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As gravity is a long-range force, one might a priori expect the Universe s global matter dis-
tribution to select a preferred rest frame for local gravitational physics. At the post-Newtonian
approximation, two parameters suffice to describe the phenomenology of preferred-frame efFects.
One of them has already been very tightly constrained (~az

~
( 4 x 10, 90'%%uo C.L.), but the present

bound on the other one is much weaker (~ni] ( 5 x 10, 90% C.L.). It is pointed out that the
observation of particular orbits of artificial Earth satellites has the potential of improving the aq
limits by a couple of orders of magnitude, thanks to the appearance of small divisors which enhance
the corresponding preferred-frame efFects. There is a discrete set of inclinations which lead to arbi-
trarily small divisors, while, among zero-inclination (equatorial) orbits, geostationary ones are near
optimal. The main o.i-induced efFects are (i) a complex secular evolution of the eccentricity vector
of the orbit, describable as the vectorial sum of several independent rotations, and (ii) a yearly
oscillation in the longitude of the satellite.

PACS number(s): 04.80.Cc, 04.25.Nx, 11.30.Cp, 95.40.+s

I. INTRODUCTION

The absence of preferred frames in local experiments
(or local boost invariance) is verified every day in high-

energy experiments but is much more difBcult to test
for the gravitational interaction. Metrically coupled
tensor-scalar theories of gravity (a la Jordan-Fierz-Brans-
Dicke), including general relativity, do not predict any
violation of this invariance (see, e.g. , [I] and references
therein). On the other hand, one expects the Universe's
global matter distribution to select a preferred rest kame
for the gravitational interaction if it is mediated in part
by a long-range vector field (or a second tensor field be-
sides the unique one postulated by Einstein) [2]. Tests of
the boost invariance of gravity in localized systems are
therefore of special interest to determine the field content

of the gravitational interaction, i.e., specifically whether
gravity contains, in addition to the standard tensor con-
tribution and an often considered scalar one, extra con-
tributions due to the exchange of a vector or a second
tensor field.

In the post-Newtonian limit, all preferred frame effects
are phenomenologically describable by only two parame-
ters: ai and nz [2]. (Note that the post-Newtonian ap-
proach assumes that all the fields contributing to grav-
ity are massless, or at least have a range much larger
than the size of the considered N-body system. ) These
two preferred-frame parameters contribute non-boost-
invariant terms in the Lagrangian, depending on the
velocities vo of the bodies with respect to some grav-
itationally preferred rest kame. More precisely, the
post-Newtonian Lagrangian describing the interaction
between N spherical bodies reads
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where the effective coupling constant GAB for the gravi-
tational interaction of bodies A and B is

f Egrav Egrav )-
GAB = G 1+ri

~

(7TLAC mBC ) (5)

in which g denotes the combination of parameters,

'g = 4P —p —3 —cly + & o!2 (6)

while EAg' ———(G/2) jA fA dszd x'p(x)p(x')/~x —x'~
denotes the gravitational self-energy of body A. Apart
from the contributions of a1 and o.2 to GAB (via g),
Lp ~„ is the usual boost-invariant Lagrangian involv-
ing the Eddington parameters P and p, which are suf-
ficient to parametrize the whole class of metrically cou-
pled tensor-multiscalar theories (P = p = 1 in general
relativity, while these parameters can take arbitrary val-
ues in tensor-scalar theories). The parameters nq and
n2 contribute to the effects associated with a violation of
the strong equivalence principle (GAB g G) only through
the combined parameter g. Observational tests of the pa-
rameter q are discussed in the literature (e.g. , [3]). In the
following we concentrate on the effects associated with
the velocity-dependent Lagrangian L, of Eq. (3).

It has been shown in Ref. [4] that the close alignment
of the Sun's spin axis with the solar system's planetary
angular momentum yields an extremely tight bound on
Ck'2 .'

(90% C.L.) .

This limit on a2 is much stronger than the existing lim-
its on the other post-Newtonian parameters P, p, and
o.q [5]. Present experimental bounds on the Eddington
parameters are at the level [3]

3 x 10 Ip —11 & 3 x 10 '

(90'%%up C.L.), (8)

while the limits on nq are about 6 times tighter [3,6—9].
More precisely combined orbital data on the planetary
system yield [8]

n1 ——(2.1 + 3.1) x 10 (90% C.L.), (9)

while the bound obtained in the strong-field regime by
analyzing binary-pulsar data is comparable [9]:

& 5.0 x 10 '
(90'%%up C.L.) . (10)

Recent theoretical developments in tensor-scalar cos-
mological models [10] suggest that a natural level for

]P —1] and ~p
—1~ is —10 —10 . The generalization

of this result to classes of gravitational theories involving

extra vector or tensor interactions has not been worked
out, but, by analogy, one might expect the present limit
on o.q to be too weak to constrain at a significant level the
participation to gravity of extra vector or tensor fields.
It is therefore worth discussing experiments having the
capability of improving the existing limits on az down to
the 10 —10 level.

The object of the present paper is to show that artifi-
cial Earth satellites ofFer very promising tools to improve
the precision of measurement of o.~ by, possibly, a couple
of orders of magnitude. Indeed, we find that the appear-
ance of small divisors can considerably enhance preferred-
&ame effects when the semimajor axis of the satellite's
orbit and/or its inclination with respect to the Earth' s
equatorial plane take particular values. Section II is de-
voted to the secular evolution equations satisfied by the
orbital elements, whose o;q-dependent contributions de-
rive from the disturbing function (13). As a first example
of a small divisor which enhances preferred-kame effects,
we consider in Sec. III the simple case of equatorial or-
bits, and show that because of a competition between
tidal forces and the quadrupolar moment of the Earth,
there exists an optimal value of the semimajor axis which
maximizes the perturbations due to aq. It turns out that
geostationary satellites are nearly optimal. The case of
nonequatorial orbits is studied in Sec. IV. We point out
that preferred-frame efFects can be enhanced by arbitrar-
ily large factors if the inclination is suKciently close to
one of six specific values, so that the accuracy of measure-
ment of o;q becomes limited only by the finite duration
of the experiment.

When deriving bounds on nq or n2 [such as Eqs.
(7),(9),(10)],it is necessary to make a definite assumption
about the preferred rest frame entering the I.agrangians
(3),(4). The standard assumption [3,4,6—9], which we

shall take up in the present paper, is to choose the frame
defined by the cosmic microwave background (this essen-
tially means that the range of the putative extra vector or
tensor field responsible for the violation of local boost in-
variance is at least of cosmological magnitude). However,
we shall see in Sec. V A that (somewhat weaker) bounds
on o.q can be obtained without the need of such a hy-
pothesis. Indeed, the "absolute" velocity of an artificial
Earth satellite can be decomposed as v, t ——v, t+v@+w,
where v, t is the velocity of the satellite with respect to
the Earth, v@ the orbital velocity of the Earth around
the Sun, and w the velocity of the Sun with respect to
the gravitationally preferred frame. The o.z contribution
(3) to the interaction term between the Earth and the
satellite reads then

