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%e present results for heavy-light decay constants, using both propagating quarks and the static ap-
proximation, in O(a)-improved, quenched lattice QCD. At P=6.2 on a 24'X48 lattice we find

fo =185+,(stat)+", (syst) MeV, fs =160+,'+'„' MeV, fo /fo=1. 18+',, and fs /fs=1. 22+'„ in good

agreement with earlier studies Fr.om the static theory we obtain fst"=253+,", +',o' MeV. We also
present results from a simulation at P=6.0 on a 16'X48 lattice, which are consistent with those at
P=6.2. In order to study the effects of improvement, we present a direct comparison of the results using
both the Wilson and the improved action at P—6.0.

PACS number(s): 12.38.Gc, 14.40.Lb, 14.40.Nd

I. INTRODUCTION

The leptonic decay constants fp of pseudoscalar
mesons composed of a heavy and a light quark play an
important role in weak-interaction phenomenology. In

particular, ftt, or more strictly fit "(/Btt (where Bit, the B
parameter of 8 -8 mixing, is expected to be close to
one), is one of the principal unknown quantities needed
for the determination of the CP-violating phase in the
standard model, as well as other properties of weak de-

cays. Lattice QCD off'ers the opportunity for a nonper-
turbative computation of the operator matrix elements,
which are necessary for the determination of the decay
constants and B parameters.

During the last few years there have been several lat-
tice computations of the decay constants of "heavy-light"
pseudoscalar (and vector) mesons. The results for the de-

cay constant of the D meson, obtained using the Wilson
action for the quarks, are in the region of 200 MeV (using
a normalization for which f =132 MeV). For example,
in his 1989 review Sharpe [1]quoted

fD = 180+25(stat )+30( syst ) Me V

as his summary of the lattice results. More recent simu-
lations with Wilson ferrnions also give results in this
range [2—5]. The experimental bound is fD (290 MeV
[6].

*Present address: SCRI, Florida State University, Tallahassee,
FL 32306-4052.

~Present address: Theory Group, Fermilab, P.O. Box 500, Ba-
tavia, IL 60510.

In the heavy-quark limit the scaling law for the decay
constant of a heavy-light pseudoscalar meson is

fp 1/ MP —const (up to mild logarithmic corrections).
Lattice simulations using heavy-quark masses in the
charm region indicate that there are large corrections to
this scaling law (of order 40% at the charm quark mass,
decreasing to about 15% at the mass of the bottom
quark) [2—4]. The value of the decay constant of the B
meson deduced from these simulations is in the region of
180 MeV. The conclusion that there are violations of the
scaling law is supported by the large value for fp+Mp
deduced from simulations obtained using a static (i.e.,

infinitely massive) heavy quark [5,7 —12].
The important results and conclusions quoted above

were obtained from simulations in which the mass of the
heavy quark is large in lattice units (up to about a half).
One may therefore worry that discretization errors
significantly contaminate the results. In this paper we
present the results for decay constants of heavy-light
mesons computed using the 0 (a)-improved lattice action
proposed by Sheikholeslami and Wohlert [13], with
which the discretization errors in operator matrix ele-
ments (and hence in the computed values of the decay
constants) can be reduced from O(m&a) to O(a, m&a),
where m& is the mass of the heavy quark [14]. This for-
mal reduction in diseretization errors provides an impor-
tant check on the stability of results and conclusions ob-
tained with Wilson fermions.

The results presented in this paper were obtained from
two simulations of quenched QCD, using the
Sheikholeslami-Wohlert (SW) or "clover" fermion action
for the quarks (see Sec. IA below). Our main results
come from a simulation on a 24 X48 lattice at P=6.2,
for which 60 gauge field configurations were generated.
Details of this simulation and the determination of the
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values of the Wilson hopping parameter corresponding to
the chiral limit ~„;,and to the mass of the strange quark
have been presented in Ref. [15]. The heavy quarks have
masses in the region of the charm quark mass and we
study the behavior of the decay constants with the mass
of the heavy quark. Interpolating to the mass of the
charm quark itself, and extrapolating the results to the
mass of the b quark, we find that our best results for the
decay constants of the B and D mesons are Q(x )I (1 'y—D—)q (x), (10)

where I is one of the Dirac matrices (either y"y or y "},
and Q and q represent the fields of the heavy and light
quark, respectively.

In the static effective theory, in which the heavy propa-
gator is expressed in terms of the link variables [16], it is
sufficient to rotate the light-quark fields only [17], i.e., to
use the operators

fD=185+3(stat)+7 (syst} MeV,

fs =160+6+,9 MeV, (2)

in order to eliminate the 0 (a)-discretization errors.

B. Renormalization constants Zy and Z&

fD Ifp=1. 18—2 ~ (3)

fs /fr=1. 22+3 . (4)

f~ ~ =253+' (stat)+', 4 (syst) MeV,

and the result at p= 6.0 on all 36 configurations is

f""=286+ + MeV .

Finally, Sec. V contains our conclusions.

