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Bound on m„/m„ for large N~
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If the number of colors is large, the ratio mv/m„r is bounded from above. The bound is not
satisfied by the observed g and g' masses.

One of the classic statements of the U(1) problem in
@CD was Weinberg's observation that a chiral U{l) bro-
ken only by quark masses (isospin symmetric and small
enough to apply chiral Lagrangian arguments) implies
the existence of a neutral meson state with a mass less
than ~3m [1]. 't Hooft showed how nonperturbative ef-
fects could solve this problem by breaking the chiral U(1)
[2]. If the chiral U(1) is broken strongly, it does not make
sense to regard the q' as a Goldstone boson. However, if
the number of colors is large (and it is often speculated
that 3 is large enough), the breaking of the chiral U(1)
is suppressed and leading order chiral Lagrangian argu-
ments can still be applied. In this Brief Report, I review
the well-known forra for the pseudoscalar meson mass-
squared matrix in this limit and note the existence of an
upper bound on the ratio m„jm„. The bound has t, he

form

m'„3 ~g 3~g t'rn„+ rn„q+m, 3+ i/3 (3+ ~3) ( ms

( fm„+ md') 2)

m.

L(rr) = f' (—tr (8"U~ Sr U) + —rr (Ur pM)

+—tr (UpM) + —mo (det U + det Ut), (2)
2 2

where

U = exp[2iII/ f],
8

Ii=) ~.r. ,
(3)

with the u, d, and 8 quark masses denoted by m„, m~,
and m, . What is perhaps slightly amusing about this
bound is that it is not satisfied by the observed rt and q'

masses. This is a clear (if not very surprising) indication
that higher order eKects in the chiral Lagrangian are very
important for the g-g' system.

In leading nontrivial order in large X and the momen-
tum expansion, the chiral Lagrangian for the nonet of
pseudoscalar mesons takes the form

where f is a constant with dimensions of mass and M is
the quark mass matrix,

(m„0 0
~M=~ O m~ O

( 0 0 m, )

The U field transforms linearly under U(3) x U(3):

V~ U'=LUat,

In the basis (uu, dd, ss), (2) gives a mass-squared ma-

trix of the Havor-neutral pseudo Goldstone bosons pro-
portional to

/z+ m„
z+ m(g

z+ m. )

where the z's arise from the mo term in (2) [3]. From
(6), I will derive the bound for m„= md = 0, where the
algebra is simple. I will then indicate how to derive most
easily the result to next order.

For m„= md = 0, the mass-squared matrix {6) has
one zero eigenvalue. The other eigenvalues are

3z m, /9z' —2zm, + m,'
2 2

+
2

The ratio is

3z+ m, —goz' —2xm. + m,'
0 x~ms 3z+ m, + /gz' —2*m, +m2 (8)

This is maximized for z = m, /3, which gives the first
term in the result (1).

The second term in (1) can be most easily obtained
by setting m„= m~ and computing the ratio of the two
largest eigenvalues in perturbation theorY. It is easy to
see that the general result to first order in m„/m, , and

mg/m, depends only on m„+ md, thus no information
is lost by setting m„= m~. To erst order, the ratio is

m~ + 7Tld r, (*,m. ),
ms

(9)

See, for example, [3]. where
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6x2+ 2m2
Tg Z) mg 2

3z+ m, + /9z —2zm, + m2
[

/9z2 —2zm, + m,
(10)

(12)

Setting z = m, /3 in (10) gives the second term in (1).
The first term in (1) gives a mass ratio bound of

" (0.518 (11)
my~

compared to the experimental value

0.572 .
my~

Including the e6'ects of the nonzero u and d masses brings
these closer, but not into agreement. Using generous
values md/m, = 0.06 and m„/md —0.7 [in both cases
probably erring on the side of increasing (m„+ md)/m, ]
gives

singlet pseudoscalars. In (1), the ratio of decay constants
is fixed to 1 by large N, and what varies is the ratio of
m, to the nonperturbative contribution to m„.

(2) It is not surprising that the large N, chiral pertur-
bation theoretic analysis fails for the g'. The g' mass in
our world is sufBciently large that higher order terms in
the chiral Lagrangian are probably important. Likewise,
three colors is surely not enough to justify total neglect
of nonleading terms in 1/N. Nevertheless, I find it amus-

ing that the failure happens the way it does. It is not
that you can fit the masses and then the details like de-
cay rates and branching ratios do not work. You cannot
even get started.

& 0.540. (»)
fAg &

Two brief comments are in order.
(1) Note the role of large N in the difFerence between

Weinberg's bound ( [1)) and (1). To obtain Weinberg's
bound, you maximize the ratio of m„ to m under varia-
tions of the ratio of the decay constants of the octet and
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