L, = ——' + ' ' (v@+w) (va, + v@+ w) .
+sat
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This involves a term proportional to v@ - v, t which
leads to observable efFects, although they are 12 times
smaller than those proportional to w v, q, since v@/c =
9.94 x 10 s whereas vj/c = 1.22 x 10 [11]. Section
V B is devoted to the effects involving a~v@ that are ne-
glected in the rest of the paper. In particular, we show
there that the term proportional to vr . v@ in Eq. (11)
leads to sizable deviations of the angular position of the
satellite, which could be used to constrain the value of aq
independently of the tests proposed in Secs. III and IV.
We finally summarize our results and give our conclusions
in Sec. VI.

equatorial
plane

North

jl

rigee

II. SECULAR VARIATIONS OF THE ORBITAL
ELEMENTS

The preferred-frame efFects described by the La-
grangians (3) and (4) are aiv2/c2 smaller than the
leading Newtonian interaction, and lead, over one or-
bital period, to very small deviations of the position
of a satellite. Taking into account the present lim-
its (9) and (10), one expects ni-induced displacements
!hx! aiivv«tv@«i/2c2 & 75 pm (for r@«t, 2R@), too
small to be observable with present or foreseeable tech-
niques. Fortunately, some of these perturbations build
up beyond one orbital period, and can thus be enhanced
to an observable level if one waits for a sufBciently large
number of periods. We restrict our attention to such
efFects in this paper, i.e. we concentrate on secular vari-
ations of the orbital elements. Concentrating on secular
efFects has also the advantage of &eeing us from the coor-
dinate ambiguities present in orbital-period effects [12].

When taking into account only the Newtonian poten-
tial generated by a spherical Earth, Gm@m, i/r@, i, the
satellite's orbit is determined by six constants of motion:
its semimajor axis a, its eccentricity e, its inclination
I with respect to the Earth's equatorial plane, the an-
gle 0 between a direction of reference (o;, b) = (0, 0)
[13] and the ascending node, the angle ur between this
ascending node and the perigee, and finally the quan-

tity 0 entering the mean anomaly / =
fz n(t')dt' + 0',

where n = 2n/P = (Gm@/as) ~ is the orbital fre-
quency. [Numerically P = (a/R@)s~2 x 1.406 h, when
using R@ ——6.371 x 10s m, Gm ——3.986 x 10i4 m s .]
To help visualize the meaning of the angle cr, it is useful
to note that, in the limiting case of a small eccentricity
e, the mean anomaly E can be identified with the angular
position of the satellite, so that 0 can be viewed as the an-
gle between the perigee and the satellite at t = 0. Figure
1 summarizes this notation. It will also be useful in the
following to define an orthonormal triad (a, b, c), where
a is directed towards the ascending node and c = a x b
is in the direction of the orbital angular momentum, i.e.,
orthogonal to the orbital plane. (Note that this triad is
not the one used in Refs. [9,14], where a was directed
towards the periastron. )

We find it convenient to use the method of variation
of the elements, as described for instance in Ref. [15], to
derive the secular variations of a, e, I, cr, cu, and O. For
more generality, let us consider a perturbed two-body

direction of reference

(a,s) = (0,0)

FIG. 1. De6nition of the orbital elements e, I, 0, u, and
of the rotating orthonormal basis (a, b = c x a, c) linked with
the orbital plane. In the limit of a small eccentricity e, the
angle between the perigee and the position of the satellite at
t = 0 can be identi6ed with the orbital element cr.

system (m~, mg), define M = m~ + mz, X~ = mg/M,
Xir = mg/M, and write the Lagrangian as I = I p +
MXgXgR where Lo contains, in addition to the kinetic
terms, only the Newtonian potential between spherical
bodies Gm~mB/r~~, and R is the disturbing function
containing all corrective terms due to asphericities, tidal
forces, relativistic effects, etc. We shall not consider here
the motion of the center of mass of the two-body system
[16],but concentrate upon the equations satisfied by the
elements of the relative orbit xg —x~. These derive
directly from R, and read [15]

da 2 OR

dt na Oo

de 1 —e BR (1 —e )i~2 BR
dt na2e Ocr na2e Ou

'

dI cot I BR
dt na2(1 —e2)i&2 Bu)

(12a)

(12b)

1 BR
na (1 —e )'& sinI BO

'

(12c)
do 2 OR

dt na Oa

(1 —e2) i/2

dt na2e

1 —e2 OR

na e Oe

cot I
na2(1 —e ) & BI '

(12d)

(12e)

dO

dt

1 OR

na (1 —e ) &2sinI BI (12f)

The square brackets on the right-hand side of Eq. (12d)
indicate that the a difFerentiation is efFected keeping the
mean anomaly fixed (i.e., ignoring the implicit a depen-
dence contained in f ndh). When working to first order
in R, the orbital elements can be replaced by their con-
stant zeroth-order values on the right-hand sides. Then
the secular variations of the orbital elements are simply
obtained by replacing in Eqs. (12) R by its average value
(R), computed over one unperturbed Newtonian orbit
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(more precisely, one takes the average over the angle E,
keeping the other elements fixed). It is straightforward to
integrate the terms proportional to 1/c in the two-body
versions of the Lagrangians (2) and (3). Decomposing

the "absolute" velocities as v& &
——vg ~ + w, , where

w, is the velocity of the center of mass of the system
(A, B) with respect to the preferred rest frame, we find
the contribution

a, /GMI, w, ' a~ (GM&' ', [w, /c c e]
2 (ac2) c 2 (ac2) 1+(1—e ) &

+I(GM) 2 /'2p —P+ 2+ ngXgX~ 8p+ 7 —XgX~(1 —4ny) l
0 «') k (1 —")' '

r8

! (13)

where the square brackets denote the mixed product
(w, /c) (c x e), the vector e being the Lagrange-
Laplace (-Runge-Lenz) eccentricity vector with norm e,
directed towards the periastron of body A. The first
term comes from the contribution proportional to m,
in L, (3), and the second from the contribution involv-

ing w, (v~ + v~). The third term is responsible for
the usual relativistic perigee advance and comes from the
1/c2 terms of the Lagrangian (1), with extra contribu-
tions due to the vA v~ term of J, . We have not in-
cluded in Eq. (13) the contribution of n2, relying on the
limit (7) to consider that this type of preferred effects is
already plausibly excluded.

Up to here, we have considered a two-body system with
arbitrary masses (mg, m~) for generality's sake. In the
particular case of artificial Earth satellites, one can how-
ever neglect m, q with respect to m@, and therefore write
M m@, Xg ——X,~q 0, Xg ——X@ 1. Hence, we
see from the second line in Eq. (13) that the additional
contribution to the relativistic perigee advance generated
by o.z is completely negligible. As for the first term on
the right-hand side of Eq. (13), it only contributes to
the evolution of the element o and will be studied in
Sec. V B. In the next two sections we concentrate on the
evolution of the other elements, generated by the second
term on the right-hand side of Eq. (13).

