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Investigation of the domain wall fermion approach to chiral gauge theories on the lattice
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We investigate a recent proposal to construct chiral gauge theories on the lattice using domain wall
fermions. We restrict ourselves to the finite volume case, in which two domain walls are present, with
modes of opposite chirality on each of them. We couple the chiral fermions on only one of the domain
walls to a gauge field. In order to preserve gauge invariance, we have to add a scalar field, which gives
rise to additional light mirror ferrnion and scalar modes. We argue that in an anomaly-free model these
extra modes would decouple if our model possesses a so-called strong coupling symmetric phase. How-
ever, our numerical results indicate that such a phase most probably does not exist.

PACS number(s): 11.15.Ha, 12.38.Gc

I. INTRODUCTION

The lattice provides a first-principles regularization of
quantum field theories, which allows us to explore the
nonperturbative properties of a model and for vectorlike
theories, such as QCD, it has proven to be very success-
ful. Since the full standard model is a chiral gauge
theory, it is natural to attempt a construction of chiral
gauge models on the lattice as well.

As is well known, however, on the lattice one is con-
fronted with "species doubling" [1,2], i.e., the
phenomenon that a single Weyl fermion field on the lat-
tice leads to an equal number of left- and right-handed
fermions in the continuum limit. When coupled to a
gauge field, all doublers transform in the same representa-
tion of the gauge group which prevents an easy construc-
tion of chiral gauge theories. For nonchiral models there
are two well tested ways of dealing with the species dou-
bler s: they can be decoupled with a momentum-
dependent mass term as in Wilson's method, or they can
be used as physical degrees of freedom as in the staggered
fermion method. However, since these methods violate
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chiral symmetry, a straightforward extension to chiral
gauge theories would clash with gauge invariance. Pro-
posals for chiral gauge theories on the lattice include gen-
eralizations of Wilson's method [3—6] and of the stag-
gered method [7]. There are proposals that try to avoid
coupling the doublers [8], and approaches that start from
a gauge-fixed continuum action [9,10]. There are also
proposals for more radical departures from the usual lat-
tice fermion prescriptions [11—13]. For a recent review,
see Ref. [14].

The domain wall fermion approach suggested in Ref.
[12] falls into the last group and has attracted a lot of at-
tention recently [15—22]. In the domain wall model an
extra dimension is added to our four-dimensional world.
In this five-dimensional world the model is vectorlike and
the fermion doublers can be removed using Wilson's
method without breaking gauge invariance. The reduc-
tion to a four-dimensional world with a chiral fermion is
made by giving the fermions a mass term which flips sign
across a four-dimensional domain wall. It has been
shown [12] that the lattice Wilson-Dirac operator with
such a mass term has a chiral zero mode, which is bound
to the domain wall. This fermion remains massless and
localized at the domain wall for (four-)momenta below a
critical momentum [12,15,17]. On a finite lattice the
(periodic) boundary conditions lead to a second anti-
domain wa11 with a chiral fermion of opposite handed-
ness.

Every lattice model for a chiral gauge theory has to
produce the appropriate anomaly structure of the target
continuum theory. The domain wa11 model has the po-
tential to solve this problem elegantly with the help of the
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extra dimension. The starting five-dimensional model is
vectorlike and hence the gauge current J„is anomaly-
free, g &B„J„=O.However, the four-dimensional
current restricted to the domain wall is clearly not con-
served Q~,B„J„=—B5J~, and its divergence reproduces
the expected anomaly when computed for weak external
gauge fields [12,15,18]. J5 takes the form of a
Goldstone-Wilczek current with a nonzero derivative
across the domain wall, as was demonstrated some time
ago in the continuum in Ref. [23]. On a finite lattice this
Goldstone-Wilczek current transports charge from the
domain wall to the antidomain wall, ensuring charge con-
servation in the five-dimensional theory. The same mech-
anism should also yield the correct four-dimensional glo-
bal anomaly structure.

In the work referred to above the domain wall fer-
mions are coupled to fixed smooth external gauge fields.
Here it is not important that the chiral fermions at both
the domain and antidomain walls couple to the gauge
field, because we can single out one of the domain walls
by hand. With dynamical gauge fields, however, the cru-
cial requirement is that only a single domain wall fermion
couples to the gauge field. If this can be achieved the
second domain wall can be ignored and we are left with
an interacting chiral fermion in a four-dimensional world
located at the domain wall, assuming that the fermions
are in an anomaly-free representation.

In the original proposal it was hoped that the commun-
ication between the two domain walls could be prevented
by modifying the gauge interactions in the fifth dimen-
sion. However, it seems likely that this approach does
not lead to the desired decoupling (see also Ref. [22]) and
here we follow instead the suggestion made in Ref. [24].
In this approach the gauge fields are coupled only in a re-
stricted region around one of the domain walls, where the
size of this region, which we will call the waveguide,
should be at least as large as the support of the wave
function of the domain wall zero mode. However, as will
be discussed in much more detail below, the requirement
of gauge invariance leads to the introduction of an extra
scalar field at the boundaries of the waveguide. This sca-
lar field screens the gauge charge of the fermions at the
waveguide boundary and allows for interactions between
these charged fermions and the neutral ones outside the
waveguide. This leads to Yukawa couplings located at
the waveguide boundary, which give rise to additional
light fermion modes at the waveguide boundary. This is
most easily seen for zero Yukawa coupling, because then
the waveguide region decouples from the antidomain wall
region and five dimensional charge conservation is now
ensured by the new zero modes at the boundary.

The aim is then to deco uple the fermion at the
waveguide boundary and maintain at the same time the
chiral zero mode at the domain wall. Because we have
introduced a scalar field coupled to the fermions through
a Yukawa interaction, we may hope for a rich phase
structure of the model, similar to that found in other two-
and four-dimensional Yukawa models on the lattice. In
particular, one expects that one can drive the system into
a symmetric phase, with vanishing scalar field vacuum
expectation value v, and a spontaneously broken phase,

II. DOMAIN WALL FERMIONS COUPLED
TO GAUGE FIELDS

A. Resume of free domain wall fermions

Let us start our discussion with a short resume of free
domain wall fermions. Consider an odd-dimensional lat-
tice of size L L„with d =2n, L, the extent in the extra
dimension and lattice sites labeled by (x,s)
[x =(x„.. . , xd )]. The action for free domain wall fer-
mions [12] can be written as

—
—,
' g [4'„(r y5)%'„+'+4'„+'(r—+y~)%'„

—2r 4 '„4'„] (2.1)

with v )O. For small values of the Yukawa coupling one
then expects the fermions at the waveguide to follow the
perturbative relation mF ~ u (with U =0 in the symmetric
phase). This means that these fermions remain light and
appear in the low-energy spectrum. However, at large
values of the Yukawa coupling, the interaction of the fer-
mion and scalar fields might become so strong that only a
bound-state fermion exists with a mass of the order of the
cutoff. Such a strong-coupling behavior has been estab-
lished in various Yukawa models on the lattice [25—27].
If the four-dimensional model is anomaly free and if we
choose the waveguide boundary with the scalar field far
enough from the domain wall, we could hope to take the
waveguide fermions into a strong coupling symmetric
phase, without affecting the chiral mode at the domain
wall. Then the fermions at the waveguide boundary
would decouple from the low-energy physics, leaving
only the chiral zero modes at the domain wall coupled to
the gauge field.

The crucial question we will investigate in this paper is
therefore whether such a strong symmetric phase exists
in the domain wall model. We will present evidence
based on analytical considerations and numerical results,
which leads us to conclude that an appropriate strong-
coupling phase most probably does not occur.