(5)

A. Improved action and operators

The SW action is

SF =SF i g q(x)F&„(x)cr&~(x),
Z, P,, v

where SF is the Wilson action:

(7)

S~ =g q(x)q(x)

—ag [q(x)(1—y„)U„(x)q (x +P )

+q(x +p)(1+y„)U„(x)q(x)]

The decay constants of heavy-light pseudoscalar and vec-
tor mesons are computed using lattice axial-vector and
vector currents as interpolating operators. In order to
obtain 0 (a)-improved matrix elements we use "rotated"
operators [14]:

Q(x)(1+-,'y D)l (I —
—,'y D)q(x),

The details of this calculation and a complete set of re-
sults are presented in Sec. II. The second simulation is on
a 16 X48 lattice at P=6.0, using 36 configurations. The
results, which are consistent with those mentioned above,
are presented in Sec. III. In order to study the effects of
improvement on the calculation of heavy-light decay con-
stants, we have repeated the computation for both the
Wilson and SW actions using a subset of 16 of these
configurations. The results and a discussion are present-
ed in Sec. III B. We have also computed fs in the static
approximation [in which contributions of 0 (1/mb ) are
neglected]. A discussion of the calculation and of the re-
sults is presented in Sec. IV. The result from the simula-
tion at P=6.2, on 20 of the 60 configurations, is

In order to determine the physical values of the decay
constants from those obtained in lattice simulations using
the interpolating operators in Eq. (9), it is necessary to
know the corresponding renormalization constants.
These are defined by requiring that Zz A„'"' and Z&V„'"'
are the correctly normalized currents, where the super-
script "latt" denotes that the operator is a lattice
current. These renormalization constants have been cal-
culated at one-loop order in perturbation theory for the
SW action with rotated operators [18]:

Zy=1 —0. 10g-',

Z~ = 1 —0.02g 2 . (12)

In this paper they are evaluated using the "boosted" cou-
pling suggested in Ref. [19]; specifically, we use

g =6/(Pu o ), where uo is a measure of the average link
variable, for which we take us=(8x„;,} '. It has been
suggested [19,20] that the use of such an effective cou-
pling, rather than the bare lattice coupling, resums some
of the large higher-order corrections and, in particular,
some of the tadpole diagrams. Using the measured values
of a„;, from our simulations, we obtain Zz —-0.97 (0.96)
and Zv =0.83 (0.82) for the simulation at p=6. 2 (6.0).

In a recent nonperturbative determination of these re-
normalization constants, obtained by requiring that the
correctly normalized currents obey the continuum Ward
Identities, it was found that Zi =0.824(2) and
Z„=1.09(3) [21]. These results were obtained from a
simulation at p=6.0 for one value of the quark mass. It
remains to be checked that the results are independent of
the quark mass and insensitive to small variations in p.
For this reason, we use the perturbative values, given
above, throughout the paper. We note, however, that the
nonperturbative value of Z~ may be larger by about
15%. In Ref. [15] we obtained f„lm =0.138+96, using
the perturbative value of Z~. A larger value of Zz, such
as Zz =1.09, would bring this result closer to the physi-
cal value of 0.172. However, we also observed thatelf, which does not require Z„, was in very good
agreement with the experimental value and, therefore, we
quote values for the ratios fD If„and fs If in the fol-
lowing sections. The normalization of the axial-vector
current in the static effective theory is discussed in Sec.
IV.
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C. Error estimation

D. Extended interpolating operators

In order to isolate the ground state in correlation func-
tions effectively, it is useful to use extended (or
"smeared") interpolating operators for the mesons. In
particular, in the static theory it has been found to be
essential to use smeared operators in order to obtain any
signal for the ground state [24]. In this study we use
gauge-invariant Jacobi smearing on the heavy-quark field

(described in detail in Ref. [25]), in which the smeared
field, Q (x, t) is defined by

Q (x, t)=QJ(x, x')Q(x', t), (13)

where

J(x,x') = g ash"(x, x') (14)

and

Statistical errors are obtained from a bootstrap pro-
cedure [22]. This involves the creation of 1000 bootstrap
samples from the original set of N configurations by ran-
domly selecting N configurations per sample (with re-
placement). Correlators are fitted for each bootstrap sam-
ple by minimizing g . During the fits, correlations among
different time slices are taken into account, whereas
correlations among different values of the quark mass are
neglected. The latter correlations are preserved by using
the same sequence of bootstrap samples at each quark
mass. When extrapolating our results to the chiral limit
and physical meson masses, the correlation matrix for the
fitted quantities is estimated from the full bootstrap en-
semble. All quoted statistical errors are obtained from
the central 68% of the corresponding bootstrap distribu-
tions [23].

%e attempt to quantify the systematic error arising
from the uncertainty in the value of the lattice spacing, a,
determined from properties of light hadrons, and from
the string tension [15]. The differences between results
obtained using our central value for a ' (GeV) and our
upper and lower estimates are quoted as systematic un-

certainties in the final estimates for decay constants in

physical units. Hereafter, where we quote two errors, the
first is statistical and the second is systematic.

The values of N and r used in each of the calculations
below will be quoted in the corresponding sections.

II. DECAY CONSTANTS
FROM THE SIMULATION AT P= 6.2

Cg; (t)=y(olJt (x)J (0)lo), (17)

where J, and J2 are interpolating operators which can
annihilate or create the pseudoscalar or vector meson be-
ing studied. The labels Q and R denote whether a local
(L) or smeared (S) interpolating operator is being used.
In this simulation we use Jacobi smearing with N =75,
corresponding to a smearing radius of r =5.2. The decay
constants are obtained from the matrix elements of the
local operators, which are determined by computing both
the Css and CLs correlation functions.