The contribution (13) should be added to the usual
Newtonian multipolar and tidal perturbations, notably
the effect of the Earth's quadrupolar moment (J2) and
the tidal forces due to the Moon (denoted as C) and

l

the Sun (denoted as Q), which are the dominant ones.
For analytical simplicity, we shall not consider any other
Newtonian perturbation in the present paper. Our esti-
mates of the measurability of az will correspondingly be
only indicative. To get reliable estimates of the bounds
on o, q which could be experimentally obtained, it would
be necessary to perform detailed numerical simulations
taking into account all known Newtonian and general
relativistic effects, as well as all sources of noise which
may be modeled. (There exist in particular resonances
between several multipolar moments of the Earth which
have significant effects on long times. )

The secular contribution due to the Earth's oblateness
can be written down very easily:

Gm@B 2 —3sin I
(14)

The contribution of tidal forces is more complicated (even
if one neglects the eccentricities of the Earth's and the
Moon's orbits, as well as their inclinations with respect
to the Earth's equatorial plane) because it involves ex-
plicitly the angular positions of the Moon and the Sun.
However, it can be simplified very much if the variations
of the orbital elements (12) are studied on longer time
scales, more precisely if one averages over the orbital pe-
riods of the Moon around the Earth ( 1 month) and of
the Earth around the Sun (1 yr). The variations of the
satellite's orbital elements after such averagings can then
be derived from

((Bq;~„))= N —2+ 3e —3sin l(1 —e + 5e sin u)

where
Gmc Gmo

~@C ~SO

[The notation N is reminiscent of the fact that n@
(Gm~/r@o) ~ is the orbital frequency of the Earth
around the Sun; note, however, that (Gmc/rc) ~ is
not the orbital frequency of the Moon around the Earth,
which would involve m@ + mc instead of mc.] Beware
that the above expression (15) should not be used to de-
rive variations with periods 1 yr.

The secular variations of the satellite's orbital ele-
ments can now be easily derived from Eqs. (12). They
tell us that the semimajor axis undergoes no secular

variation ((a) = 0), and that the change of the incli-
nation is negligible in the limit of a small eccentricity
[(dI/dt) = O(o.qe) + O(e )]. We shall study the equa-
tions satisfied by e, ~, and 0 in Secs. III and IV, and see
that they can be rewritten more compactly as a vectorial
equation for the eccentricity vector e in the limit e (( 1.
Section VB will be devoted to the equation satisfied by

Finally, it should be noted that in the main body of
the paper we always deal with the motion of a satellite
as seen in a (locally inertial) geocentric frame. The nq-
dependent effects linked to the connection between such
a geocentric frame and a global, barycentric one will be
briefly discussed in the concluding section.
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III. COMPETITION BETWEEN TIDAL FORCES
AND EARTH'S OBLATENESS FOR

EQUATORIAL ORBITS

The aim of this section is to show on the simple exam-
ple of equatorial orbits how small divisors can enhance
the preferred-&arne effects associated with ni. (As said
above, we neglect the eccentricities of the Earth's and
the Moon s orbits, as well as their inclinations with re-
spect to the Earth's equatorial plane. ) The secular vari-
ations of the satellite's orbital elements are then given by
Eqs. (12), where (R) is the sum of Eqs. (13), (14), and
(15) with I = 0. However, the angular position of the
ascending node is no longer well defined as I + 0, and
Eqs. (12e) and (12f) become formally singular. As is well
known [15], this singularity is fictitious and taken care of
by considering the evolution of the angle cu = ~ + 0 be-
tween the direction of reference (n, b) = (0, 0) and the
perigee, which stays well defined in the limit I ~ 0. One
finds

dio (1 —e2)i~2 B(R)
dt na2e Be

/ ' ' ]+O( ), (17
4 c e2

where

3 (R@l 3 N2~„—= n -J,
~

~ +-, +O(e')2qay4n2
is the Newtonian perigee advance due to the Earth' s
quadrupolar moment and tidal forces, and w@

—= w+ v@
the velocity of the Earth with respect to the preferred
kame, v@ denoting as in Sec. I the orbital velocity of
the Earth around the Sun. [It is useful to quote here
the numerical value of 2 n J2 (R@/a) = (R@/a) ~ x
2.02 x 10 s s i = (R@/a)~~2 x 2x/(0. 10 yr), which will
appear again in the following sections as the characteris-
tic &equency for the Newtonian variations of the orbital
elements io and 0; see notably Eqs. (29) and (31).] Equa-
tion (17) together with the one satisfied by e,

a n a +0 a, e2

can be rewritten as a simple vectorial equation for the
eccentricity vector e in the limit e (& 1:

= c x ioiv e+ (k+ tc@) x c + O(aie ) + O(e ),(
de 2 2

dt

where eiv(t) is a vector of constant norm rotating with

angular &equency ioiv in the orbital plane (usual New-
tonian perigee advance), and e~ is the fixed polarizing
contribution due to the preferred-frame effects we are
studying: namely,

cxk
e~ =

Q)~
(24)

Note the factor (&oiv) in Eq. (24) which is the first
appearance of a small divisor. The solution (23) is for-
mally identical to the one found for binary pulsars in Ref.

[9], the only difference being that io~ replaces the rela-
tivistic periastron advance. The same kind of polarizing
terms in the time evolution of e has also been pointed
out previously in [14], in the totally different context of
equivalence principle violation in binary systems.

In geometrical terins, Eq. (23) means that the eccen-
tricity vector e(t) traces out, during its time evolution
(after averaging over an orbital period), a circle centered
around e~. If a large enough segment of this circle (say,
about a quarter) can be monitored during the experi-
ment, it should be possible to measure the position of its
center, i.e., e~, with about the same precision that indi-
vidual measurements of the eccentricity vector [17]. In
turn, the precision of the measurement of e is related to
the precision a„with which one can measure the satel-
lite's position: roughly, one expects o = o„/a. It is
convenient to work with quantities homogeneous to dis-
placements. Therefore we shall measure the o.q pertur-
bations of e in terms of

a yearly varying one. In the present and following sec-
tions, we concentrate on the effects of the constant vector
k, leaving to Sec. VA a study of the effects associated
with tc@(t) Si.nce we are considering equatorial orbits in
this section, the vector c orthogonal to the orbital plane
is the constant unitary vector parallel to the Earth's po-
lar axis, and therefore c x (k x c) is a constant vector,
namely, the projection of k onto the equatorial plane.
Hence a o.q-type violation of local boost invariance has
the consequence of adding a constant forcing term in the
time evolution of the eccentricity vector which, if it were
alone, would secularly "polarize" the orbit in the direc-
tion of the equatorial projection of w. However, the New-

tonian precession term war cuts off the build up of this
polarizing term and deflects it by 90' in a gyroscopelike
way. More precisely, the solution of Eq. (20) can be
written as the vectorial superposition

e = eiv(t) + e~,

where

(20)
o.i ~c x w~ (Gm@) ~

bp = ae~ ——
c2 2J2Gm B2 a —5/2 + ~2a5/2 (25)

Gmgk = —0!y w
4a2c2 (21)

Gm@
IC@(t) = —CKi V@4a2c2 (22)

is a constant vector (beware that Ref. [9] defines a vector
k which is equal to twice this value) and

which represents (when ep ( eiv, as expected &om e~ (
ni x 5.7 x 10 ( 3 x 10 s) the amplitude of the secular
change in the distance to the perigee p = a(1 —~e~). From
the arguments just given, equating bp with the position
measurement precision o.„should yield an estimate of
the precision with which o.q can be measured over a time
span T/4, where
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27r
(26)

aoptimai (2J2Gmg)R@/N )'
7.66R@ 4.88 x 10 m (27)

