employed to filter
out a signal buried in noisy data. The idea of normalized
fi1ters is introduced which greatly simplifies the problem
of setting up a lattice of filters. A general formalism is
given for making a choice of filters, with each filter hav-
ing a different set of values for its parameters, so as to
detect arbitrary chirp signals, of strength greater than a
certain minimal strength, buried in arbitrary colored

where

I(C)= —I exp [
—[(x —

rl ) /2] ]dx .
c

v'2n.
(This formula may be easily derived by differentiating the
joint distribution function of C; and C;+,.) The mean of
C,„ is greater than rl and Qd will be greater than the
previous case of b,go « b,g for the same value of rl But a.

larger signal strength, larger approximately by a factor ~,
will be needed to produce the same mean g than in the
previous case since the signal and filter parameters are
mismatched.

What happens to the bank of filters? We have seen
that the above considerations amount to shifting the
threshold level from r) to rl, because if (C ) is at least ri
then C will exceed r) with probability at least equal to Qd.
We can ensure the detection probability to be greater
than a given Qo if we take the minimal strength of signals
to be S;„=ski, where r) is obtained by solving Eq. (4.3)
in which Qd is replaced by Qo. Signals of this minimal

strength will be detected with a probability greater than

Qd, if a bank of filters corresponding to ~ is used. This
minimal strength is probably a slight overestimate in the
light of Eq. (4.4) and a slightly lower value of S;„should
be adequate to give a detection probability greater than

P ~

noise. It is then applied to the specific case of noise
found in detectors that employ standard recycling.
Banks of filters are obtained for different values of the
minimal strength for this case. It is found that the spac-
ing between filters is more than twice, as compared to the
case when the detector noise is white, implying that only
half the number of filters are required to span a given
range of parameters of the chirp wave form as compared
to the latter. This is basically due to the fact that the
noise power spectral density in standard recycling is
larger at higher frequencies and consequently the signal
power at those frequencies is effectively cut off. Thus, the
filter can be chosen to have an upper frequency cutoff of
400 Hz, and a lower sampling rate is adequate for the
data train.

Further, an approximate analytic formula is obtained
for the spacing between filters in terms of the minimal
strength. This is achieved by expanding the correlation
function, of a filter and a signal, about its maximum and
demanding that this maximum be equal to the minimal
strength. In the Appendix an elegant geometrical con-
struction is given for deriving this formula. Strictly
speaking, this formula exists for the standard recycling
case, and not for the idealistic white noise case, where the
correlation function is not sufficiently smooth at the max-
imum. However, for the bandwidth limited white noise
the analytic formula does exist but the results depend
upon the bandwidth.

Finally, we have discussed the case of a single data out-
put and detection probabilities. For a detection probabil-
ity of 0.975 it is shown that the threshold must be raised
by about two sigma. However, the same bank of filters
can be used for this modified threshold.
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APPENDIX: ANALYTICAL RELATION
BET%'KKN MINIMAL STRENGTH

AND SPACING BETWEEN FILTERS

In Sec. IIIC a numerical method of determining the
lattice spacing of filters was described which is inevitable
for large values of b,g. However, for values of ~ close to
unity, i.e., when the spacing between the filters is small,
an analytical relation can be found. This analytical rela-
tion has been compared with numerical results and good
agreement is obtained for ~ 1. The relation is basically
derived by Taylor expanding the cross-correlation func-
tion about its maximum up to the second order and
equating the result to the threshold level.

Let us write the correlation of two chirp wave forms
that differ slightly in their parameter values as [cf. Eq.
(2.25)]
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C(ht, b,g, h4)
cos[2n fht +2rra( f)f,Ig+ A4]=A d

f, f7/3S (Al)
6 P3

where A is an overall normalization constant. It is con-
venient to use dimensionless quantities and to this end we
set

x =fIf„y=fk lf„a(x)=
—,'(8 —3x i —5x ),

(A2)

p&=2nf, t, p2=2mf, g, p3 (A3}

In terms of these new variables the correlation function
takes the form

„cos[xhp|+a(x)bpz+hp3]
C(Ep;)= A dx,

1 S x
(A4)

where S(x) and A have already been defined in Eq. (3.12).
The normalization can be chosen arbitrarily as long as
one chooses the threshold level accordingly. We choose
the maximum of the C to be 1 and this occurs at Ap; =0.
Thus,

C(6p;=0)=1 . (A5)

Since the maximum of C is just ~ times the threshold lev-

el, the threshold level is ~ '. This problem therefore
reduces to finding the maximum values of Ape with the
condition

C(bp;)=z (A6)

the other parameters hp& and bp3 being otherwise free.
To this end we Taylor expand C up to the second order
about its maximum:

C(ap,. ) =C(~p, =0) , r,,ap, ~p, —,

where

(A7)

Bc
a~p, a~p,

(A8)

In the above equation summation convention has been
used: i.e., repeated indices are summed over. We observe
that I,J is a positive definite and symmetric matrix, since
C has a maximum at the origin.

The above equations have been obtained in the noise-
free case for which the quantities involved are ordinary
functions. However, in the realistic case when noise ex-
ists the output of the detector is a random variable. Con-
sequently, quantities such as the cross correlation C are
also random variables. In particular, I;. is a random ten-
sor. But now the corresponding quantities will be the ex-
pectation values of these random variables which are ex-
pected to match with those in the foregoing noise-free

FIG. 2. Schematic diagram showing the ellipsoid of Eq. (A9)
in the Appendix. The plane hp2=bp2, „ touches this ellip-
soid. The distance of this plane from the origin gives the lattice
spacing in terms ofp2.

treatment. We observe that the expectation value of I;.
is then just the Fischer information matrix [19].

Using (A5) and (A6) in (A7) we have

f(4p; ) = r;imp;hp, =2(1—~ ') . (A9)

r)f Bf
dpi d~p3

(A 10)

Equations (A10) written out explicitly in terms of the
Fischer information matrix are

r„ap, ——0,
I 3;AP;=0 .

(A11a)

(A 1 lb)

We now eliminate bp& and bp3 from (A9) and (Alla)
and (Al lb}. This yields the result

Geometrically, this is an equation of an ellipsoid in

(hp„bp2, bp3) space. Further, in the four-dimensional
space spanned by (bp;, C), the r,i can be interpreted as
curvatures of the cross-correlation hypersurface. The
problem then is to find the maximum value of hp2 with
the constraint described by Eq. (A9). Geometrically, this
amounts to the following construction: One may imagine
a hp2 =const plane which is tangent to the ellipsoid. The
distance of this plane from the dpi =0 plane is the re-
quired bp2, „(see Fig. 2). Since the normal to this
tangent plane must be parallel to the hp2 axis, we have

hp2, „= 2(1 a')— 2 1/2
~11 33 13

2 2 2r„r„r„—(r„r„+r„r„+r„r„)+2r„r„r„ (A12)
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where the I' matrix is

x2 f xa(x}
d

S(x) t S(x)

f ~a (x)d
S(x)

S(x}

f ~ a(x)
ddxS(x}

f dx
S(x)

(A13)

The "stars" denote matrix elements obtained by sym-
metry. This formula, as it stands, cannot be applied to
white noise since many of the I;- are infinite in this ideal-
istic case. However, the upper limit of the integrals will
be finite for a realistic detector. For instance, if the sensi-
tivity of a detector is band limited in a range of frequen-
cies, say 100 Eiz to 2 kHz, then the limits in the above in-
tegrals are from 1 to 20.
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