In order to determine the decay constant, it is neces-
sary to know the value of the lattice spacing in physical
units. This can be done by relating the lattice measure-
ments of some dimensionful quantity to its physical
value, e.g. , the mass of a light hadron or f . Among the
other frequently used choices are the string tension &K
and the II' —IS mass splitting in charmonium. Using
m to set the scale in our study of light hadrons [15] we

found a '(m )=2.7(1) GeV, and a mass spectrum in

physical units which was close to experimental values.
Furthermore, our determination of the string tension [23]
gave a '=2.73(5) GeV. Encouraged by the consistency
of these results, we use

In this section we present the results obtained for the
decay constants of heavy-light mesons from our simula-

tion on 60 configurations of a 24 X48 lattice at P=6.2,
using the S% action in the quenched approximation. The
computations are performed for four different values of
the mass of the heavy quark, corresponding to
~& =0.121, 0.125, 0.129, and 0.133, and for three values
of the mass of the light quark, corresponding to
KI =0. 141 44, 0.142 26, and 0.142 62. The mass of the
charm quark corresponds approximately to a& =0.129.
The value of the hopping parameter corresponding to the
mass of the strange quark is z, =0.1419+i and the criti-
cal value is a.,„,=0.143 15+& [15].

The decay constants are determined by computing
two-point correlation functions of the form

3

b(x, x') = g [6, -, U; (x—i, t)+5, +-, U, (x, t)] . (15)
a '=2.7 GeV . {18)

Wuppertal smearing [26], which uses the operator
{1—~&A) ' as the kernel of the smearing, corresponds to
X = ~, provided that ~& is sufficiently small to guarantee
convergence. Following the discussion in Ref. [25], we

choose ~~ =0.25 and use the parameter N to control the

smearing radius, defined by

{16)

However, the study described in Ref. [15] showed that
the measurement of the pion decay constant gave a
higher value for the scale, i.e, a '(f )=3.4, GeV, us-

ing the perturbative value for Zz. In order to get an esti-
mate of the systematic uncertainties in the final numbers,
we evaluate all our result using the central value of
a '(f ) as well, and quote the difference as the upper
systematic error on decay constants. The lower systemat-
ic error is obtained from the uncertainty of —0. I GeV in

a '(m ).
In an attempt to reduce the systematic errors associat-

ed with the value of the renorrnalization constant of the
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axial-vector current, we also compute fD&/f, and
determine fD ~ by using the physical value off„.

A. Decay constants of pseudoscalar mesons

In order to determine the pseudoscalar decay con-
stants, we start by fitting the two-point correlation func-
tion

HI ~ Ill ~
.015— ~~~mIIImm~

C (t)=—y(O~P (,t)P (0)~0)
X

Z
exp( MpL—, /2) cosh [Mp(L, /2 —t)],

P

(19)

.01—

.oo5
0 5 10 15 20

C (r) (0~ A (0) ~P )
tanh[Mp(L, /2 —

&)],
Cpp(t) 0 P (0) P

(20)

is used to extract the pseudoscalar decay constant, where
A 4 is the temporal component of the axial-vector

where P is the pseudoscalar density, Z &=(O~P (0)~P),
and L, is the temporal extent of the lattice. This correla-
tion function gives the best determination of the masses
of the heavy-light pseudoscalars. Symmetrizing in Eu-
clidean time, the fitting range was chosen to be
13&t &22 for all three values of the light-quark mass.
Good plateaus in the effective mass were observed and
stable fits obtained. The values of the masses of the pseu-
doscalar and vector mesons for the twelve KI, -KI combina-
tions are presented in Table I. The values obtained by
linear extrapolation to the chiral limit for the light quark
are also tabulated. At large values of t, the ratio of corre-
lation functions,

FIG. 1. The ratio of correlators defined in Eq. (20) plotted
versus t for KI, =0.129 and KI=0. 14262. The curve represents
the fit using time slices 15-22.

current. The ratio is fitted in the range 15~t ~22 with
the pseudoscalar mass Mp (in each bootstrap sample)
constrained to its value extracted from fits to Eq. (19). In
Fig. 1 we plot the ratio of correlators together with the fit
to Eq. (20) as a function of t. Using the value of Z & ob-

tained from the fits of Eq. (19},the matrix elements of the
local axial-vector current are obtained. Although there
are other ways of determining these matrix elements, we
find that the ratios in Eq. (20}give the most precise deter-
mination.

In Table II we present the results for the decay con-
stants (in lattice units) of the pseudoscalar mesons for the

TABLE I. Masses (in lattice units) of the pseudoscalar and
vector mesons for the twelve Kg-K~ combinations at p=6.2 on a
24'X48 lattice. Also presented are the values obtained by linear
extrapolation to the chiral limit (KI ~K„;,=0.143 15).

TABLE II. The decay constants (in lattice units) of the pseu-
doscalar and vector mesons. Also shown are the results for the
combination fp+Mp which in the heavy-quark limit is in-

dependent of the heavy-quark mass (up to mild logarithmic
corrections).