(which corresponds to an orbital period 30 h). In Eq.
(27), we have used the numerical data J2 ——1.08263 x
10, Gm@/R@c = 6.97 x 10,R@ ——6.371 x 10 m,
and N = 3.56 x 10 s . The maximal value of hp (for
equatorial orbits) is thus obtained for this value of the
semimajor axis, and reads

The denominator of the expression (25) is a function of
the semimajor axis a, and is minimized for the value

a = r@c ——60.3 R@. The Earth's oblateness gives then
a negligible contribution to the denominator of bp in Eq.
(25), and one finds bpc ni x 4.5 x 10 cm, with period
T = 8.72 yr. This effect was first discussed (in a different
guise) in Ref. [18]. Since lunar laser ranging (LLR) al-
lows one to determine the Earth —Moon distance within 2
or 3 cm, we expect that an analysis of LLR data could at
best limit ai at the 5 x 10 level, i.e., not better than
the existing bounds (9),(10). However, as this would rep-
resent a new, independent test of preferred-frame effects,
it would be interesting to perform explicitly a multipa-
rameter fit of LLR data including the contributions of o.i
(and for completeness n2, P, p) to the lunar equations of
motion.

Gmg c
R@c2 6N(2 J2)ii2

=~& x254x10 cm,

~equatOr Ial

(28)

IV. NONEQUATORIAL ORBITS AND
ARBITRARILY SMALL DIVISORS

where the norm w/c = 1.22 x 10 s and the direction
(n, b) = (11.2 h, —7') of w have been extracted from the
results of the Cosmic Background Explorer (COBE) [11].

Present technologies make it possible to measure the
position of a satellite down to o„1cm, by using ei-
ther laser ranging [as for the Laser Geodynamical Satel-
lites (LAGEOS)] or Global Positioning System (GPS)
receivers onboard. The displacement (28) could there-
fore lead in principle to limits on o.i of the order of
4 x 10, i.e., 2 orders of magnitude tighter than the
present bounds (9) and (10). It is to be noted that a geo-
stationary satellite (a = 6.62 R@, period = 23 h, 56 min)
is near optimal. It yields bp = o.i x 2.4 x 10 cm, leading
us to expect a precision o.i 4.2 x 10 . Clearly, numer-
ical simulations taking into account all known Newtonian
perturbations and nonconservative forces which may be
modeled should be performed in order to get more real-
istic estimates of the precision which can be reached.

This simple case of equatorial orbits already exhibits
one of the characteristic behaviors of preferred-frame ef-
fects enhanced by small divisors: The duration of the ex-
periment must be large enough to take advantage of the
small divisor effect. For instance, the time span of the
experiment should be (at least) T/4 = n. /2m~ 15.4 yr
in the case of the optimal orbit (27) and 12.4 yr for a
geostationary satellite.

Let us conclude this section by a comparison of the
result (28) with the one corresponding to the best drag-
free satellite we know: the Moon itself. Still neglecting
the inclination of its orbit and that of the ecliptic with
respect to the Earth's equatorial plane, we can repeat
all of the above discussion, except that in Eq. (16) only
the tidal forces due to the Sun should be taken into ac-
count. Actually, higher-order terms in these tidal forces
are not small in the particular case of the Moon (because
its orbital period is non-negligible as compared to one
year), and the coefficient N of Eq. (15) should be re-
placed by 2.043 n2 instead of merely n = Gmo/ro to
yield the correct magnitude of &uiv [15]. The amplitude
of the secular oscillation of the Moon's perigee distance
is then given by the same formula (25) as above with

In this section, we shall see that nonequatorial orbits
(of any altitude) can give rise to arbitrarily small divisors
if the inclination is near some special values. For reasons
that will appear clear below, we concentrate upon rather
low satellites, for which tidal forces are negligible com-
pared to the influence of the Earth's quadrupolar mo-
ment. For this reason we do not take into account the
disturbing function (15) in the present section, in order
to avoid unnecessarily technical calculations. However,
we show at the end of this section how the equations sat-
isfied by the orbital elements can be solved when tidal
forces are not neglected.

The main difference between equatorial and non-
equatorial satellites is that the orbital plane is no longer
fixed when I g 0. Indeed, Eq. (12f) shows that it is

precessing with a constant angular frequency

3 (R@)2
2

(Q) = ——n J2
i ~

cosI + O(nze) + O(e )
2 (a)

+ O(N'), (29)

which is not modified by a o.z-type violation of local
Lorentz invariance in the limiting case of a small eccen-
tricity. We shall drop the angular brackets in the follow-

ing, and denote this constant precessing velocity simply
by O. Like in the previous section, Eqs. (12b) and (12e)
satisfied by e and u can be rewritten as a simple vectorial
equation for the evolution of the components of e with
respect to the vectors (a, b), which are part of a frame
(defined at the beginning of Sec. II and in Fig. 1) which
rotates around the Earth's polar axis with the angular
velocity (29):

(d'e/dt) = c x [~~e + (k + tc) x c] + O(nie )

+O(e ) + O(eN ), (30)

where the prime in d'/dt denotes a time derivative in the
rotating frame (a, b, c) and where

2

~~ =——n J2
~ ~

(4 —5sin I) +O(e ) + O(N )
3 (R~i ~ 2 2 2

4 i, a )
(31)



49 TESTING FOR PREFERRED-FRAME EFFECTS IN GRAVITY. . . 1699

is the Newtonian perigee advance due to the Earth' s
quadrupolar moment, k and m@ being the vectors de-
fined in Eqs. (21),(22). As in Sec. III, we shall neglect
in this section m@ with respect to k. Since the projec-
tion c x (k x c) of k onto the orbital plane is no longer a
constant vector because of the precession 0, the solution
(23) of the previous section is not valid for nonequatorial
orbits. However, it is easy to solve Eq. (30) which is
just an inhomogeneous linear difFerential equation in e
(in the limiting case of a small eccentricity). Let us look
for a solution of the type e = e1v+ P,. e;, where e1v is the
usual (constant-norm) Newtonian eccentricity vector ro-
tating in the orbital plane (a, b) with angular frequency
~N, and where the e s are some constant-norm vectors
rotating in the orbital plane with constant angular &e-
quencies u; to be determined. The time derivative of e
then reads

where

Gmsx (1 + cos I)/2
bp~ ——ae~ ——o.~ m cos b

4ac2 (dN +0
(1 6 cos I)/2= Acosb

4 —5sin I p 2cosI
6m@ . sin I

Spp = aep = 0!y m sinb
4ac2 (dN

sin I= Asinb'
4 —5sin I

(36a)

(36b)

a't (Gmsx '1 Rex xpA—:ax
(Rsx) (Rsxc2 j 3J2 c

= ax (a/Rsx)'/ x 6316 cm. (37)

around ep. Hence we can now distinguish three difFerent
contributions to the o.q-induced secular oscillation of the
distance to the perigee:

= c x ~xv e+ ) (~; —~xv) e; (32)

