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Experimental constraints on the neutrino oscillations and a simple model of three-Savor mixing
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A simple model of neutrino mixing is considered which contains only one right-handed neutrino field

coupled, via the mass term, to the three usual left-handed fields. This is the simplest model that allows

for three-flavor neutrino oscillations. The existing experimental limits on the neutrino oscillations are
used to obtain constraints on the two free-mixing parameters of the model. A specific sum rule relating
the oscillation probabilities of different flavors is derived.

PACS number(s): 12.15.Ff, 14.60.Gh

troweak neutrino eigenstates v; with the mass eigenstates
Nk,

v;= g Uk',
k

and p denotes the neutrino momentum. In (1), it is as-
sumed that the neutrinos are ultrarelativistic.

If only two neutrino flavors are taken into account, the
mixing matrix takes the form

cos0 sin0
—sinO cosO N2v2

and the formula (1) reduces to the well-known expression

. 2hmLP,z(L) =sin 28,2sin (4)

where b, m =~m, —mP. This formula is used in most
analyses of the experimental data on the neutrino oscilla-
tions [1]. The experimentally determined limits on the
transition probabilities P; are translated into constraints
on the allowed values of sin 20,", depending on the value
ofhm .

As an illustration of the present experimental situation,
we show in Fig. 1(a) cotnpilation of the best constraints
obtained from the accelerator experiments on the
v, -v„,v, -v„v„-v, oscillations and the neutrino disappear-
ance reactions v, -v, v„-v, where v denotes a neutrino
of arbitrary type. It should be noted, however, that it is
impossible for nontrivial v, -v„, v, -v, and v„-v, oscilla-
tions to have, simultaneously, the two-state character.
For example, if we assume that the v, -v„oscillations have
a two-state character, then at the same time we a priori
exclude the possibility of any v, -v, v„-v, oscillations,
while the probabilities for the v, -v„and v„-v„ transitions
are trivially reduced to the v, -v„case. Therefore the set
of constraints on sin 20;. given by the conventional
analysis does not properly reflect the patterns of the neu-
trino mixing which are still allowed by the available ex-
perimental data.

(mk mt )L-
+Re g Uik Ujt U;k U;t exp

where UkI is a unitary mixing matrix relating the elec-

In the past fifteen years, considerable effort has been
made to detect the effect of neutrino oscillations [1]. A
positive signal in the neutrino oscillation experiments
would indicate nonzero neutrino masses and provide
some information on the pattern of the lepton mixing.
Constraints have been obtained on almost all possible
types of neutrino oscillations. The results of the neutrino
oscillation experiments are usually expressed in the form
of limits on the mixing angle as a function of the
difference in the squared neutrino masses, under the as-
sumption that the oscillations transition occurs between
only two weak-interaction eigenstates.

In this Brief Report, we consider a model of neutrino
oscillations that goes beyond the two-flavor approxima-
tion, allowing for oscillations involving all three neutrino
flavors, but which is much simpler than the most general
case with a three-flavor mixing. This model contains
only one right-handed neutrino field coupled, via the
mass term, to the three usual left-handed fields. We show
that the formulas for the neutrino oscillation probabilities
in this model may be expressed in a compact form. We
consider constraints on the neutrino mixing implied by
the experimental limits on various oscillation probabili-
ties. We show that these constraints have a simple
geometric interpretation. We discuss, in some detail, the
constraints from the presently available data from the ac-
celerator neutrino oscillation experiments. Finally, we
obtain in the considered model a sum rule relating the os-
cillation probabilities.

The effect of the neutrino oscillation in the vacuum is
described by the formula for the probability P; (L) of
detecting the weak-interaction eigenstate v- at the dis-J
tance L from the region in which neutrinos in the weak
interaction eigenstate v, are produced [2]:
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FIG. 1. Experimental limits on the neutrino oscillations ob-
tained in the accelerator experiments, expressed in terms of con-
straints on the mixing angle (two-state analysis): v, -v„[14],
v, -v, [15,16], v„-v, [15],v, -v„[17],v„-v„[18].All curves corre-
spond to 90% C.L. limits. The limit on v„-v, oscillations [19]
has been indicated when it is stronger than the v, -v„ limit. Also
the constraint on the v, -v„ transitions from the Goesgen reactor
experiment [7] has been included for completeness.

On the other hand, a general analysis involving three-
flavor neutrino mixing appears to be rather complicated.
The three-flavor mixing matrix contains four free param-
eters which may be chosen, for example, in the form

coscp —sing 0
U = sing cosy 0

0 0 1

cos8 0 sin 8
0 1 0

—sin6 0 cos6

1 0 0
Xoe" 0

0 0 1

cosl(t sing 0
—sintt cost( 0

0 0 1

(5)

y, 8, and P denote mixing angles and 5 denotes the CP
violating phase. (This parametrization is identical to the
well-known Kobayashi-Maskawa parametrization [4], ex-
cept for the permutation of axes and redefinition of 5.)