KI, KI Mp Mv KI, KI fp/Zg fpVMp/Zg 1 /'(fvZv)

0.121

0.125

0.129

0.133

0.141 44
0.142 26
0.142 62

Kcrit

0.141 44
0.142 26
0.142 62

Kcrit

0.141 44
0.142 26
0.142 62

Kcrit

0.141 44
0.142 26
0.142 62

Kcrit

0.924+1

0.890 3

0.875+3

0.822+1
0.799 2

0.789 2

0.773+

0.715 1

0.691
0.681+2
0.665+2

0.599+1
0.574+2
0.564 2

0.546 2

0.944+2
0.920+3
0.909+4
0.894+4

0.847 2

0.823+
0.811 4

0.797+4

0.745 2

0.721 3

0.711+4
0.695+4

0.637+
0.613 3

0.603+4
0.588+4

0.121

0.125

0.129

0.133

0.141 44
0.142 26
0.142 62

Kcrit

0.141 44
0.142 26
0.142 62

Kcrit

0.141 44
0.142 26
0.142 62

Kcrit

0.141 44
0.142 26
0.142 62

Kcrit

0.086+',
0.079+1
0.076+2
0.071+1

0.086+1
0.079 1

0.076+,'
Q Q71

0.085 1

0.078+1
0.075+
0.071+

0.082+1
0.076+1

0.073
0.069

0.083+
0.075.
0.071
0.066+1

0.078+,'

0.070
1

Q. 067+2
0 Q62+ 2

0.071+1
0.065+ ,

'

0.062+1
0.057+2

0.063+1
0.057 1

0.055+ ',

0-o51—+ li

0. 124 3

Q. 116 3

0. 111 3

0. 105 4

0. 141 3

0. 132 3

0. 128+4
0. 123+4

0. 163 3

0. 155 3

0. 151+
0. 146 5

Q. 193 4

0. 186+4

0. 183+5
0. 179 5
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4(Mp)=C 1 — +
MP MP2

.08

.06

.o4
0 ~ 5 1 15

I/Mp

FIG. 2. The data for 4(MP) plotted against the inverse meson
mass. The open symbols denote points with Ki &K„;„whereas
full symbols denote those extrapolated to K„;,. The solid line
represents the linear fit to the chirally extrapolated points using
the three heaviest meson masses, whereas the dashed curve re-
sults from a quadratic fit to all four.

In order to detect possible deviations from this scaling
law we plot in Fig. 2 the quantity'

4(Mz)—:[a,(Mp)la (Mg)] Zg fp+Mp

as a function of 1/Mp. We approximate a, (M) by

2'
po ln(M /AQCD)

(23)

where we take AQcD 200 MeV, and I6'o= I I —
—,'nf, with

nf =0 in the quenched approximation. From the figure
we see that 4(Mp) increases as the mass of the heavy
quark is increased (in agreement with the behavior found
using the Wilson action for the guarks [2—4]). In order
to quantify this behavior, we fit 4(M~) to either a linear
or quadratic function of 1/MP ..

4(Mp)= A 1—
P

(24)

or

—2/f30
The normalization factor a, (M&) is convenient when

comparing these results with those obtained in the static theory.

twelve Kz-K& combinations, as well as the values obtained
by linearly extrapolating the results to the chiral limit.
We also tabulate the results for the quantity fp+Mp,
which, in the heavy-quark limit, is independent of the
mass of the heavy quark (except for a mild logarithmic
dependence).

We start the discussion of our results with the behavior
of the pseudoscalar decay constants as a function of the
mass of the meson, with all dimensionful quantities given
in lattice units. In the heavy-quark limit, the quantity
fp 1/ Mp scales like

fp+M~=constX[a, (Mp)] ', Mp~~ . (21)

We have performed these fits twice, once using the
values of fI,+M~ for all four values of ~„, and once us-

ing those for only the smallest three az's (i.e., for the
heaviest three heavy-quark masses). The results of the fits
are given in Table III. We find that the nonscaling
corrections are —30% for fD and —10% for f~, in
agreement with previous results obtained using Wilson
fermions [2—4]. From the quadratic fit to the data at all
four heavy-meson masses we find, in physical units,

—3/2 0 45+2+19 G V3/2

Da ' =0.84+" + GeV,
—2 0 28+7 +16 G V2

(26)

The second error in Eq. (26) corresponds solely to the un-

certainty in the scale. It should be mentioned that ignor-
ing the residual logarithmic dependence of fI "(/Mp on

MP makes the slope more pronounced. However, it is
clear from Fig. 2 and Table III that the logarithmic
corrections to the scaling law can by no means account
for the observed slope in fl, "t/ M .

We use the parameters of the fits in Table III to make
our predictions for the values of the decay constants fD
and fz. The results corresponding to the four fits are
presented in Table IV. From this table it is clear that
there is a further systematic uncertainty in f~ of about 11
MeV from extrapolating using either linear or quadratic
fits. In contrast with this„since we interpolate to mD, the
results for fD are very stable. It should be emphasized
that choosing a different value for AQcn (e.g. , AQcn =250
MeV), or for the anomalous dimension (e.g. , by taking

nf =4) changes the results by only about 1 MeV.
Taking the results from the quadratic fit using all four

Kg values we find

f = 185+'+4' MeV,

f =160 + MeV,

(27)

(28)

(fz/f )X132 MeV=232+& MeV,

{fz /f ) X 132 MeV =201+
II MeV . (30)

Finally, in this subsection, we present our results for

where we have included the uncertainty of 11 MeV from
the extrapolations in the systematic error quoted for f~.
We take the results presented in Eqs. (27) and (28) as our
best estimates of the decay constants of the D and 8
mesons.

In Ref. [3] it was found useful to use the pion decay
constant f to set the scale in the computations of the de-
cay constants of heavy-light mesons. By calculating
fDlf and f~lf„ it may be expected that some of the
systematic errors cancel, since, in particular, the ratios
are independent of Z~. Our results for the decay con-
stants obtained in this way are, as expected, close to the
upper systematic error margins in Table IV. We find
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TABLE III. Values of the parameters of the linear and quadratic fits to the behavior of the pseudo-
scalar decay constants with the mass of the mesons (as defined in the text).