This has precisely the form of Eq. (30), with k x c having
been decomposed as a sum of constant-norm vectors (u;—
~1v)e; rotating with constant angular frequencies ~; in
the orbital plane. Since k x c has a periodic motion in
the orbital plane (with period 27r/0), it obviously admits
such a decomposition:

Gm@k x c = —nx xp (K+ + Kp + K ),4a2c2

where

1 6 cosI
K~ = cosb csin(O —n) a —cos(O —a) b

2
(34a)

Kp = sin b sin I a, (34b)

e = eN+e++ep+
Gme ( K+ Kp K=e~+nx xp . + . +
4xx c k&xv + fl +& +N —fll

(35)

This generalizes the solution (23) obtained above for
equatorial orbits. [In the limit I ~ 0, the term involving
K+ becomes equal to the vector e~ of Eq. (24), in which

~xv +0 was denoted urxv. ) In geometrical terms, Eq. (35)
means that the eccentricity vector e(t) undergoes a kind
of epicyclic motion in the (a, b) plane: It moves (with
angular velocity w~) along a circle of radius ~eN

~
whose

center moves itself (with a nonuniform angular velocity
determined by 0) on an ellipse Le+(t) + e (t)] centered

(a, b) denoting the right ascension and declination of w.
Ky are rotating with angular &equencies p0 in the or-
bital plane, whereas Kp is a constant vector in this plane
(directed towards the ascending node). The solution of
Eq. (30) can therefore be written sixnply as

T+
ci)N + 0
2x

TQ =
4

B
4 —5sin I p 2cosI
B

—5sin I

(38a)

(38b)

(a/R ) (5I3/a, ) [Cm]
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FIG. 2. Expected radial displacements of the perigee as
functions of the inclination of the orbital plane. The solid
line corresponds to the contribution bp+, the dashed line to
bp, and the dotted line to bp0.

Figure 2 displays the amplitude of these displacements
as functions of the inclination. They clearly exhibit poles
(or "resonances") for six particular values of I: bp+ di-

verges for uxv+ 0 = 0, i.e., for I = 46.38' or 106.85', bpp
diverges for u1v = 0, i.e. , for I = arcsin(2/~5) = 63.43'
or 116.57; and bp diverges for ciN —0 = 0, i.e., for
I = 73.15' or 133.62'. [Note that the special value

Ip = arcsin(2/~5) coincides with the well-known New-
tonian critical inclination for J2 efFects [15].] As in the
equatorial case discussed above, the price to pay for tak-
ing advantage of the sxnall divisors arising near these
poles is the need for a long observation period, inversely
proportional to the corresponding small divisor. Indeed,
the dephasing periods between the Newtonian eccentric-
ity vector eN and the contributions e~,ep proportional
to o.~ read
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where

a ) ' /Gm+' ' 8vr Rg
R c2)

=(a/R@) ~ x 0.1974 yr. (39)

(Near each resonance ~~ 6 0 = 0, one of the vectors e+

becomes infinitely large with respect to the other, and
the e++ e ellipse degenerates to a circle described with
angular velocity pA = ~N. )

In order to compare the merits of the different reso-
nances, it is useful to define as a figure of merit the ratio
of the corresponding perigee displacement bp by the typ-
ical (minimal) time T/4 needed for the observation:

4bpg

T+

A 1+cosI
4 —cos b8 2

Bg x 1.073 x 10 cmyr
a

Bg x 4.509 x 10 cmyr
a

for I = 46.38' and 133.62'

for I = 73.15' and 106.85',

(40a)

(40b)

4hpp A= 4 —sinh sinI
To B

x 1.395 x 10 cmyr for I = 63.43' and 116.57' .

These results underline that the inclinations around 46.38' or 133.62' have the capability to give the largest efFects in
a given observational time, as confirmed by the width of the resonances in Fig. 2. Equations (40) also show that low
orbits (say R@ & a 2R@) seem preferable in that they give larger bp s in a given observational time. (It is easy to
see that the a dependence of bp/T still applies for high, tidally perturbed orbits. This justifies our concentrating
on low orbits, with negligible tidal effects. ) However, Eqs. (38),(39) show that the inclination I must be fixed with a
high precision, typically within less than 1 arcminute if one wishes to make the fullest use of the observational time
T/4 which, for practical reasons, will probably not exceed 10 yr. The needed inclination can be computed thanks
to the asymptotic formulas:

Ipole~ =

3.19' for Ip l, ——46.38' or 133.62',( a )",lyr

('."
2.83 for Ip l, ——63.43' or 116.57'.fa) ' . lyr

'R@) Tp

(41a)

(41b)

(41c)

For instance a low satellite (a = R@) will give rise to a
perigee displacement hp' ni x 10 cm in T~/4 = 10 yr
if the inclination differs from the pole value 43.38' (or
133.62') by only 3.19'/40 = 4 arc min 47 arc sec. An er-
ror of one arcminute on I would change the observational
time and the perigee displacement by factors (0.8)+ .

The six resonant values of the inclination are solu-
tions of the simple trigonometric equations 4 —5 sin I+
2x cos I = 0, where x E (—1, 0, 1), and do not depend
on any experimental data. They will therefore enhance
preferred-frame efFects in the motion of the natural satel-
lites of the different planets in the solar system (although
tidal forces may not be negligible in some cases). How-
ever, none of the known natural satellites' orbits has an
inclination close enough to one of the six poles. On the
other hand, there are hundreds of artificial Earth satel-
lites, and many of them would allow one to tighten the
present bounds (9),(10) on ni if the evolution of their
perigee could be tracked at the centimeter level. For in-
stance, the classes of satellites "GPS BII" and "GOES"
would typically allow one to measure perigee radial dis-
placements of o.y x 3 x 10 cm in an observational time

of T/4 15 yr. Even if these satellites could be tracked
with suKcient precision, it remains to see whether the
effect of nongravitational forces would allow one to make
full use of such long data span. However, a statistical
study of these 20 satellites could probably allow a sig-
nificant reduction of the sources of errors. The same
remarks can be formulated about the classes of satellites
"GPS" and "Glonass" whose perigees are deviated by

aix1.5x10 cminT/4 8yr. [Therearealsomany
low (i.e., fast) satellites, such as "Starlette" or "Seasat, "
which give perigee oscillations of o.y x 3 x 10 cm in less
than 1 yr, but the air drag is very large for such low satel-
lites. ] The first Laser Geodynamical Satellite (LAGEOS
I) is an interesting candidate, not only because its posi-
tion has been laser tracked for years at the few centimeter
level and because it is submitted to very small air drag,
but also because several contributions to the eccentricity
vector e are large in its case: e+ gives a perigee deviation
ofaix4. 2x104cminT+/4 1.9yr, e adeviationof
aix2.0x10 cminT /4 5.3months, andepadevia-
tion of ai x 8.8 x 10s cm in Tp/4 1.2 yr. The superpo-
sition of these three efFects thus yields a complex signal
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which should, hopefully, be distinguishable &om other,
Newtonian, contributions. Unfortunately, the variations
of the eccentricity e of this satellite are difBcult to model,
as explained in Refs. [19,20]: It undergoes small oscilla-
tions of +3x10,which correspond to perigee deviations
of +4 m. The recently launched second LAGEOS, which
has an even more favorable inclination, might provide an-
other interesting experimental probe of preferred-&arne
effects. Indeed, a duration of only T+/4 1.3 yr would
suKce to observe a radial displacement of its perigee by
bp+ nq x 7 x 10 cm. The best tool for tightening the
present bounds (9),(10) on ai would be a (naturally or
artificially) drag-free satellite, launched on a favorably in-
clined orbit and tracked for years at the centimeter level
(via laser ranging or onboard GPS receivers). Let us
note that there are plans for launching in the near future
drag-&ee satellites with GPS receivers onboard: Gravity
Probe B (GPB) and the satellite test of the equivalence
principle (STEP).