The experimental constraints on these four parameters
depend, in general, on two neutrino mass squared
differences which are unknown. Another complication
comes from the fact that experimentally measured proba-
bilities are related to the theoretical probabilities, via a
convolution, with phenomenological functions carrying
the information on the energy spectrum of the neutrino
beam or the geometry of the experimental apparatus. In
a general three-flavor analysis such convolutions would
have to be numerically reevaluated, taking into account
three oscillating terms instead of one as in (4). A three-
flavor analysis of the accelerator and reactor data was at-
tempted in [5]. However, the results of [5] depend, in an
essential way, on the data from the Bugey reactor experi-
ment [6], which seemed to restrict one of the mass-
squared differences to a narrow range, thus simplifying
the whole analysis. Unfortunately, the Bugey reactor
data were later found to be inconsistent with several oth-
er reactor experiments [7,8]. A three-flavor analysis may
also be found in [9] in which the early oscillation experi-
ments are discussed.

It may well be, however, that allowing for an arbitrary
configuration of neutrino masses introduces an unneces-
sary complication. It seems reasonable to expect that one
of the neutrino mass eigenstates would be much heavier
than the remaining two. Such a hierarchical pattern is
observed with other leptons and in the quark sector, and
there is an argument involving the so-called seesaw mech-
anism [10] that neutrino masses should also have this
structure. If this would be the case, then in the oscilla-
tion experiments sensitive to the heavier mass eigenstate,
the two other states would appear as effectively massless
[9]. This shows that it would be useful to consider a
model of neutrino mixing and masses in which only one
mass eigenstate has a mass different from zero [11,12].

The neutrino mass term of such a model may be writ-
ten in the form

I-, „,= —m (c,v, +c„v„+c,V, )E& +H. c. ,

where

(6)

Ic, I'+ Ic„l'+ Ic, l

=1 . (7)

The parameters c; in this mass term may always be
redefined to be real (and positive), so that there is no CP
violation. These parameters may be interpreted as direc-
tional cosines which fix the orientation of the massive
eigenstate in the three-dimensional space spanned by the
weak eigenstates

c, = cosa, . (8)

It should be noted that the neutrino mass term (6) is the
simplest extension of the standard model of electroweak
interactions, which allows for nontrivial three-flavor neu-
trino oscillations, and therefore it may be of some interest
in itself [13].

The expressions for the neutrino oscillation probabili-
ties in this model may be derived by a simple argument.
The form of the neutrino disappearance probabilities is
immediately obtained when we note that the neutrino
state vector that was initially a v; weak eigenstate evolves

in a two-dimensional space spanned by the massive com-
ponent and this weak eigenstate. Therefore

I L
P, =sin 2a;sin (9)

The neutrino appearance probabilities may then be calcu-
lated as a solution of a system of equations

P,„+P„=P,

P„,+P„,=P„
P„+P,„=P„,

(10)

(12)

where we have P, =P, because there is no CP violation
in our model. In this way we find

zm L
P =4 cos a cos a -sin'J & J (13)

We see that despite the fact that a11 types of neutrino os-
cillations may be consistently accommodated in our mod-
el, the formulas for the oscillation probabilities have a
simple form.
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The expressions (9) and (13) may also be obtained from
the general formula (l) using the mixing matrix (5), pro-
vided that we identify the angles y and 8 as the two an-

gles fixing the orientation of the massive state relative to
the weak eigenstates, i.e.,

cosa, = cosy sin8, cosa„=sing sin8,

cosa, = cos8 .

The value of the mixing angle g may be arbitrary because
it corresponds to a redefinition of the massless states,
which does not affect the oscillation probabilities.

Given the formulas for the oscillation probabilities, we
may now use the available experimental data to exclude
some values of the mixing angles p and 8. The con-
straints obtained from the various experiments acquire a
simple geometrical interpretation, when one represents
different values of q and 8 as points on a unit sphere, cor-
responding to the locations of a "tip" of the massive
eigenstate vector in the space spanned by the three weak
eigenstates. It is enough to consider tp and 8 in the range

o 00 —90. The boundaries of the relevant triangular region
on the sphere (y=o', 90' and arbitrary 88 , 9=0 a'nd ar-
bitrary q&) correspond to the neutrino mixing which has a
purely two-Aavor character. From the formula (9), we
see that for a given mass m the limits on the probabilities
of v;-v„ transitions exclude regions of the unit sphere
bounded by circles of constant sin 2a, The limits on
probabilities for v;-v oscillations exclude regions bound-
ed by the line on which the product cos a cos a is con-J
stant, which are projections of hyperbolas on the sphere,
and the side of the spherical triangle joining the v, and v.
corners.