Linear fit Quadratic fit

D

4 Kh's

Kh S

0.089 2

0.092 3

0. 199 7

0.216 10

0. 101+,'
0. 102 8

0.31+3
0 33+10

0.038 13

0.045+39

fD and fs . These are obtained by interpolating the
S S

measured values of the decay constants given in Table II
to lrl=lr, =0.1419+', [15]. The extrapolations in the
heavy-quark masses are done as above. We find &Oi V,'(0)i V& =e,Z,, (37)

where VJ is the jth spatial component of the smeared
vector operator and Z & is defined through

fD IfD —1.18+2,

fs Ifs=1.22+3 .

(31)

(32)

Fitting time slices 14 ~ t ~ 23, symmetrized, we obtain the
vector meson masses shown in Table I. In order to ex-
tract the matrix element of the local vector current we fit
the ratio

In physical units we obtain

fD =212+&+ MeV,
S

(33)

3

C s(r) y, , &Ol V,'(O)l V&e;
(38)

194+6+62 MeV
S

(34)

Recently, the first measurement of fD has been made
S

by the WA75 Collaboration [27], who found

fD =(232+45+20+48) MeV .

Our result is in good agreement with the measured value,
and also with previous lattice calculations using Wilson
fermions [3,5].

B. Decay constants of vector mesons

In this subsection we present our results for the decay
constants of heavy-light vector mesons. These are
defined by

M
&O V„l V& —=e„'=Z, &OI V„'(0)I V&,

V

(35)

where
~
V & represents a state containing a vector meson

V, with mass M~, polarization vector e„, and decay con-
stant f~. V„denotes the local lattice vector current,
defined in Eq. (9), with I =y„, which has to be multiplied

by the renormalization constant Z~. The vector mass

Mz is extracted from fits to the correlator

3

c,",= gg&o~v, '(x, r)v,'(0)~0&
J=1 x

3Z s
exp( MVL, /2) cosh[M~(L, /—2 —t)],

V

(36)

to a constant in the fitting interval 15 ~ t 23.
The results for 1/fv for the twelve Ks-Kl combinations

are presented in Table II, together with those obtained
after extrapolation to the chiral limit. The chirally extra-
polated values for ft, 'Zv ' are now interpolated to the
D* mass using a quadratic fit to the data at all four
values of ~&, giving

f ' =0 110+5+36 (39)

This is slightly below, but still compatible with, earlier
studies (e.g., Ref. [3]) when the systematic error is taken
into account. This result remains unaltered if a linear fit
is used instead of a quadratic one.

C. A test of the heavy-quark symmetry

8 a, (M)
U(M)—: = 1+— +0

M 3 4~ M
(40)

where we take the heavy mass scale M to be the spin-
averaged meson mass, M =(Mp+3Mt, )/4.

In order to test the predicted behavior of U(M), we
take the chirally extrapolated values for both the pseudo-
scalar and vector decay constants, and fit

U(M) = U(M)
8 a, (M)1+—
3 4m

(41)

In the heavy-quark limit, the decay constants of
heavy-light pseudoscalar and vector mesons are related
by [28]

TABLE IV. Values of the decay constants fs and fD in MeV, corresponding to the linear and quad-
ratic fits.

Linear fit Quadratic fit

4 Kh's

3 Khs
185+4+45

186+4+41
149+5+52

154+5+ 53

185+4+42
185+4+42

160+6+53

160+7+54
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TABLE VI. Masses of light-light pseudoscalar and vector
mesons, and the pseudoscalar decay constants at P= 6.0.

0.1432
0.1440
0.1445

0.386+4
0.311+,
0.257 6

0.51 I

0.47+',
0.43+3

0.088
0.080+4
0.075

]c,„,=0.145 56+6 0.38+4 0.065+6

6
0 .5 1 1.5

1/M

FIG. 3. The quantity U(M) plotted against the inverse spin-
averaged mass. Linear and quadratic fits are represented by the
solid and dashed curves, respectively. Also shown are the sta-
tistical errors of the extrapolation to the infinite mass limit.

to either a linear or quadratic function of 1/M. The data
together with the fits are shown in Fig. 3, and we display
our results in Table V. The perturbative values of Z„and
Zz are used.

The fact that U( ae ) is around one in Table V provides
support for our parametrizations, in Eqs. (24) and (25), of
the nonscaling behavior of the decay constants for finite

heavy-quark masses.

III. DECAY CONSTANTS
FROM THE SIMULATION ATP=6. 0

In this section we describe the results of a computation
of the decay constants using the SW fermion action at
P=6.0 on a 16 X48 lattice. These results were obtained
using 36 configurations, with light-quark masses corre-
sponding to ~& =0.1432, 0.1440, and 0.1445. The corre-
sponding light-light pseudoscalar and vector meson
masses, and pseudoscalar decay constants, all in lattice
units, are presented in Table VI. The values of the hop-
ping parameter corresponding to the chiral limit and the
strange quark mass are ~„,,=0. 145 56+6 and

~, =0.1437+5, respectively. Using the mass of the p
meson to determine the value of the lattice spacing, we
find a ' =2.0+2 GeV, while using f we find
a '=2.1,GeV. These two results are compatible, and
below we will use the value

We have computed the heavy-light correlation func-
tions as series in ai, (the hopping-parameter expansion
[29]), thus enabling us to obtain the decay constants at
any value of the mass of the heavy quark, without explic-
itly computing the heavy-quark propagators. The decay
constants are obtained by fitting to Eqs. (19) and (20),
over the range 12~t &18 for both fits. We employ the
Jacobi smearing algorithm with N =50, corresponding to
a smearing radius of r =4.2.