The paper is organized as follows. In Sec. II we review
free domain wall fermions, discuss the coupling to the
gauge field and the need to introduce the extra scalar
field. We close the section with a sketch of the phase dia-
gram we would hope to find for our model. In Sec. III we
rewrite the fermion action in a mirror-fermion form, such
that we can distinguish the light modes from the heavy
ones. In the next section we present results for fermion
masses, concentrating on the results for the boundary fer-
mion. In Sec. V we continue our search for a strong-
coupling phase using the eigenvalue spectra of the fer-
mion matrix in a simplified model, in which all heavy
modes are discarded. Section VI contains a brief discus-
sion of alternative ways to couple the gauge field and in
Sec. VII we present our conclusions.
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where 8 and w are the Dirac operator and Wilson term
with a Wilson parameter r on the even d-dimensional lat-
tice:

d

8„I=g ,'y„—(5„+P—5„P,),
p=1

d

,'r(&„—+&+5„@—25. , ) .
p=1

(2.2)

The 5„ is the Kronecker delta and we use lattice units
a=1. We shall choose the Wilson parameter r=1 for
convenience and for the domain wall mass, denoted by
m', we choose a periodic step function of the form (with
L, even),

m'= —mo, s=2, . . . , L, /2,
m'=0, s =1,L, /2+1,
m'=+mo, s=L, /2+2, . . . , L, .

(2.3)

P =2 X [1—cos(p„))

and p, =4—2mo/r. Note that p =p for small momen-
ta.

With periodic boundary conditions in s, the emergence of
an antidomain wall is inevitable. It will often be con-
venient to think of s as a Aavor label, rather than an extra
space-time coordinate.

This model posesses two chiral zero modes with the
property that the mode bound to the domain wall at s =1
is left handed (y, = —1) and the mode bound to the other
domain wall at s=L, /2+1 is right handed (y5=+1)
[12]. The wave functions for both modes have the form
of plane waves in the 2n-dimensional space and decay ex-
ponentially in s, away from the domain walls. These
chiral zero modes exist for plane wave momenta below
some critical momentum p, which depends on the ratio
molr. For different values of mair the zero mode spec-
trum change substantially. For 0&mp/I &2 one has
only one chiral zero mode at each domain wall. For in-
creasing values of mo lr this zero mode becomes less lo-
calized and disappears at molr=2. At this point new
zero modes with opposite chirality are provided by the
species doublers which are located at different corners of
the Brillouin zone [17,18]. Throughout the paper we will
take mair= 1 and hence we will have only one chiral
zero mode at the domain wall with exponentially small
overlap with the zero mode at the antidomain wall. In
this case, chiral modes exist for momenta p below a criti-
cal momentum, ~P ~

&p„with

B. Coupling to gauge Aelds

Since the left- and right-handed zero mode components
of the fermion field now are separated in s space, one can
attempt to couple these two components in different ways
to a gauge field. If we succeed in coupling only one of the
two zero modes to a gauge field, we can hope to use this
in order to construct a chiral gauge theory on the lattice.
This appears to be impossible if one also insists that
gauge invariance is maintained. However, if we do not
worry about gauge invariance for the moment, we can
couple the right-handed mode to a gauge field, by replac-
ing the free (2n-dimensional) Dirac operator and Wilson
term by the gauge-invariant ones, but only for a restrict-
ed number of s slices around the right-handed domain
wall (cf. Ref. [24]). In this way the gauge field is confined
within a "waveguide" around the domain wall, and in-
teractions with the opposite chirality mode at the anti-
domain wall are exponentially suppressed with L, .

We take the same gauge field on all s slices inside the
waveguide, which is natural if one thinks of s as a fiavor
label [20], and define gauge transformations on the fer-
mion field as

g„%'„,%'. 4"„g„',seRG,
s6 WG,

WG= [s:so &s &so I,

(2.4)

(2.5)

with g„in a gauge group G. The detailed choice of the
boundaries so and so is not very important, provided they
are sufficiently far from the domain wall that the zero
mode is exponentially small at the waveguide boundary.
For symmetry reasons, we shall choose so =(L,
+2)/4+1 and so=(3L, +2)/4, such that the right-
handed mode at s=L, /2+1 is located at the center of
the waveguide (see Fig. 1). With this choice we have to
take L, —2 a multiple of four.

With our choice for the position of the waveguide
boundary, there is a symmetry involving parity plus a
reAection in the s direction with respect to the plane
s =s„—,

' =L, /4+1, —

L, /2+2 —s
(2.6)

with Px =( —x„.. . ,
—xd „xd) the parity transform of

X.
It is clear that the hopping terms from so —1 to so and

from so to so+1 break the local gauge invariance of Eq.
(2.4). However, this can be repaired by putting in a sca-
lar field V at the boundary of the waveguide, or alterna-
tively by interpreting the gauge field g„that appears in
the action after performing a gauge transformation as a
Stuckelberg field. This leads to the gauge invariant ac-
tion

S~= g 4'[g(U) —W(U)+m']&+ g 4'(Il —w+m')4'— (@sp ps+1+@s+1P ys)+y y sos

SE $VG sg WG I
SWSO 1ISO

I I I I

—y(% ' VP 4 '+4 'VtP%' '
) —y(% 'VtP 4 ' +4 ' VP 4 '),
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FIG. 1. Wave functions of the four lightest modes with
momentum ~p~=n/L, on a (2+1)-dimensional lattice with
L =18, L, =50, and mo = 1.1. The solid (dotted) lines represent
right- (left-) handed components. The t(r and X are the fermion
and mirror fermion located at the domain wall (vertical bar) and
waveguide boundary (dashed band), respectively. We indicate
both the s and t labeling defined in Eq. (3.1). (a) is for y =0; (b)
fory =0.5, and V=1.

where we have supplied the Yukawa term with a cou-
pling constant y. Note that we take the same scalar field
at both waveguide boundaries. Since we have chosen
r =1 we have written projectors in the hopping terms in
S,

8(U) and W(U) are the usual gauge-covariant Dirac
operator and Wilson term, whose explicit form is not im-
portant here since we shall only work with U = 1 in this
paper. The field V„EGis the scalar field, which can be
thought of as a (radially frozen) Higgs field, and which
transforms as

Gauge invariance and the necessity to couple only the
zero mode on one of the domain walls to the gauge field

has led to an action which contains an additional scalar
field. One might wonder whether there is a better way to
introduce a gauge field which couples to only one of the
domain wall zero modes, but avoids the extra scalar field.
Unfortunately, this appears to be dif6cult, if not impossi-
ble in a model which contains both domain walls, as we
shall argue in Sec. VI. For a proposal in a different direc-
tion, in which the antidomain wall is avoided by keeping
L, strictly infinite, see Ref. [20].

To get an idea about the physics of the model (2.7},we
can start with y =0, in which case the scalar field is

decoupled. However, now the gauged and ungauged
parts of the action have decoupled completely as well,
which implies that the two zero modes on the domain
walls are no longer balanced by each other. Therefore,
new zero modes with opposite chirality must emerge
which will be bound to the waveguide boundary. These
zero modes are similar to the boundary zero modes dis-

cussed in Ref. [19]. As an illustration we have plotted in
Fig. 1 the four zero modes computed for the smallest
plane-wave momentum on a lattice with d =2, L, =50,
and U= l. At y =0 [Fig. 1(a}]one recognizes the two ex-

pected massless modes at the domain walls, but also two
modes at the waveguide boundary. These modes are
massless, ' because there can be no overlap between the
left- and right-handed components across the waveguide
boundary. For nonzero y the two components can over-

lap and they form a Dirac state with mass approximately
equal to y, see Fig. 1(b), where we took V= 1. One clear-

ly sees how in this case the wave functions which are
peaked at the waveguide boundary extend across this
boundary. Note that the modes shown in Fig. 1 are sym-
metric around the waveguide boundary, in accordance
with the symmetry given in Eq. (2.6). The extra mirror
modes at the waveguide boundary will be further dis-
cussed in the next section.

V„~V„g„. (2.8)

Having made the division into a waveguide and its ex-
terior, we note that the model has a global G X 6 symme-
try:

%"„~g+'„,4'„~V'„g,s E 8'G,

%"„-+h4'„, qr '„~rIr'„h, s fry 8'G,

V„—+hV„g~ .