I J

It is important that the actual numerical value of the
constraints on sin 2a; may be obtained directly from the
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limits on sin 20,„and sin 20„„extracted in the two-state
analysis of the v, -v and v„-v oscillation experiments,
provided that the hm of the conventional analysis is
now understood as the mass squared of the massive eigen-
state. Similarly, the constraints on 4cos a cos a. are ob-
tained directly from the limits on sin 20 sin 20 d

2
~p, sin ~~ an

sin 20„,considered in the conventional approach to v,--v

oscillations in the neutrino appearance experiments.
As an illustration, we show in Fig. 2 the pattern of con-

straints for m =1 eV that corresponds to the 90% C.L.
limits obtained in the two-state analysis (see Fig. l). We
find that the orientations of the massive eigenstate, al-
lowed by all the available constraints at this mass, are
confined to three rather small regions of rectangular
shape lying near the corners of the spherical triangle.
The angular dimensions of these rectangles are deter-
mined directly by the angles 8; obtained in the two-state
analysis of the experimental data. For example, the size
of the region near the v, corner is determined by 8 d
L9

I

px an

, . LFor a general value of mass, the relevant bounds for
this region are given by min(8„„,8„,) and min(8, „,8„).]
n Fig. 2, it may be seen that the limit on v, -v„oscilla-

tions also restricts the strength of the eventual v, -v, and
v„-v, osc111ations. This is a manifestation of a correlation
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FIG. 2. Experimental constraints on the orientation of the
massive neutrino state with m =1 eV Th d'e . e in icated curves
correspond to the 90 jc C.L. limits on sin 20 sin 20
sin 20 and sin 20„obtained in the two-state analysis.
Dashed regions indicate orientations of the massive eigenstate
consistent with all the indicated constraints.

FIG. 3. Constraints on the mixing angles g and 8 for six
values of the neutrino mass. The radial variable on these plots
is 8, and the angular variable is y. The indicated curves reflect
the 90% C.L. limits on sin 28;,. obtained in the two-state
analysis of the accelerator data. Thick lines surround the re-
gions of the allowed values of g and 8 for which the massive
state is mostly the v, weak eigenstate.
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between oscillations of different flavors which is present
in the considered model.

In Fig. 2, we see that the various constraints represent-
ed on a surface of the sphere have a simple and highly
symmetric form. However, for a detailed analysis of the
experimental results, it is more convenient to use a two-
dimensional plot in which 8 plays the role of a radial
variable and q remains an angular variable. Such plots
have been used in Fig. 3 to show how the available con-
straints evolve when m is varied from 0.1 eV to 1000
eV . The indicated curves reflect the 90%%uo C.L. limits ob-
tained in accelerator experiments [14—19]. (As exception
is the plot for m =0. 1 eV in which the constraint from
the Goesgen reactor experiment [7] on v, -v, oscillations
has been included. ) The plot for m = 1000 eV
represents the asymptotic form of the constraints for
large neutrino mass. We see that for m 1 eV, the pa-
rameters consistent with all the constraints remain locat-
ed in the approximately rectangular regions in the
corners of the triangle. However, the sizes of these re-
gions vary significantly. In Fig. 3, we clearly see changes
in the character of the strongest constraints that deter-
mine the size of the allowed regions. For example, in the
case of the v, corner, which seems to be the most interest-
ing from the phenomenological point of view, the dom-
inant constraints at m =1 eV come from the neutrino
disappearance experiments for m = 5 eV, from neutrino
appearance experiments sensitive to v„-v, and v, -v, osci1-
lations, and for m 10 eV from v, -v, and v„-v, experi-
ments.

It should be noted that the allowed regions of the mix-
ing parameters shown in Figs. 2 and 3 indicate parame-
ters consistent with all constraints reflecting the 90%%uo

C.L. limits on sin 8,", provided that these constraints are
treated independently. A more precise statistical analysis
of the data within our model would require a considera-
tion of joint probability distributions for cp and 8 implied
by all the experimental results. Such an analysis goes
beyond the scope of the present paper.

It is interesting to note that within the considered

model one may obtain a nontrivial sum rule relating the
neutrino appearance probabilities, which reflects the fact
that there are only two independent mixing parameters in
this case. Indeed, let us denote

m L
P, -=R; sin/J /J 4

(15)

Then v, e have

R,„R,Q„, + +1 1 1

R,p R„Rp,
2

=4 (16)
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If a positive signal for nontrivial v, -v„, v, -v„and v„-v,
oscillations is obtained, then this sum rule may be used as
a test on the character of the neutrino mixing. If, for
some m, the R " ' factors, obtained from the
experimentally-determined probabilities, would satisfy
the sum rule (16) with a good accuracy, then this would
be a strong argument in favor of the presence of a dom-
inant massive neutrino eigenstate with this mass.

Summarizing, we may say that we have discussed the
simplest model of neutrino mixing which allows for
three-flavor neutrino oscillations. This model is of physi-
cal interest because of the expected hierarchical pattern
of the neutrino masses. We have shown that, by using
the experimental limits on the oscillation probabilities, it
is easy to obtain constraints on the two parameters that
characterize the neutrino mixing in this model. We have
obtained the domain of the mixing parameters consistent
with the available data on the accelerator neutrino oscil-
lation experiments. We have found that this domain may
be estimated directly from the properly reinterpreted re-
sults of the conventional two-flavor analysis. We have
pointed out that there exists a sum rule relating the neu-
trino appearance probabilities in this model, which may
be used as a test for the presence of a dominant massive
neutrino state.
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