For completeness, we now brieHy discuss how the above
solution (35) for the eccentricity vector e is modified
when tidal forces (which are very small for low satellites)
are taken into account. The first (trivial) modification is
of course that the disturbing function (15) now gives a
contribution to the precession velocity {0) [Eq. (12f)] of
the orbital plane:

has no longer a constant norm, as opposed to Eq. (23)
and (35) above, but that it is now moving on an ellipse,
whose axes are directed along a and b and have a ratio
e /et, = (1 —v/p)'~2:

e~ ——e cos p 1 —v p t+ const a

+egsin p 1 —v p t+ const b . (46)

[Note that this ellipse reduces to a circle in the particu-
lar case of equatorial orbits (I = 0) that we considered in
Sec. II.] The solution of Eq. (43) can then be obtained
in a geometrical manner similar to the one used in Eqs.
(32)—(35). Let e; denote a generalization of the New-
tonian eccentricity vector e~ when the &equency p, is
replaced by an arbitrary constant p; such that v/p; & 1,
i.e. , p, & 0 or p; ) v (we shall see below that these val-
ues of p,; are sufficient for our purpose). Like eiv in Eq.
(46) above, e; is moving on an ellipse in the orbital plane,
with a nonuniform velocity which has the sign of p, , and
such that its components along a and b are oscillating
with a constant frequency p„(l —v/p„)i~2 and have an
amplitude ratio e' /eI, = (1 —v/p;) i~2. (The particular
cases of constant vectors along a or b are obtained, re-
spectively, for p; m 0 and p,; = v. ) The time derivative
of a linear combination e = eiv + P,. e; then reads

(0) = ——n cosI 2J2(R@/a) +N /n +O(nie)

+o( (42)

{d'e/dt) = c x (p, e+ k x c) + v b x (a x e) + O(aie )
+O(e ), (43)

where

On the other hand, the effect of tidal forces in Eqs. (12b)
and (12e) for e and u is somewhat more involved [even
after averaging over monthly and yearly &equencies as
explained in Sec. II, Eq. (15)]. The vectorial equation
satisfied by the eccentricity vector e in the orbital plane
reads now

(47)

This has precisely the form of Eq. (43), with k x c having
been decomposed as a sum of vectors (p, —p) e; moving
on ellipses as described above. It is easy to check that
any vector having a periodic motion in the orbital plane
admits such a decomposition, and that the corresponding
p s always satisfy the condition v/p; & 1. In particular,
one finds that the source term k x c can be decomposed
as in Eq. (33), where Ko is still given by Eq. (34b), but
where K~ have more complicated expressions,

p
—= —n J2(R@/a) (4 —5 sin I) + 2N /n {44)

0/p+ + cosI
K~ = cosh —sin(A —cx) a

v/&w

is the analogue of the angular frequency uiv of Eq. (30),
and

+ . cos(A —n) b, (48)0

v= —N sin I
4n

is an additional contribution due to tidal forces. The ra-
tio v/p can become positive and larger than unity when
the inclination I is very close to the well-known J2-critical
inclination Io —= arcsin(2/~5) = 63.43 or 116.57' (e.g. ,

/I —Io[ & 4 arc min for a 2R@, and [I —Is/ 8
arc sec for a R@). Equation (43) then formally ex-
hibits an exponential blow up of the Newtonian eccen-
tricity vector. This indicates that our simplified (lin-
earized and time-averaged) treatment of the evolution of
e becomes inadequate. In the following, we restrict our
attention to the generic case v/p & 1. One finds that eiv

with

py=+0 1+ v 2Q +v 2. (49)

Gm@ ( K+ Kp Ke=eiv+Di io + +4a'c'
& p —p+ p p —p- )

Note that these expressions for K~ reduce to those of Eq.
(34a) when v = 0, i.e., when tidal forces are neglected or
for equatorial orbits. Hence the solution of Eq. (43) can
be written simply as



1702 THIBAULT DAMOUR AND GILLES ESPOSITO-FARESE 49

It is therefore of the same kind as Eq. (35), and there still
exist poles for some particular values of the inclination,
only slightly modified with respect to those of Fig. 2 for
relatively low satellites. [For the same reason indicated
above, our treatment becomes inadequate when p ~ 0+,
formally corresponding to (1 —v/p)r~2 becoming large
and pure imaginary. )

V. PERTURBATIONS DUE TO THE ORBITAL
VELOCITY OF THE EARTH AROUND THE SUN

A. Perturbations of the eccentricity vector

In the previous sections, we have neglected the orbital
velocity v@ of the Earth around the Sun, but we shall see
below that it can also lead to significant preferred-kame
effects on artificial satellites, although they will typically
be 12 (= rp/v@) times smaller than those proportional
to m. The interest of effects involving v@ is twofold.
First of all, we shall see that arbitrarily small divisors
can enhance the preferred-kame effects we are studying
for any value of the inclination I of the satellite's orbit (if
the semimajor axis a is chosen appropriately) instead of
the discrete resonances displayed in Fig. 2. Moreover, the

existence of a motion around the Sun (with well-defined
amplitude and phase) is known for sure to be part of the
"absolute" velocities entering preferred-frame effects. By
contrast, the identification of w with our velocity with
respect to the cosmic microwave background is a specific
assumption. Although this assumption is plausible on
field-theoretical grounds, the bounds derived on o.i in
the literature [3,6—9] and the discussions of the previous
sections of the present paper are strongly dependent on it.
It seems therefore of importance to determine limits on
o.q by relying only on an unambiguously present velocity
such as vg.