(2.9)

(2.10)

The transformation given in Eq. (2.6) remains a symme-

try if V transforms as

V„—+ Vp (2.11)

Sr = —rtg tr(V„U V„+&+H.c. } . (2.12}

Since gauge invariance is broken in the model without
scalar field, we add a mass term for the gauge boson,
which on the lattice takes the form ag„tr(U„+U„},
with ~ the mass parameter in lattice units. It takes the
form of a hopping term for V when this field is used to re-
store the gauge invariance of this mass term,

C. Conjectured phase diagram

To arrive at a chiral model, both this additional fer-
mion at the waveguide boundary and the scalar field have
to be decoupled. We first make the simplification of
neglecting the gauge field dynamics by replacing U~1.
This is reasonable, because we are interested in the scal-
ing region at small gauge coupling. There we can write
U =Q„U Qt

+& with U the gauge field in the
smooth Landau gauge. The Q can be absorbed by a
gauge transformation on f, Itr, and V. Since U is now
smooth and close to one, we can treat this field in pertur-
bation theory and put U=1 in our numerical computa-
tions. Note that at large Yukawa couplings the scalar
field dynamics cannot be computed in perturbation
theory.

Of course, these modes are not exactly massless, because of
the exponentially suppressed mixing between the domain wall
and boundary modes.
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The light fermion modes are well localized, which im-
plies that the mode at the domain wall has only an ex-
ponentially small overlap with the scalar field at the
waveguide boundary. With r= 1, the domain wall zero—moL, /4
mode has a magnitude ~e ' ' at the waveguide
boundary and, for sufficiently large L„the effective Yu-
kawa coupling to the scalar field is exponentially—moL, /4
suppressed, ye ' ' . The new fermion mode, on the
other hand, is localized at the s slice that carries the sca-
lar field and is coupled to it with strength y. Therefore,
we can use the freedom of adjusting the coupling con-
stants y and ~ to try to decouple the unwanted fields at
the waveguide boundary, while keeping L, sufficiently
large as to ensure that the physics of the zero mode at the
domain wall will remain unaffected.

In the broken phase [or ferromagnetic (FM} phase],
where the scalar field expectation value v = ( V, } is

nonzero, we expect that the boundary fermion for small y
gets a mass ~yU, but also the gauge boson acquires a
mass ~ U. Therefore, we cannot decouple the fermion
while keeping the gauge boson light. If we allow the
gauge boson to be massive, it follows from the triviality
of the Yukawa coupling in this region of the phase dia-
gram, that the fermion mass will be of comparable mag-
nitude. The remaining option is to choose ~ in the sym-
metric phase [or paramagnetic (PM} phase]. Here we ex-
pect from experience with the massive Yang-Mills model
that the scalar field can be decoupled from the low-

energy physics of the fermion-gauge model, because deep
inside the symmetric phase all scalar excitations will have
masses of the order of the cutoff. However, since U =0,
one would also expect the boundary fermion to have a
mass of zero and, therefore, not to decouple, which im-

plies that the low-energy model would be vectorlike.
An interesting possibility is, however, that our model

might exhibit the strong Yukawa coupling behavior
found in other lattice Higgs-Yukawa models [25—27]. It
was shown that for strong Yukawa couplings in the sym-
metric phase, such models exhibit another phase (denoted
by PMS, with S for strong) in which the fermion and the
scalar field form a massive bound state with mass of the
order of the cutoff. We illustrate this desirable scenario
with a possible phase diagram at ~=0 for our model, for

moL /4
the Yukawa couplings y and ye ' ' of the waveguide
boundary and domain wall fermions respectively, shown
in Fig. 2.

For L,~~, the domain wall fermion has negligible
Yukawa coupling, and we can hope the phase diagram to
be similar to that of the Yukawa model studied in Ref.
[27]: for small y the system starts off in a weak sym-
metric phase (PMW); for increasing y the system comes
into a broken phase, because the induced fermion interac-
tions are of ferromagnetic nature. Then for still larger y
the system enters a strong symmetric phase in which the
boundary fermion becomes massive (denoted by PMS, ).

For finite values of L, also the domain wall fermion
gets strongly coupled for large y and this could take the
system into a different symmetric phase (denoted by
PMS~), in which both fermions are massive. Like be-

tween the PMW and PMS& phases, there may be a FM

FIG. 2. Sketch of a phase diagram which would make the—moL /4
domain wall fermion model successful. The y and ye ' in-

dicate the effective Yukawa couplings for the domain wall and
waveguide fermion, respectively, and ~=0. The various phases
are explained in Sec. II C.

phase separating the PMS, from the PMS2, cf. Fig. 2.
We note in passing that the presence of two Yukawa cou-
plings which are both proportional to y but differ by a

moL /4
large factor e ' ' makes it very difficult to apply a
strong-coupling expansion in y, to investigate or establish
the PMS, phase analytically.

If the phase diagram of Fig. 2 would be qualitatively
correct for our model and a PMS& phase does exist, we

could decouple the unwanted boundary fermion as well
as the scalar field: we can choose the Yukawa coupling y
sufficiently strong that the boundary fermion forms a
bound state with the scalar field and acquires a mass of
the order of the cutoff, whereas the domain wall fermion
still is weakly coupled and remains massless. Sufficiently
deep in this PMS& phase also the scalar field is very mas-

sive and should decouple. When we then turn on a
smooth external gauge field inside the waveguide, the
only light particle coupling to it is the right-handed fer-
mion at the domain wall. For this scenario to work, we

emphasize that the details of the conjectured phase dia-

gram in Fig. 2 are not important, but only that the PMS,
phase exists. In the next section we shall investigate the
scenario in more detail.

III. MIRROR FERMION REPRESENTATION
OF THE MODEL

A. Mode expansion

The colloquial discussion in the previous section can be
made more explicit by rewriting the action as follows.
Relabel the right- and left-handed fermion fields

+R L
—P~ 1.+'as

qt qy 0 qt qy 0

s —1+t s —t
qy 0 ~f qp 0

and the same for 4„~=%'PL z (note the reversal of L
and R}. The new label t runs from I to L,:L, /2. In-
Fig. l we have indicated this new labeling for the zero
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s —1+t s —tm'=m ' =m ' (3.2)
I

mode wave functions shown there. With our choice for
sp s p and L, we can define a domain wall mass for both
fields p and X, which is a step function in t satisfying

With this relabeling, the two domain wall zero modes will
reside in the Dirac fermion field g, whereas the
waveguide boundary zero modes will reside in y. After
substituting Eq. (3.1) into Eq. (2.7) with U= 1, the action
turns into

Lt L —1t

S~r= g [g'8p'+XIX'+X ( —w+m')f'+p'( —u|+m')X'] —g (fX +X p )+ g(X g'+/X )

f=1

—yX '( VPI + V Pit )X' —y g '( V Pl + VPR )g (3.3)

In this form, the action resembles that of an L, -flavor mirror-fermion model in the fashion of Ref. [28), with g the
fermion and y the mirror fermion field. In fact, for L, =2 the hopping terms in t are absent, m '=0 and our model
reduces to the mirror-fermion model of Ref. [28] with equal Yukawa couplings for the fermion and the mirror fermion,
and a vanishing single-site mass term. For L, )2 our model has a more complicated mass matrix (i.e., nondiagonal
couplings among the flavors s or t) and if our model is going to be more successful in decoupling the mirror fermion
than the traditional mirror-fermion approach, it must come from this mass term.