In an attempt to improve our understanding of the
discretization errors, we have also computed the decay
constants for the Wilson action at one value of the light-
quark mass, using a subset of 16 of the 36 configurations.
The comparison of the results for the two actions is
presented in Sec. III B.

C =0.18+3, D =0.45+5

In physical units we obtain

E =0.08+9 . (43)

I I I,'
I I I

.2

C&(MP)

T

0

A. Pseudoscalar decay constants

In Fig. 4 we plot the chirally extrapolated values of
C&(M& ) as a function of 1/Mz for 11 values of the heavy-
quark mass. We fit the points corresponding to the five
lightest meson masses [for which m& = 1/2(1/aq—1/a„;, ) (0.7, as was the case at P=6.2] to Eq. (25),
and this is shown as the solid curve in the figure. For the
coeScients of the fit we find

a ' =2.0+ Cxev {42}

to convert the results from lattice to physica1 units.

TABLE V. The quantity U(M) obtained from linear and
quadratic fits.

p5 I I I I I

(M~+3M~ )/4
(MD+3MD )/4

Linear fit

1.02 4

0.93+3
0.77',

Quadratic fit

1.09+
8

0.96 5

0.77 2

FICx. 4. The chirally extrapolated data for 4(M~) at P=6.0
plotted against the inverse meson mass. The solid curve
represents a quadratic fit to the points denoted by circles.
Points represented by diamonds are not included in the fit. The
dashed curves are the 68 /o confidence bounds on the fit.
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(
—3/2 0 50+9+12 ~eV3/2

Da '=0 91+~'+'4 GeV,

Ea —2 0 32+16+10 GeV2

(44)

f =199+' + MeV

fs =176+ +
~ MeV,

fD, /fD =1 13-'7

fa, /&a = I 17-'Iz

(46)

(47)

(48)

All these numbers are in good agreement with the corre-
sponding results from the simulation at P=6.2. Finally,
for the ratios fD If and fs If we obtain

(fD/f )X132 MeV=211+f& MeV,

(fs /f ) X 132 MeV = 186+&& MeV .

B.Comparison of results using Wilson and SW actions

(49)

(50)

in good agreement with the results at P=6.2, quoted in
Eq. (26). It should be noted that the inclusion of all 11
data points makes no significant difference to the fit.

The values for the decay constants in physical units are

fields, we see a clear divergence between the results for
the two actions for m& )0.7; the Wilson results turn over
and decrease. However, we note that uncorrelated y fits
of the Wilson points, at the lightest few meson masses, to
Eqs. (24) and (25) would yield coefficients of the 1/Mp
term broadly consistent with previous Wilson analyses.

The figure also shows the results obtained with the
Wilson action, but using the normalization +I—6k for
the quark fields [5,19,30,31], where @=ups and

up = I /(8~„;, ). It has been suggested that this normaliza-
tion may absorb some of the discretization errors [19,31],
and indeed the corresponding results agree remarkably
with those obtained using the SW action. This agreement
provides considerable motivation for a theoretical study
to investigate whether there is any formal connection be-
tween the ansatz above and the improvement program in-
itiated by Symanzik [32].

IV fB IN THE STATIC LIMIT

An alternative and complementary approach to
heavy-quark physics using lattice QCD was proposed by
Eichten [16]. This technique is based on an expansion of
the heavy-quark propagator in inverse powers of the
quark mass. In practice, one keeps just the leading term,
given by (at zero velocity)

For 16 of the configurations, we have computed the de-
cay constants for the Wilson fermion action, again using
the hopping-parameter expansion. We compute light-
quark propagators at a single value of the hopping pa-
rameter, ~I =0.155, corresponding to a pseudoscalar-
meson mass of 0.30+', . This was chosen to match the SW
pseudoscalar-meson mass of 0.31+

&
obtained at

a& =0.144 on the same set of configurations.
In Fig. 5 we plot f p "1/Mp as a function of I/Mt . Us-

ing the conventional normalization of ~2m for the quark

f1+ 4
m ~1 — 4

Sg(x, t;0,0)= e(t)e c +8( t)e—
(51)

where Pc(t, 0) is the product of links from (0, t) to the ori-
gin, for example, for t )0:

Pc(t, O)=Uq~(O, t —1)U4t(O, t —2) U (0 0) . (52)

At suSciently large times

M
g(A, (x, t)At4(0))~ e

2
(53)

where A„ is the improved axial-vector current of Eq. (10)
with I =y„y5. Since the only dependence on m& in Eq.
(53) arises through the exponential factor in Eq. (51), we
deduce the scaling Iaw that ft, +Mt, is independent of
the heavy-quark mass. Matching the result from the
heavy-quark effective theory with that in the full theory
introduces the logarithmic corrections in Eq. (21). The
full scaling law is of the form

fp+M&=constX [[a,(M&)] [1+0(a,)]
p

0 .5 1 1.5 +0(1/M )] . (54)

1/uM~

FIG. 5. fp+MI for both the Wilson and SW actions. Dia-
monds denote points obtained with the Wilson action in the
conventional normalization, &2', whereas squares denote

points normalized by +1—6R. Results using the SW action are
represented by circles. The solid curves are quadratic 6ts in
1/Mz to fp+Mt, for the Wilson action, with fields normalized

by +1—6R, and for the SW action. The dashed curve is to
guide the eye. Note that the renormalization factor, Z&, is not
included in the plot.