It is straightforward to generalize the results of the
previous section to the case of a velocity v@ which is not
constant, as opposed to w. The equation satisfied by
the eccentricity vector e is Eq. (30), but we concentrate
now on the effects generated by the source term a x
c, where tc@, given by Eq. (22), is a vector rotating
with angular frequency n@ = (Gm@/rs&)r~2. As in the
previous section, it su%ces to decompose a@ x c as a sum
of constant-norm vectors rotating with constant angular
frequencies to derive the contributions to e involving v@.
Let us denote as I@ ——23.5 the inclination of the ecliptic
with respect to the Earth's equatorial plane, and choose
the origin of time at the vernal equinox. The source term
v@ x c can then easily be decomposed as

Gmg
Kg x c= Qr 2 2 vg(K+++ K+ +K ++K +Kp++Kp )4a2c2 (51)

where

1
Kpy = —— sin I sin I@ cos(n@t) a p sin(n@t) b

2
(52)

and, if s, s' denote two independent signs (s = +1, s' = kl),

, 1 + s cos I 1 —ss' cos I@K„—:s'
2 2

[cos(sO+ s'n@t) a —sin(sO+ s'n@t) b] . (53)

The vectors Kp~ are rotating with angular velocities pn@ in the orbital plane, whereas K„are rotating with angular
velocities —(sA+ s n@) in this plane. These notations are chosen to simplify the expression of the eccentricity vector
e written below; it generalizes the notations K~,Kp introduced in Sec. IV, which would be denoted K+p, Kpp in the
present convention. The eccentricity vector can then be immediately written as

Gmp ( K++ K+ K K Kp+ Kpe=&iv+crr 2 2 vg + + + + +
4a c E&iv + ~+ ng &iv + ~ —ng &x —0+ n@ ~~ —0 —n@ &x+ nrs &N —ne)

to which should be added the contributions proportional
to rp of Eq. (35). The solution (54) now exhibits res-
onances for any value of the inclination I provided the
semimajor axis a is chosen appropriately. Figure 3 dis-

plays the values of a and I for which one of the divisors
in Eq. (54) vanishes. Note that when a tends formally
towards 0, these curves tend towards the six poles found
in Sec. IV, because u~ and 0 [Eqs. (31) and (29)] are
proportional to a ~2 whereas n@ ——2vr/(1 yr) is con-
stant.

As in the previous section, the price to pay for a small
divisor is the need for a correspondingly long time of
observation, say, T/4 = 7r/2(uiv + 0 + n@) or n /2(~N. +
n+), depending upon the concerned divisor. The figure
of merit bp/(T/4) of the diiferent orbits can be computed
like in Eqs. (40), and Fig. 4 shows that the contributions
e+ and e + give the best results, i.e., the largest perigee
displacements in a given observational time. This is due
to the rather small value of the inclination I@ ——23.5
of the ecliptic with respect to the equatorial plane, since
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FIG. 3. Values of the semimajor axis of the satellite's orbit
for which the displacement bp of the perigee has a resonance,
as functions of the inclination of the orbital plane. The bold
lines correspond to the six poles shown in Fig. 2, which exist
for any value of a (small enough for tidal forces to be negligi-
ble). The solid lines correspond to effects proportional to ve
which do not vanish when the inclination I@ of the ecliptic
with respect to the equatorial plane is neglected. The dashed
lines correspond to the vanishing eKects when I@ ~ 0. The
dotted lines correspond to unphysical values of a ( R@.

e+ and e + are precisely the only contributions which
do not vanish as I@ ~ 0. The values of a and I for
which these two main contributions diverge have been
plotted in solid lines in Fig. 3 in order to distinguish
them from those involving sin Its or 1 —cos I@ (vanishing
when I@ ~ 0) which have been plotted in dashed lines.

The largest figure of merit displayed in Fig. 4 is
obtained for a = R@ and I = 43.22', and reads
4bp+ /T+ ——aq x 8.62 x 10 cmyr ~. As expected,
it is (v//v@ ) 12 times smaller than the best result [Eq.
(40a)] of Sec. IV, which was obtained for I = 46.38' (or
133.62'). However, the high-precision observation of a
low orbit with an inclination close to 43.22' could lead
to the first experimental results about preferred-frame
effects &ee &om any assumption about the fundamental
rest frame. (The satellite LACE happens to be precisely
on such an orbit, but it is not drag free. )

We have seen in Sec. IV that all of the three con-
tributions e~, e, and eo (proportional to m) to the
eccentricity vector e are a priori large for the orbit of
LAGEOS I, thus giving rise to a complex signal in the
evolution of the eccentricity vector. It is interesting to
quote that the contribution e + (proportional to vts) is
also enhanced by a small divisor for this satellite, since
the amplitude bp + is about a~ x 2 x 10 cm in a typical
observational time of T +/4 7 months. It would be
therefore interesting to analyze the LAGEOS I data to
look for preferred-kame signals of both the w and the v@
types (if it turns out feasible to extract such information
in spite of the presence of perturbing forces which are not
easily modeled).

A remarkable feature of Fig. 3 is the existence of
maxima in the curves representing the loci of the v@-
type resonances in the (I, a) plane. These maxima occur
at I = 0 or 180' (for a/RIs ——1.94, 2.36, and 2.65),
I = 78.46' or 101.54' (for a/R@ ——1.67), and I = 90'
(for a/R@ ——1.59). The amplitude of thb v@-preferred-
frame effects for orbits located close to these values of
I and a would be therefore almost insensitive to injec-
tion errors or Buctuations in I. This suggests that these
orbits might be especially robust tools for constraining
this type of effects. The best choices would be the orbits
located close to (I = 0, a = 1.94R@) or (I = 101.54',
a = 1.67R@), which correspond to rather large figures of
merit 4bp/nIT in Fig. 4 (respectively, 5.15 x 10 cmyr
and 3.58 x 10s cmyr ).

B. Along-track perturbations of the satellite

2xl0
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I I

0 15 30

nI =n
Q
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I I I I
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I I

150 165

In =Q+ n
III
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We have not yet discussed the perturbation of the el-
ement o, which is related to the angular position of the
satellite at t = 0. Using the expression of the disturbing
function (13) in (12d), the secular evolution of o is given
by

FIG. 4. Figure of merit of the resonant preferred-frame ef-
fects corresponding to the orbits of Fig. 3, i.e., ratio of the
expected radial displacement bp of the perigee by the typi-
cal observational time T/4 The solid lines correspond to.the
contribution bp+~, the dashed lines to bp ~, and the dotted
lines to bpo~.

do. . n, n a [w+ v@,c, e] o.,n 2

dg 4 c2
=�~N-

+g Q2
llV + v@

+o(a,e), (55)

where 0~ is the Newtonian contribution due principally
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to tidal forces (15) and to the Earth's quadrupolar mo-
ment (14). The second term of the right-hand side,
though proportional to 1/e, does not lead to any inter-
esting effect in the limit of a small eccentricity. Indeed,
it precisely cancels a corresponding term in the secular
evolution of u. In other words, the angular position of
the satellite with respect to the ascending node is not
affected by this type of contribution.

By contrast, the last term proportional to (w+ v@)

w2 +v + 2(w - v@) induces interesting effects on the po-
sition of the satellite through the time variation of w. v@.
(The secular drift in o due to the constant term w + v+2

is unobservable because, as we shall see below, it can be
absorbed in a small renormalization of Newton's constant
G.) Indeed, let us denote as before the right ascension
and declination of w as (n, h), the orbital frequency of
the Earth as n@, and the inclination of the ecliptic as I@.
Equation (55) can then be rewritten as

mv@ 1+cosI@
(0) = const —2ciin cos 8 sin(n@t —n) + O(1 —cos I@)+ O(sin I@) (56)

where we have written down only the largest contribu-
tion. The integration of this equation shows that the
longitude of the satellite is modulated by an oscillating
term

n m v@
bo = ni ——(1+cosI@) cos8 cos(n@t —o.),

n@ c c

l

n(t) reads

(G(t)m@ )
& .(t)' )

O.'i -2
= n~ 1 — (w+ v@)2c

(61)

corresponding to an along-track oscillation

bx// ——a bo-

—cubi(R@/a) cos(n@t —n) x 9.17 x 10 cm.