The mass matrix for the L, flavors in our model is not diagonal, but this can be remedied by more rewriting. First,
we expand the fermion fields in a plane-wave basis, which diagonalizes the Dirac operator and Wilson term,
1(|„'=ge'"&p, g'„=ge '"I'tp' Here .gz is a normalized sum over the momenta on the d-dimensional lattice, g 1=1.
Then we can write

L L —1t

S&&= g g[igzj g'+iX&g&X'+X'(to +m ')p'+g'(w~+m ')X' ]—g (p'X'+'+X'+'p' )
t=1 p

+r (~pXP+X p~J ) y X[X/(~p qPL+ Vq p—PR )Xq+—ep (Vq pPL+ ~p —qPR)eq 1— (3.4)

with g =g„y„sin(p„),w the diagonal form of the Wil-
son term, wz

=g„[1—cos(pz ) ], and Vz the Fourier
transform of V, . For y =0 the action has the schematic
form

ij M
S~r=(&» M

(3.5)

with M a (p-dependent) matrix in flavor space, which can
be read off from Eq. (3.4). This action can be diagonal-
ized by making unitary transformations on g and X:

cof=Ff, f', co f=g'F,f,
(3.6)

kf=Gf~X' Ff=X'G)f

such that Gf,M fFtg pf5fg The matrices F and G are
eigenfunctions of M M and MM, respectively, labeled
by the index f:
(M M)„F,f=lpf F,f, (MM )„G,f=lpfl Ggf (3 7)

For suitable choices of the phases of the eigenfunctions,
the pf's are real. Substituting the mode expansion (3.6)
into the action (3.4) with the momentum label restored,
we arrive at

y (g fig mf +g fig gf +gfpfmf +9 fpf gf )
f=1 p

—y g [gzG~~&(Vz qPI+Vq &P&)G[ P+co F&~z (V PI+V Pz)FI cog] .
fg.Jq

(3.8)

In this representation of the model, it is seen that all
fermion modes cof and g interact with the scalar field,
but that their effective Yukawa coupling is determined by
the magnitude of their wave function at the waveguide
boundaries t =1 and L, . For y =0 the model is seen to
describe free, degenerate fermions and mirror fermions
with momentum-dependent mass pf (for p %0, the
eigenstates are cof+g and co~

—g~). Exactly one flavor,
which we denote with f=0, has p~ =0 (up to terms ex-

ponentially suppressed in L, ) for lp l (p„where p, is the
critical momentum defined in Sec. II A. For r = 1 and mp
close to 1, the critical momentum is p, =&2. All other

p and also p for p outside the critical momentum re-
gion, are of order 1 in lattice units. This is illustrated in
Fig. 3, where we show the lowest three masses as a func-
tion of the momentum (again we have chosen d =2).

This shows that for y=0 and momenta lpl Sp„the
model contains a massless fermion, co, as well as a mass-
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FIG. 3. Momentum dependence of the three lowest mass ei-
genvalues pf at y =0, obtained on a (2+1)-dimensional lattice
with L =16, L, =50, and mo=1. 1. The domain wall fermion
and waveguide fermion have degenerate masses.

less mirror fermion, g . All other modes (f%0) as well as
the species doublers have a mass of the order of the
cutoff. The species doublers of the zero mode f=0 are
massive because pz is of order 1 for momenta with
p„=++.Furthermore, it is seen in Fig. 3, that p is al-
most exactly zero [it is exponentially small
~ exp( —m oL, /4) ] until it quickly rises to nonzero
values for ~P ~

)p, .
As was discussed already in Sec. II B, Fig. 1 shows the

t dependence of the zero modes F' and 6' of the fer-
mion (indicated by g in the figure) and mirror fermion
(indicated by y) for the smallest momenta
~p~

=n. /L (&p, . It shows that the zero mode for the fer-
mion is sharply peaked at t=(L, +1)/2, i.e., at the
domain wall and the zero mode for the mirror fermion is
1ocalized at the boundary, at t =L, . The nonzero modes,
which are not shown in this figure, are not localized.

+y g g (V P +V PL)g
IPI, IOI &p,

(3.9)

Notice that this model differs from the mirror-fermion
model of Ref. [28] by the absence of a momentum-
dependent mixing term between fermions and mirror fer-
mions and by the presence of the momentum cutoff
IPI &p,

In this approximation, the model shows a11 the features
discussed in the previous section. In particular, we see

I I I I
]

I I I I
i

I I I I
i

i I i i

is expected to be of order L, ~Gif ~
/pf =O(1/pf ).

The remaining zero modes have a momentum-
dependent Yukawa coupling. For the fermion co this
coupling is proportional to the squared absolute value of
the wave function FL o which is exponentially small. Fur-

thermore, the mixing with the mirror fermion is either
exponentially small for momenta ~P~ &p„orthe modes
are very massive for large momenta ~P ~

&p„and we dis-
card such heavy modes in our approximation. Therefore,
in this approximation the model describes a free massless
fermion co with momentum cutoff at p„and a mirror fer-
mion with Yukawa coupling to the scalar field. This Yu-
kawa coupling contains a momentum dependent factor
GfoG fo, cf. Eq. (3.8). It turns out, however, that in the
momentum range well below the cutoff p, this factor is
almost constant and close to one, and then quickly drops
to a small value for ~P~ &p, . This momentum depen-
dence of ~G,o~ is shown in Fig. 4. This justifies the ap-
proximation that we also impose the momentum cutoff
on the mirror fermion and neglect the wave-function fac-
tor in the Yukawa coupling for ~P ~ (p, .

All this leads to a simplified "reduced" model, de-
scribed by the action

S"' = g (ice g a)p+i( Ji g)
Ipl (p,

B. Reduced model

The action (3.8) is an exact representation of the action
for the domain wall fermions. The reason for writing it
in this form is that it reveals, more clearly than the origi-
nal action, which fermion modes are important for the
low-energy physics. To shed light on the model for y&0,
we shall exploit this separation of light and heavy modes
in order to simplify the model by making a number of ap-
proximations, which we expect to hold for large L, . First
we shall neglect a11 nonzero modes. This is a reasonable
approximation, since these fermion modes have masses of
the order of the cutoff, iM =O(1/a ), fWO. If they would
couple strongly to the zero modes, they could still be im-
portant, but from the Yukawa interaction in (3.8) one can
see that such a coupling involves the overlap of a zero
mode and a nonzero mode at t=1 or L, . Since the
nonzero modes are not localized, the value of the wave
functions (Gif ~

ol ~!Fif ~
at any given r is of order I /QL,

and the contribution of L, internal heavy flavor fermions

0.5—

0— C
I I I I I I I I I I I I i I I I I I

0.5 1 1.5

FIG. 4. Momentum dependence of the three wave functions

~ Gf, ~
corresponding to the eigenvalues pf shown in Fig. 3, eval-

uated at the waveguide, t=1, on a (2+1)-dimensional lattice
with L =16, L, =SO, and ma= 1.1. The symbols correspond to
those of Fig. 3.
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that the zero mode co which in the full model is localized
at the domain wall, is nicely decoupled from the mirror
ferrnion g which is localized at the boundary. The
domain wall zero mode has an exponentially small in-
teraction with the scalar field, which we neglected in the
action (3.9), but the mirror-fermion couples to the scalar
field with strength y. This mirror fermion will decouple if
there exists a strong symmetric (PMS, ) phase for large y
in which the mirror fermion and scalar field form a mas-
sive bound state. To summarize, the action (3.9} should
describe the physics of the full model for I.,~~, i.e., at
the horizontal axis of the phase diagram in Fig. 2.

The usual approach to show that such a PMS phase ex-
ists is to write the action in terms of the fermion-scalar
composite field,

g~ =g (Pit 5p, q+PL, —Vp q)gq,
q

(3.10)

which is chosen such that the Yukawa term turns into a
mass term for the fermion field g'. This fermion does not
transform under the gauge group G; hence, we shall call
it neutral. If the momentum cutoff were absent, we could
invert this transformation,

kp =X(Pa&J, q+PL V,—,4q'—
q

and a strong-coupling approximation of the resulting ac-
tion for g' would predict a mass of the order of the cutoff
for this neutral fermion. However, due to the momentum
cutoff, such an argument cannot be used for our model
and, in fact, the transformation (3.10) leads to a nonlocal
action for g'.

The momentum cutoff, which prevents a straightfor-
ward analytic demonstration that a strong-coupling
phase exists, makes this model markedly different from
models which are known to have a strong symmetric
phase. It is somewhat similar, however, to a fermion-
Higgs model with hypercubical Yukawa coupling [26,29].
In these models the Yukawa interaction in momentum
representation contains a momentum-dependent factor,
coming from the averaging of the scalar field over the hy-
percube, which suppresses the coupling strength for large
values of the scalar field momentum. Such models are
known not to have a strong syrnrnetric phase.