The objective of lattice computations is to determine the
constant. We refer to the value of fa obtained using Eq.
(54), but dropping the 0 ( I /Ms ) corrections, as as™.We
compute the two correlation functions, C ~ and C
defined by

2In principle, the behavior of the correlation functions in Eqs.
(55) and (56) is given by a cosh [as in Eq. (19)]; however, the
contribution of the backward-propagating meson is negligible in
the time intervals we will be considering.
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(&)=g(0I &,(x, r)A, '(0,0)IO) (Z')'e ' ', (55) (a). [n(r. (t)/r (~-1))
1. T g

.8I—
.006—

(b)- ~(~)/c (f)
I I T

I
I I I I

I
I I

(56)
.6— 1)

.004—
ih EXIT

where b,E is the (unphysical) difference between the mass
of the meson and the bare mass of the heavy quark. The
matrix element of the local operator A 4 is obtained from
the two correlation functions Css and CLs as follows. By
fitting C (t) to the functional form given in Eq. (55) we
obtain Zs (and AE). At sufficiently large times the ratio

C (r)IC (r) Z IZ

so that Z can be determined.

.002—

p)
0

1

10
p I I I 1 I I I I I I I

0 5 10

FIG. 6. (a) The effective mass obtained from C (t) and (b)
the ratio C (t)IC~~(t) at )33=6.2, tent =0. 14226, and N=140.
The solid lines represent fits from 5 t ( 11.

A. Results at P= 6.2

We now report on a computation of fzs™at P=6.2.
The results presented here were obtained using a subset
of 20 of the 60 configurations discussed in Sec. II, at the
three values of the light-quark mass. The values of f2'"
and as™were determined by extrapolating the results to

K t and K„respectively.
In view of the difficulty in isolating the ground state in

correlation functions using the static effective theory, we
have compared results obtained with different numbers of
iterations of the Jacobi smearing algorithm [34]. For N
less than about 80 the plateaus do not start until at least
t =7. In this paper we present our results obtained with
%=110 and 140, corresponding to r =5.9 and 6.4, re-
spectively, where plateaus begin as early as t =4 and
hence statistical errors are smaller.

In Fig. 6(a) we show the effective masses obtained from
C (t), and in Fig. 6(b) the ratio C (t)IC (t), both at
KI =0.14226 and N=140. Excellent plateaus are ob-
tained, giving us confidence that the ground state has
indeed been isolated. In Table VII we present the results
for h,E, (Z ), Z IZ, and Z at all three values of tr&,

from fits over the range 5 (t 11, without symmetriza-
tion in Euclidean time. hE is obtained from the fit to
C (t) for N =140; consistent values are obtained for
X =110.

Extrapolating the results for Z in Table VII to the
chiral limit and to the mass of the strange quark we find

Z Oo 1 1 7+
7 at t crit

Z =0.134+6 at K) =K,

(59)

(60)

when using interpolating operators with N = 140.
When matching the static lattice theory to the full

theory at a scale mt„ the factor required is [36]

a, (a ')Z""=Z 1+ —1na m —2 (61)

Z„, relating the axial-vector current in the static lattice
theory to the static continuum one, has been calculated in
perturbation theory for the SW action [17,35]:

Z „=1 —0. 127g =0.79 . (62)

Z stat

obstat

266+ 17+ 110
~B —15—14 0 79

MeV, (63)

Zstat

fstat —300+ 14+ 125 M VB, —13—16 0 79
(64)

The value of 0.79 on the right-hand side of Eq. (62) was
estimated using the boosted coupling at /3=6. 2. For the
remaining factor in Eq. (61), we take mb=5 GeV, a,.
given by Eq. (23) with nf =0, and A&cD=200 MeV,
yielding a number close to one (note that this is insensi-
tive to small changes in m„). Thus Z'„'"=0.79 also. We
find

Z =0.124+7 at KI Kcrit

Z =0.140+6 at KI =K,

(57)

(58)
when using the interpolating operators with X =110,and

when obtained using smeared interpolating operators
with X = 110 and

Zstat
pstat 253+ 16+ 105 ~

M VJ B 15 14 0
(65)

TABLE VII. Values of AE, (Z ), Z /Z, and Z at the three value of Ki. AEis obtained from the fit to C (t).

K( AE
N =140

(Z 2)2

N =110 N =140
z'/z'

N =110 N =140 N =110
ZL

N =140

0.141 44
0.142 26
0.142 62

0.59+1
0.57

1

56+ 2

141+12
127+ '

1 19+12

130+ '

1 19+ 10

112

0.0125+ 3

0.0121 3

0.0120

0.0039 1

0.0038 1

0.0037 1

0. 149+-/

0. 137
0. 131:6

0. 142 6

0. 130.' "„

0 125.
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Z stat

g7+ ]4+ ]]9 A

J B 13 15 0
(66)

(~): ~(&)/~(&)
I I I I

I
I I I I

(b): c (~)/~(~)
I I I I

I
I I I I

I
I I I I

when using those with N =140. The systematic errors
quoted arise from the uncertainty in the scale. We take
the results in Eqs. (65) and (66) as our best values, and
these give for the ratio

stat
B

14+4
stat

(67)
0 I I i I I I I I I I I

0 5 10 15
I I I I I I I I I I I I I

0 5 10 15

B. Results at P= 6.0

We have performed a similar analysis on the 36
configurations at P=6.0, using Jacobi smearing with
N =50 and 150, corresponding to r =4.2 and 6.2, respec-
tively. The results obtained using the two smearing radii
are consistent, and our best results are those at N =50 for
which ZL =0.211+7, comparable to ZL =0.22(1) for the
SW action obtained in Ref. [10],yielding

Z stat

g stat 286+ 8 +67
J B 10 42 0 78

MeV, (68)

Zstat
=323+ +75 MeV

0 78
stat
B' =113+4
stat

(69)

(70)

3lu both Refs. [8,10] it was in fact the C~, and not the C
correlation function which was computed [37].