(57)

(58)

Integrating Eq. (61) reproduces the result (57). Note
that here again a very small instantaneous perturbation
O(v2/c2) has been enhanced by a large factor n/n@. As
an aside, let us remark that another consequence of the
time-dependent renormalization (59) of the gravitational
constant is to cause a yearly "breathing" of the radius
of the Earth, with associated yearly variations of its
moment of inertia and of its angular velocity (see [3]).
However, the amplitude of these variations, given the
present limits on o.i, are too small to be of observational
significance, e.g. , bR@(t) = (ctlnR—@/Bln G) niR@ w .

v@(t)/c + 40 pm.
The large amplitude, yearly periodicity, and weak al-

titude dependence (oc a ~ ) of this efFect makes it a
promising way of improving the precision of measurement
of o.i (maybe down to the 10 s level). However, detailed
numerical simulations are needed to assert whether the
effect (58) can be separated from the other yearly per-
turbations.

Let us note finally that the results (57),(58) can be de-

rived in a totally different way, by starting directly &om
the Lagrangians (1) and (11). The terms proportional
to ai can indeed be interpreted as a time-dependent
renormalization of the gravitational constant [21,6] ex-
perienced by the satellite,

G(t) =—G 1 — (w + v@)
2c

(59)

0!i - —1
a(t)—:a~ 1 — '

(w + v@)2c

In the limiting case of small eccentricity, the angular po-
sition 0 of the satellite with respect to the perigee can
be identified with the mean anomaly t' = f n(t) dt + DN,
where o~ is a constant and where the orbital frequency

Taking into account the adiabatic constancy of
the Delaunay variable (or "action variable" ) I
[G(t)m@a(t)]i~, Eq. (59) induces a variation of the semi-

major axis:

VI. CONCLUSIONS

Artificial Earth satellites can be very useful tools to
probe the field content of gravity, i.e. , specifically whether
it contains a vector or second tensor interaction lead-

ing to preferred-&arne effects in local gravitating sys-
tems. Thanks to the appearance of small divisors which
enhance the preferred-&arne effects on the eccentricity
vector when the inclination and/or the semimajor axis
of an orbit are chosen appropriately, it seems conceiv-
able to tighten the present experimental bounds on the
preferred-frame parameter o, ~ down to the 10 —10
level. What is needed are centimeter-level tracking data
of a (naturally or artificially) drag-free satellite over time
scales large enough to separate from Newtonian contribu-
tions the secular motion of the eccentricity vector induced
by a nonzero o.i. Among the class of zero-inclination
(equatorial) orbits, geostationary ones are nearly opti-
mal. Along-track oscillations of a satellite with yearly
period constitute another promising way of measuring
oi around the 10 level. There is also a wide class of
orbits for which preferred-frame effects on the eccentric-
ity vector due to the orbital velocity of the Earth around
the Sun are enhanced by small divisors. These could be
used to obtain the first bounds on o.i independent of any
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hypothesis concerning the gravitationally preferred rest
&arne.

In this paper, we have presented an approximate ana-
lytical treatment of the dominant preferred-&arne eH'ects.

The value of this treatment is mainly indicative, as a
help for selecting the most favorable orbits. In practice,
we advise to resort to direct numerical integration of the
equations of motion (and, evidently, to a multiparame-
ter fit to the experimental data). For the convenience of
the interested reader, we end by giving the ni (and for
completeness o;2) contributions to the equations of mo-
tion. Contrary to the rest of the paper, we have in mind
here global (barycentric) equations of motion (written
in a post-Newtonian coordinate system appropriate to

the description of the entire solar system; see, e.g. , [22]).
The relative acceleration of a satellite with respect to the
Earth has the form

d x = +GR + +nongrav + +ay + +ay
dt2

(62)

where the general relativistic geocentric acceleration (in-
cluding a relativistic treatment of multipolar and tidal
effects) will be found in full detail in Ref. [22], where
A s, „F„s, „/m, t denotes the acceleration in-
duced by nongravitational forces, and where (to lowest
order in the deviation from general relativity, and for
m,«(( m@, r (( r@o)

Gm@ Gmo ( E@' " Gm@)A, =a~ (wnn —(nxwn)xv)+a, x (nnnxw)xv+~2 + ~nna]2f' C 2T@oc ms) r )
(63a)

Gmg 2 Gmo 4 E' "
Gm@A, = —ag ((nxwn) n+2(n. wn)(nxwn) xn) —aq ~

' — nna+ (nxnnn) xn).2p c 2T@oc2 3 m@

(63b)

In these formulas, r and v denote the radial distance
and the velocity of the satellite with respect to the Earth,
n the unitary vector directed &om the Earth to the satel-
lite, n@o the unitary vector directed &om the Earth to
the Sun [23], and w@ ——w + v@ the absolute velocity
of the Earth with respect to the gravitationally preferred
rest &arne, v@ being its orbital velocity around the Sun.
For conceptual clarity we have indicated within square
brackets the contributions of o.q and o.2 due to the vio-
lation of the strong equivalence principle, i.e., the terms
generated by expanding the g-dependent term coming
from the Lagrangian Lp ~ „,Eq. (2). The difFerent terms
of Eqs. (63) are classified by order of decreasing magni-
tude. [The even smaller contributions due to the coupling
of the satellite to the Earth's intrinsic angular momentum
are given in Eq. (9.20) of Ref. [3]; they cause an addi-
tional secular precession of the satellite's orbit which is
independent of the absolute velocity with respect to the
preferred frame. ]

The contribution proportional to tU n in Eq. (63a) is
responsible for the along-track perturbations of the satel-
lite studied in Sec. VB above, whereas the one propor-
tional to (nx w@) x v, together with the contribution pro-
portional to (Gm@/r) n@c) in the last term, is responsible
for the perigee displacements studied in the rest of the
paper. Note that the (Gm@/r) n@c) term has the same
form as the one due to a violation of the strong equiv-

Gmo
Q~, =o'i 2 n@O xw.

4reo
(64)

Although the time dependence of 0, , via n@o (t), might
in principle allow one to separate it &om the other rela-
tivistic contributions to A (when discussing observables
related to the global barycentric frame), its magnitude is
too small to be of observational significance. [It yields a
yearly oscillation of the orbit with respect to the barycen-
tric frame ( (a/R) x 0.1 mm. ]

alence principle [with an opposite sign: 2Ef, "/m@c
—9.2 x 10 io, Gme/ac2 = (R/a) x 7.0 x 10 ]. Ac«-
ally, neither of these two terms is of much observational
significance, as their contributions are much smaller than
that due to the (n x w@) x v term.

The force proportional to (n@o x w) x v in the second
curly bracket of Eq. (63a) has not been considered in the
rest of the paper. It arises in the connection between the
locally inertial geocentric &arne used in the body of the
paper and the global barycentric one used here, and has
the form of a Coriolis force. This Coriolis force acts also
on gyroscopes (including the spinning Earth) and adds
up to several other relativistic effects causing a univer-
sal precession 0 of gyroscopes and satellite's orbits with
respect to the barycentric frame (see Sec. 9.1 of [3] and
[22]). The ni-dependent contribution to 0 reads
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