To summarize this section, we have shown that the
domain wall fermion model can be rewritten as a mirror
fermion model, with L, =L, /2 flavors. In order to
decouple the mirror partner of the domain wall zero
mode, we must show the existence of a strong symmetric
phase, where the mirror-fermion forms a massive bound
state with the scalar field. We have argued that the mod-
el for large I., can be simplified to a reduced model with
only a ferrnion and a mirror fermion. In this model we
cannot show the existence of a strong phase using stan-
dard analytic techniques. The momentum dependence of
the Yukawa interaction (which gives rise to the cutoff p, )
is more similar to that of a fermion-Higgs models with a
hypercubical Yukawa interaction than to models with a
local Yukawa interaction. Models with a hypercubical
Yukawa interaction that have previously been investigat-
ed, are known not to have a strong symmetric phase.

Of course, the similarity to hypercubically coupled
fermion-Higgs models does not prove that a strong phase
is absent in our model, and we shall search for it with nu-
merical methods. The most direct way to show the ex-
istence of a strong-coupling phase is by measuring the
mass of the boundary (mirror) fermion for strong Yu-
kawa coupling. In the next section we shall study the fer-
mion masses, both for the domain wall ferrnion and the
boundary fermion, in the quenched approximation. We
shall compare these results with the masses found from
the reduced model.

IV. FERMION SPECTRUM:
NUMERICAL RESULTS

In order to substantiate the discussion in the previous
sections, we shall compute the fermion spectrum of the
full domain wall model in the quenched approximation.
We expect from experience gained with other fermion-
Higgs models, that the presence of a strong-coupling
symmetric phase if it exists, can already be shown within
the quenched model. In the quenched approximation
there are no real phase transitions separating the PMW,
PMS, , and PMS2 phases of Fig. 2. One expects, however,
that the FM phase separating these phases in the un-
quenched model, now turns into a crossover region,
which separates regions of the quenched phase diagram
with different (weak- and strong-coupling) behavior. In
the following we shall refer to these regions as weak- and
strong-coupling phases, as in Sec. II C.

For weak Yukawa coupling the mirror-fermion mass in
the quenched approximation is expected to behave as
mF =yv, where the scalar field expectation value v is zero
in the symmetric phase and nonzero in the broken phase.
A strong-coupling symmetric phase would lead to
mF=yc(a'), with c(a) a function of the scalar field hop-
ping parameter z. Typically c(a) & v(a), it decreases with
K, and in particular it is nonzero and of order 1 in the
symmetric phase. For instance, in the model of Ref. [3],
c(a)=l/z(a} with z ~tr( V„V„+„).For the domain
wall fermion mass we expect m+=0 for all K and—moL /4
ye ' « 1.

For this numerical study we use the domain wall model
in 2+1 dimensions with gauge group 6=U(1}, but we
keep the gauge fields in the global symmetry limit U=1.
The scalar field action (2.12) then is that of an XY model,
and in the quenched approximation, where the scalar
field dynamics is determined solely by the action (2.12),
there is a vortex phase and a spinwave phase. The
Kosterlitz-Thouless phase transition is at K—K =0.5 in
our convention for the action. Of course, spontaneous
symmetry breaking does not really occur in this two-
dimensional model, but on a finite lattice with volume I.
the field expectation value v=(~+„V„/L~) shows a
behavior similar to that in a model with spontaneous
symmetry breaking: it is nonzero and of order 1 for

We follow the standard rotation method to define the Seld ex-

pectation value on a finite lattice [30].
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tr) tr, and then quickly drops to a small (nonzero) value
for K &K, . For increasing volumes v becomes closer to
zero for K & K, but also in the spinwave phase it decreases
slowly, such that in the limit of infinite volume v=0
everywhere, as it should. We emphasize that in not too
large volumes, in which there is a clear distinction be-
tween the value of v in the vortex and spinwave phases,
we expect a similar relation between fermion mass and v

as in a four dimensional model with spontaneous symme-
try breaking. Hence we shall refer to the vortex phase as
the symmetric phase and to the spin wave phase as the
broken phase.

To find the fermion masses, we have measured the
propagator in momentum space:

Sst(P )
—L

—2 y e t'p(x —y) ( IIts IIt t )
ZP

(4.1)

with L the two-dimensional lattice volume. Optimally,
one should measure the full matrix S"(p) in fiavor space,
for a number of small momenta p and from that compute
the massive and massless eigenstates. However, the num-
ber of fiavors typically is large (we use, for instance,
L, =26), and it is impractical to compute the propagator
matrix for all flavors s. Since we are only interested in
the masses of the light states and since we know that
these states are localized either at the domain wall or at
the waveguide boundary, it is suScient to compute only
S" for selected s values s = 1, so —1, so, L, /2+ 1, s o and

so+ 1. In fact, we know from the discussion in the previ-
ous section that the mirror fermion is localized near
s =so and we need only consider s =so —1 and so if we

are interested only in the mirror fermion mass.
The parity symmetry of Eqs. (2.6) and (2.11) can be

used, after averaging over the scalar field, to relate cer-
tain RR and LL components of the fermion propagator:

L, +2 —s, L, +2—t
SR'R(P)=SLL ' (PP) (4.2)

where Pp is the parity rejected two-momentum. We
have used this relation to average over the appropriate
RR and LL components, in order to increase statistics.
For the RR or LL component of a free fermion propaga-
tor we expect

izp[sin(PI) —(+)i sin(p2)j
P RR(LL) 'y 2( )+ 2sin pp mF

. P

where Zz is a wave-function renormalization constant
and mF is the mass. In Fig. 5(a) we have plotted the in-

verse of the averaged RR and LL components, as a func-
tion of g„sin (p„). We used a lattice of size
L L, =12 26 with Yukawa coupling y=0. 5, at K=0. 5

near the phase transition and mo=1. 1. We used an-

tiperiodic boundary conditions for the fermions in the t
direction. The data have been normalized such that the
slope (determined from the first and second point) is one.
The straight lines are g fits to the data and the good
quality of these fits shows that the fermions are (nearly)
free.

To see if the reduced model resembles the full model
also in a quantitative way, we have computed the inverse
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FIG. 5. Inverse propagator S '(p) measured at s =1, so —1,

so, I, /2+1, so, and so+1, for y =0.5 and K=0.5 on a 12'26 lat-

tice with m() = 1.1. We show averaged components as explained
in the text; error bars are smaller than the symbols. For free
naive fermions the fits with ansatz S (p) =(mF
+g„sin'p„)/ZF (solid lines) would be exact. (a) is for the full

model, which has the domain wall zero mode (squares), the light
waveguide mode (triangles), and many heavy modes (circles); (b)

is for the reduced model, which only contains the waveguide
mode.

mirror-fermion propagator in this model. This result is

shown in Fig. 5(b), again normalized to slope one. The
normalized mirror fermion propagator is in good agree-
ment with the one computed in the full model.

As anticipated the RR component of the domain wall

fermion at s =L, /2+1 (and the LL component at s = 1)

has zero mass. The mirror fermion modes at s=sp 1

(the RR component) and at so (the LL component) have a
small mass which is consistent with mz=yv. All other
components are seen to have a mass of order one in lat-

tice units. In the same fashion, we have computed the
fermion masses at other values of K and y. In all cases we

found that the domain wall fermion remains massless.
Of course, the most interesting results are those for the

mirror fermion mass at sma11 K in the symmetric phase
and at large values of y. Unfortunately, the data here are

subject to large statistica1 fluctuations. Even after
averaging over 3000 scalar field configurations at K=0. 1

and y = 10 we found that the errorbars on the propagator
are comparable with the signal. The reason is that the

propagator itself is very small, which prohibits a reliable

analysis of the fermion propagator for such values of the
couplings.

Instead of using K=O such that v =0, we can also look

for strong-coupling behavior at larger K. In the broken

phase the weak and strong regions are less pronounced,
but the presence of a nearby PMS phase should still show

up in a deviation from the relation mF =yv. Since v de-

creases for Ks K„acharacteristic feature of weak-

coupling behavior is a fermion mass which decreases as

K ~ K . As mentioned above, strong-coupling behavior

would show up through an opposite trend of the fermion
mass as a function of K, increasing towards the phase
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transition. In Fig. 6 we show the a dependence of the
waveguide fermion mass at fixed y =2. One recognizes
the typical weak-coupling behavior of the mass. From
experience with other models we expect that y =2 is al-
ready a strong coupling. For larger y it is difncult to
measure the fermion mass reliably, because it is compara-
ble to the cutoff in the range a &0.5. In Fig. 7 we have
plotted the y dependence of the mass for fixed ~=0.5.
Strong-coupling behavior should show up as a relative in-
crease of the mass compared to the weak-coupling trend.
From Fig. 7, however, we can at most infer a relative de-
crease of the mass for y &1. For comparison, we have
also plotted the line yv(~=0. 5} in this figure.

The crosses in Figs. 6 and 7 are the masses obtained
from the reduced model. One sees the same qualitative
behavior as in the full model, but the masses are sys-
tematically higher (except when mz ~ 2, which is beyond
the cutoff, where, in the full model, mixing with all the
other heavy modes presumably becomes important}. This
difference may be due to the momentum dependence of
the fermion wave function in the full model. For increas-
ing momentum and masses closer to the cutoff, we expect
the wave function to spread out and the overlap at the
waveguide boundary to decrease. This implies that the
residue Zz of the fermion propagator (4.3) is not constant
but decreases with increasing momentum. This leads to
an underestimate of the fermion mass in the full model.
Keeping such systematic effects in mind, we consider the
results of the reduced model in reasonably good agree-
ment with the full model.

Even though at this stage we do not yet find a con-
clusive answer for a deep in the symmetric phase and
large Yukawa coupling, the results shown in Figs. 5-7
are consistent with the weak-coupling mass relation
mF=yv. Also, the awkward behavior of the model at
small a and large y is not what we expect from a model in
the strong-coupling phase. Only in the transition region
between the two regimes we expect large statistical fluc-
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FIG. 6. The sc dependence of the waveguide fermion mass at
strong coupling y =2, on a 12 26 lattice with mo=1. 1. The
boxes (crosses) are for the full (reduced) model.
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FIG. 7. The y dependence of the waveguide fermion mass

near the phase transition at a=0.5, on a 12 26 lattice with

mp = 1.1. The boxes (crosses) are for the full (reduced) model.

tuations, but after the bound state has formed, the model
should describe weakly coupled massive Dirac fermions,
whose mass should be easy to measure.

V. SEARCH FOR A STRONG-COUPLING
SYMMETRIC PHASE

A. Eigenvalue spectra

The results for the mirror-fermion mass described
above are very suggestive but did not give a conclusive
answer to the question whether a strong-coupling phase
exists in our model. Therefore, we will attempt to ap-
proach this problem from a different angle in this section.
The idea here will be that the presence of a strong-
coupling phase shows up in the distribution of the eigen-
values of the fermion matrix [31].

Of course, we would like to look at the eigenvalues of
the domain wall fermion matrix directly. This
2L L, X 2L L, (the factor 2 comes from the Dirac index)
matrix M is obtained by writing the action (2.7), with
U=1, in the form S=fMg. However, it is unpractical
to study M directly because this (non-Hermitian) matrix
is too large to handle numerically on reasonably sized lat-
tices, and it is not clear what to expect for the distribu-
tion of the eigenvalues for M in the representation follow-

ing from Eq. (2.7). Only in the representation that diago-
nalizes the mass matrix in favor space we should expect
similarities with the eigenvalue spectra of free fermions
(for small y) with momentum-dependent masses.

This suggests that we use the reduced model, which is
formulated in terms of these mass eigenstates, and which
contains much less degrees of freedom. The reasonable
agreement of the results for the fermion masses discussed
in the previous section supports this strategy. In the re-
duced model we can compute the distribution of the ei-
genvalues of the fermion matrix at small, intermediate
and large Yukawa coupling. Then we can compare these
eigenvalue spectra with those obtained in models for
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which a strong-coupling phase is known to exist or to be
absent. As such reference models we use a model with
naive fermions with a local Yukawa coupling, which has
a strong-coupling phase, and the same model with a hy-
percubical Yukawa coupling, which has no strong-
coupling phase. The actions for these models, which we
shall refer to as the Y„and Yh, models, are

&„=g1(„8„g+y g q„(v„t',+ v„*~,)q,
Xy X

(5.1)

s„,=g p„p„,p, +y g, g q„(v, ,p„+v*,pL )q
xy x b

(5.2)

The sum over b in the hypercubical Yukawa interaction
runs over the four corners of the elementary plaquette,
b„=0,1. After Fourier transforming the Yh, model, we
find

h y ep'~pep+y X "p q0p( v—
p qI R+ v—

q piL )—eq
w

(5.3)

which contains a factor

h
q
=g e " " cos[(p„—q„)l2],
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FIG. 8. Eigenvalue spectra for (a) the reduced domain wall

fermion model, (b) the reference Yukawa model with local, and

(c) hypercubical coupling. The left, middle, and right figures are
for y =0.2, 1.0, and 4.0, respectively. The lattice size is L = 12
and ]c=0.1.

which goes to zero for large momenta ~p„—q„~~lr of
the Vfield.

The results of this comparison are presented in Fig. 8.
Figure 8(a) contains the spectra of our reduced domain
wall model at x =0.1 and y =0.2, 1.0, and 4.0. We have
plotted the eigenvalues obtained from five quenched sca-

lar field configurations, with lattice size L =12. The
figure shows that the scattering of the eigenvalues caused
by the strongly fluctuating scalar field increases with in-
creasing y, as expected. However, there is no sign of a
qualitative change for larger y. Also for Yukawa cou-
plings y )4 we found that the spectra do not change
qualitatively, they just scale proportionally to y.

This can be contrasted with the y dependence of the ei-
genvalue spectra in the Yl, model shown in Fig. 8(b).
Here we see an increase of the fluctuations for y growing
from 0 to 1, then the eigenvalues I, start to rearrange
themselves along the boundary of a crude circle, which
cuts the real axis at approximately +y, such that the re-
gion around the origin becomes depleted of eigenvalues.
This signals the existence of a strong-couphng phase for

y ~ 1, cf. Ref. [31].
The spectra of our reduced model do not show such a

qualitative change for large y and are much similar to
those shown in Fig. 8(c), which were obtained from the

Y&,. model, and which does not have a strong-coupling
phase. Since we expect the reduced model to be qualita-
tively similar to the full model for large I.

„

this result
casts serious doubt on the existence of a strong-coupling
phase in our domain wall fermion model.

The properties of the eigenvalue distribution of the fer-
mion matrix are also reflected in the behavior of the con-
jugate gradient (CG) inversion. For small Yukawa cou-
pling and using antiperiodic boundary conditions to regu-
late the zero mode for the fermions, we expect a rapid
convergence of the CG inversion on our relatively small
lattice. Then for increasing y the inversion rate should
deteriorate, i.e., the number of CG iterations to reach the
solution to a given precision will increase. If there is a
strong-coupling phase, the number of iterations reaches a
maximum at the crossover to the strong phase and then
decreases again, because in the strong-coupling phase the
composite fermions are again weakly coupled and mas-
sive. In Ref. [27] it was found that the number of CG
iterations provided an accurate indicator for the location
of the crossover and the existence of the strong-coupling
phase.

In Fig. 9 we have plotted the number of CG iterations
required to reduce the norm of the residual vector to less
than 10, as a function of y at le=0. 1 (L =12,L, =26).
One recognizes the expected rise of the number of itera-
tions when y increases from 0 to = 1.5. But, unlike what
one expects for a model with a strong-coupling phase,
there is no decrease for large y. Also after y =2 the num-

ber of iterations keeps rising, albeit at a slower rate and
with larger fluctuations than at sma11 y. For comparison
we have also plotted the y dependence of the number of
CG iterations obtained in the Y&, and Y„,model. In the
Y„model, which has a strong-coupling phase, the num-

ber of CG iterations clearly shows a peak at y = 1; in the

Yh, model, which has no strong-coupling region, we see a
behavior similar to that of our domain wa11 model.

We do not have an analytic method to establish the ex-
istence or nonexistence of a strong-coupling phase in our
model, but by comparing the Y&, and Yh, models, one

might conjecture that a strong phase can only exist if the
fermion and scalar modes are coupled strongly over the
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feasible for values of y in the interesting region. Presum-
ably this is due to large fluctuations in the eigenvalues of
M~M, as is suggested by the spectra of the reduced model
shown in Fig. 8. In Fig. 9 we have also plotted the num-
ber of CG iterations required for inversions in the un-

quenched model at A=0 (full triangles). This shows the
same steady increase with y as found in the quenched
model. Also, a tentative run at y = 10 showed none of the

improvement we would expect after moving into a
strong-coupling phase.

VI. OTHER WAYS TO COUPLE
THE GAUGE FIELDS

AAAAAAAAA
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FIG. 9. Number of conjugate gradient iterations to reduce
the residual to (10 . The full symbols are for the quenched
(circles) and unquenched (triangles) domain wa11 fermion model
on a 12 26 lattice. The open symbols are for the Yukawa mod-
els defined in Eq. (5.2) with local (triangles) and hypercubica1
(boxes) Yukawa interaction, on a 12 lattice with ~=0.1.

full momentum range, including the high momenta
modes with p„near k~. This is the case in the Y&, mod-
el, but both in the Yh, model and in our domain wall
model the Yukawa coupling is suppressed for large mo-
menta, though the details of the momentum dependence
are different in the two models.

B. Dynamical fermions

We have also attempted an unquenched simulation of
the model. A direct simulation of the model with the ac-
tion (2.7), S=fMg, is not feasible, because DetM is not
positive definite. Therefore, we have simulated instead a
model with an extra fermion field g added, with action
S=yM y, such that the fermion determinant is given by
Det(M M). In this model we can use a hybrid Monte
Carlo algorithm to include the fermions, because the fer-
mion determinant is now manifestly positive definite.

To look for a strong-coupling symmetric phase, one
should use a small value of a, such that the model is in
the symmetric phase at y =0. For y &0 we expect that
the system switches to the broken phase. This disappear-
ance of the symmetric phase for arbitrarily small but
nonzero y is a special feature of two-dimensional Yukawa
models (cf., e.g., Ref. [32] and references therein). Then
for larger y we expect to find a symmetric phase if such a
phase exists. Unfortunately, the system turns out to be
extremely hard to simulate numerically for small sc. For
K=O and small y we could still measure nonzero field ex-
pectation values, but for increasing y we had to decrease
the trajectory length progressively more, to unacceptably
small values (e.g., at y =1 we had to use a step size
dt =0.01 with 10 steps per trajectory to maintain an ac-
ceptance rate larger than 75%, and at y =10 we had to
use dt =0.001). This results in huge autocorrelation and
equilibrium times, which makes a realistic simulation un-

+pd+IQRetl'(U V + U + V )

P

(6.1)

The gauge field in the d + 1 direction is denoted by V. By
choosing the coupling pd+ I for the extra field V
sufficiently different from the plaquette coupling P for the
gauge fields U', it was hoped that at the domain wall the
gauge field dynamics would still be d-dimensional at
scales much below the cutoff.

Equation (6.1) can be viewed as the action for a num-
ber of d-dimensional gauge fields U' (labeled by s), cou-
pled to equally many unitary scalar fields V'. For U'=1
we have just L, independent nonlinear o. models in d di-
mensions, each with a critical point at pd+I=p, . For
each s, the global symmetry group is GXG, with V'
transforming as

Vs sVs( s+ i)t (6.2)

L
with the g' in G. The full symmetry group O'=G ' is
gauged by the d-dimensional gauge fields U'. The hop-
ping terms in the s direction in the fermionic part of the
action look like the Yukawa terms in our model, Eq. (2.7)
(with y =1):

The model we have studied in this paper resulted from
an attempt to couple gauge fields to the chiral mode on
only one of the domain walls, while preserving gauge in-
variance. This gave rise to an extra scalar field and addi-
tional mirror-fermion modes at the waveguide boundary.
These mirror-fermion modes do not seem to decouple; in
other words, there does not seem to exist a region in the
phase diagram where the mirror fermions have masses of
the order of the cutoff, while the zero modes at the
domain walls remain light. However, one might wonder
whether the gauge field cannot be coupled to the fermions
in a different way, which avoids these complications. Un-
fortunately, it appears to be difficult to find a different ap-
proach without obvious flaws. Let us briefly discuss the
original proposal [12],and its relation to the model stud-
ied in this paper.

In the original proposal gauge fields were put on all
links of the (1+1)-dimensional lattice, i.e., the gauge
field was taken to be a full, (d+1)-dimensional gauge
field. The action for these gauge fields was chosen as

d

S(U)=g P g Retr(Uq„U'„+pU'„+vU'„t)
xs p v=1
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y(@sVsp @s+1+@s+1Vstp ys) (6.3)

For U'=1 and Pd+, (P„the symmetry 0 is unbroken,
and ( V,') =0 for all s. It is then easy to see that in a
mean-field approximation, where V' is replaced by U =0,
the fermion action is that of two massless Wilson fer-
mions and L, —2 Wilson fermions with mass =mo,
which are decoupled from each other, and vectorlike in d
dimensions. This has been investigated in more detail in
Ref. [22].

If we now take Pd+ i )P„the group 0 breaks down to
L,its diagonal subgroup, G '~G, and only one gauge field

remains massless. The other gauge fields would get a
mass ~U=(V), and could be made very massive by
choosing U at the cutoff. The fermion hopping terms in
the s direction would survive (in mean field), and we
would find the usual zero modes at both domain walls.
However, the massless gauge field is independent of s and
couples equally to the modes at the domain and anti-
domain walls, again rendering the model vectorlike.

In a sense then, the model which we studied in this pa-
per, is an improvement on this situation. Formally, our
model corresponds to choosing Pd+, = ~ for all but two s
slices (where we set Pd+i=ir), forcing the (d +1)-
dimensional gauge field to be d dimensional. There is no
interaction with the antidomain wall if we choose the pla-
quette coupling P= ~ outside the waveguide.

In our model we have chosen an s-dependence of Pd+,
and P (and of the fermion hopping parameter in the s-
direction by the introduction of a Yukawa coupling y/1
at the waveguide boundary), which we think had the best
chance of producing a chiral model. Of course, a more
general s dependence is possible, but we do not believe
that this will improve the situation as described in this
paper.

VII. SUMMARY AND CONCLUSION

In this paper we have considered a gauge theory with
domain wall fermions in a finite volume with a right-
handed zero mode living at the domain wall and a left-
handed zero mode at the antidomain wall. The right-
handed mode at the domain wall is coupled to a four-
dimensional gauge field which is confined to a waveguide
around this domain wall. The left-handed mode at the
antidomain wall remains uncoupled [24]. The fermion

hopping terms across the waveguide boundaries break
gauge invariance, which is restored by promoting these
hopping terms to Yukawa couplings in a way similar to
the way fermion mass terms are made gauge invariant in
the standard model. This leads to the introduction of a
scalar field which lives only at the boundaries of the
waveguide. There are two parameters in this model asso-
ciated with this scalar field, a Yukawa coupling y and a
hopping parameter v (or equivalently a mass) for the sca-
lar field. In our numerical work, we have studied the
scalar-fermion dynamics in the model with U(1) gauge
symmetry in 2+1 dimensions. The gauge fields, which
can be treated perturbatively, are switched off and we

mainly used the quenched approximation.
For vanishing Yukawa coupling the regions inside and

outside the waveguide decouple from each other and
from the scalar field. Therefore, one would expect that
new chiral zero modes show up at the waveguide boun-
daries. This is indeed what happens: there is a left-
handed mirror mode just on the inside of one of the
waveguide boundaries, and a right-handed mirror mode
on the outside (cf. Fig. 1). The inside mirror fermion
couples to the gauge field in the waveguide, resulting in a
vectorlike theory. To show explicitly that our domain
wall fermion model can be interpreted as a mirror fer-
mion model, one can view the extra dimension as a flavor
space. The hopping and single site terms in the extra di-

mension then generate a mass matrix, which is not diago-
nal in flavor space. By diagonalizing this mass matrix at

y =0, one recovers the massless domain wall modes as
well as the massless mirror partners at the waveguide
boundary. All other modes have masses of the order of
the cutoff. For y&0 all modes have Yukawa interactions
with the scalar field, proportional to y and to the magni-
tude of the wave function of the particular mode at the
waveguide boundary. Since the wave function of the
domain wa11 mode is exponentially small at the
waveguide boundary, its Yukawa interaction is very
weak, even at large values of y; the mirror mode, howev-

er, interacts strongly with the scalar field.
The crucial question is then whether the mirror fer-

mion can be decoupled. A favorable possibility would be
that for large Yukawa coupling, the mirror fermion at
the waveguide boundary forms a bound state with the
scalar field, with a Dirac mass of the order of the cutoff,
while the gauge symmetry remains unbroken. Such a
strong-coupling behavior is known to exist in many
fermion-scalar models. In particular, a strong symmetric
or paramagnetic (PMS) phase has been established in

these models. The key point in our model is that only the
mirror fermion should become heavy, while the modes at
the domain walls should remain massless. This would be
conceivable, because the mirror mode couples much
more strongly to the scalar field than the domain wall

mode.
One might ask whether such a scenario is excluded by

the simple consideration that the massless mirror mode is
required to cancel the anomaly generated by the domain
wall mode. We think that this is not the case. If one
turns on a smooth external gauge field, a Goldstone-
Wilczek current wi11 carry charge away from the domain
wal1. However, since no gauge field is present outside the
waveguide, this current vanishes in that region, and the
charge will have to be deposited somehow at the
waveguide wall. Of course, if massless mirror fermions

are present, they will do the job, much as the antidomain
wall zero modes did in the case without a waveguide, but
rather with an external gauge field present throughout
space-time [12,15,18]. However, an alternative possibility
is that a Wess-Zumino current carries the charge at the
waveguide without any massless fermion modes being
present. In the V= 1 gauge (where V is the scalar field), a
charge density of the form jo ~so,--d, A. can be nonzero
due to the discontinuity of the gauge potential 3 at the
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waveguide boundary.
In our numerical work we have used several ap-

proaches to search for the existence of a PMS phase, but
never found an indication that it exists. Our best evi-
dence that it is absent, comes from computations of the
mirror fermion mass at values of sc near the phase transi-
tion to the symmetric phase, where the dependence of the
mirror fermion mass on sc and y is consistent with the
weak-coupling mass relation nF =y U even for large
values ofy (u is the scalar vacuum expectation value}. No
sign of the behavior typical of a strong Yukawa coupling
region was found (cf. Figs. 6 and 7). For all values of the
Yukawa coupling that we have considered, the domain
wall zero modes remain massless and unaffected by the
Yukawa interactions. It would, of course, be nice to
directly measure fermion masses deep in the symmetric
phase, for small ~ and large y. However, in this parame-
ter region the signal for the propagator disappears in the
noise and we have not been able to obtain data with small
enough errors to draw any definite conclusion about the
mirror fermion mass.

Since direct computations of the mirror fermion mass
run into numerical difficulties, we have also studied a "re-
duced" model, which contains only the mirror-fermion
interacting with the scalar field. It is obtained from the
full model for large L, (the extent in the extra dimension)

by discarding all fermion modes with masses of the order
of the cutoff. Since the Yukawa coupling of the domain
wall zero mode is exponentially suppressed in I.

„

this
mode can also be discarded. The momentum dependence
of the mirror-fermion wave function is such that the
effective Yukawa coupling for this mode is suppressed for
momenta larger than the critical momentum p, and
hence we also discard these large momentum modes. We
computed the eigenvalue spectrum of the fermion matrix
for this reduced model as a function of y, and compared
this with typical eigenvalue spectra for simple Yukawa
models. The eigenvalue spectra of such models are very
different for large y, depending on whether a PMS phase
does or does not exist [31]. The eigenvalue spectrum of
the reduced model shows no sign of a PMS phase (cf. Fig.
8).

Of course, one would like to study the eigenvalue spec-
trum of the full model directly. This was not possible due
to the prohibitive amount of computer resources that
would be needed. We believe, however, that the "re-
duced" model captures the essential features of the full
model, one of which is the existence of an effective
momentum cutoff at p, . This belief is supported by a
reasonable agreement between light fermion masses com-
puted in the full and reduced models.

It appears that the existence of an effective momentum
cutoff p, in the theory, is the underlying reason for the
failure to find a PMS phase. In the domain wall ap-
proach the fermion doublers are decoupled by making
them heavy, which implies that these modes are not
bound to the domain wall or waveguide boundary, as is
the case with the light modes. This implies that for large
momenta near the doubler momenta p„=m., the wave
function of the boundary mode will be spread out in the
extra dimension and it will be small at the location of the

scalar field. Therefore, the effective Yukawa coupling
for these large momenta modes in necessarily small.
However, this suppression of the Yukawa coupling for
large momenta then prevents the formation of fermion-
scalar field bound states necessary to have a strong-
coupling phase. As a result, the mirror fermion at the
waveguide boundary stays light, and renders the theory
vectorlike in the scaling region. If this picture is right, it
points at a fundamental problem for domain wall fer-
mions with a waveguide, not just for the two-dimensional
quenched U(1) model investigated here.

The results discussed above were obtained in the
quenched approximation. The unquenched model, as-
suming the decoupling of the boundary fermion would
have been successful, would describe a single right-
handed fermion interacting with a U(1} gauge field. This
model is anomalous and one might fear that our unfavor-
able results are a reAection thereof. This, however, is not
likely, because we can also think of our model as the
quenched approximation of a vectorlike model, obtained
by adding an extra mirror fermion: writing the original
action (2.7) as S=QMQ, we can add an extra fermion
field y with action S=yM~y. For the additional y fer-
mion, the handedness of the zero modes at the domain
wall and waveguide boundary is reversed and the model
is now anomaly free. In the quenched approximation,
however, the extra fermion is irrelevant and this model
reduces to the one studied here.

We have performed some unquenched simulations in
the model with the extra fermion included, using a hybrid
Monte Carlo algorithm. The results are inconclusive due
to the very large autocorrelation and equilibration times,
but do not contradict the conclusions described above.

All our numerical computations have been carried out
within a restricted range of Yukawa couplings, as, typi-
cally, the signal-to-noise ratio deteriorated prohibitively
for large values of y in the symmetric phase. Therefore,
it is not logically excluded that some PMS-like behavior
might be found at values of y beyond y =10 or so. In
particular, we have not tried to investigate the existence
of a PMS2 phase as described in Sec. IIC. This phase
would not be interesting, however, for the construction of
a chiral gauge theory, since the domain wall zero modes
would also be strongly coupled to the scalar field and
neutral with respect to the gauge charge.

To summarize, we believe that all the evidence present-
ed in this paper —the close resemblance to a mirror fer-
mion model with hypercubical Yukawa interaction, the ~
and y dependence of the mirror fermion mass where we
could measure it, the distribution of the eigenvalues in
the reduced model for large y, and the behavior of the
conjugate gradient algorithm —indicates that a PMS
phase does not exist in our model and that the mirror fer-
mions, which exist as a consequence of the introduction
of a waveguide, cannot be made heavy. Therefore, a vec-
torlike gauge theory will result when gauge interactions
are turned on. In view of the discussion in Sec. VI, we
expected that this negative result is quite general for
domain wall fermion models in which the volume in the
extra dimension is kept finite at any stage in the definition
of the model.
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