These results at P =6.0 are consistent with those at
P=6.2 presented in Eqs. (65)—(67).

The results plotted in Fig. 6(b) for the ratio
C (t)/C (t) appear to have considerably smaller errors
than in some recent studies [8,10], in spite of our limited
statistics. We attribute this to the fact that we use the
C correlation function in which the smearing is per-
forrned at the source, rather than the C correlation
function in which the smearing is performed at the sink.
Of course, with suSciently many configurations, the re-
sults are independent of this choice. However, in the C
correlation function, the heavy-quark propagator is sam-
pled at many spatial points, whereas in the C correla-
tion function only the heavy-quark propagator at x=O
contributes. Thus the statistical errors are considerably
reduced using the C correlation function [7,12].

To check this, we have computed the ratios
C (t)/C (t) and C (t)/C (t) at P=6.0, with

~I =0.1432. The results are plotted in Fig. 7, and indeed
confirm that there is an enormous improvement in pre-
cision when the correlation function C is used. We be-
lieve that this, rather than the different method of smear-

ing, is the reason for the relatively large statistical error
in Ref. [10].

FIG. 7. (a) The ratio CsL(g)&Css(g) and (b) Cis(g)/Css(
plotted against t for P=6.0, «, =0.1432, and %=50 iterations
used in the Jacobi smearing algorithm.

C. Discussion

We begin with a comparison of the static and propaga-
ting results. Because we do not yet have static results for
the full set of configurations at P=6.2, we focus on a
comparison at P=6.0. In Fig. 8 we plot our results for
the scaling quantity

ft, +Mp[a, (Mp)/a, (Ms )] /

from the simulation at P=6.0 as a function of 1/Mp (in

lattice units), together with our result for fz'"QMtt.
The quadratic fit which we used to obtain our estimate
for fz in Sec. III A gives an intercept at 1/Mp =0 which
is about 25% and two standard deviations below the stat-
ic result; a similar discrepancy is observed at P=6.2.
There are a number of possible reasons for this, e.g., un-
certainties in the renormalization constants (which are

0.1—

0 1 2
1/Mp

FIG. 8. Z„4(MP) at P=6.0 from the simulation with propa-
gating quarks (open symbols) and the static theory (cross). The
dashed curve is the fit to the open circles, with the parameters
of Eq. (43); the square is the intercept at I/M&=0. The solid

curve is the fit with the static point included.
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Ref. Action

TABLE VIII. Compilation of lattice results for ftt"

a ' (GeV) Zstat
A fstat (MeV)

[11]

[9]
[10]
[10]

This work
This work

[12]

Wilson
Wilson
Wilson
Wilson

SW
SW
SW

Wilson
Wilson

5.9
6.0
6.0
6.0
e.o
6.0
6.2
6.3

5.74, 6.0, 626

1.75
2.0+0.2
2.2+0.2

2. 11+0.05+0. 10
2.05+0.06

2.0:;
2 7

3.21+0.09+0.17
1.12, 1 ~ 88, 278

0.79
0.8
0.8
0.8
0.89
0.78
0.79
0.69
0.71(8)

319+11
310+25+50
366+22+55
350+40+30

370+40
286+ lo

+
42

253+ 16+ 105—l5 —14

235+20+21
230+22+26

different for the static and propagating quarks), residual
discretization errors in the simulation of the propagating
quarks, and uncertainties in the various extrapolations.

A better way of determining the consistency of the
static and propagating results is to include the static re-
sult in the quadratic fit. Such a fit using the full correla-
tion matrix at p=6.0 gives a y /XDF of 1.5. This is still

acceptable, and provides further evidence that using ro-
tated operators with the SW action gives a sensible nor-
malization for propagating heavy-quark fields. From this
fit we obtain

ftt =220+ +
7 MeV,

which is 44 MeV higher than that obtained from the
propagating points alone.

In Table VIII we present the results for fit"' obtained
by other groups, together with our values. Although at
p=6.0 the values of Z found by all groups and for both
actions are in broad agreement, the difFerent treatment of
systematics leads to the spread of results in ft't'". It has
been suggested that ftt"' decreases as a ~0 [12]. Howev-
er, the agreement of the results obtained with the Wilson
and SW actions at P= 6.0, together with consistency be-
tween our results at P=6.0 and 6.2, suggests that the
discretization errors are small.

V. CONCLUSIONS

In this paper we have carried out an extensive study of
the decay constants of heavy-light mesons using the SW
action for the quarks. The use of the SW action confirms
the large, negative O(1/Mp) corrections to the scaling
law fp+Mp -const at the mass of the charm quark and

the significant corrections at the mass of the b quark, pre-
viously observed with the Wilson action. However, from
our comparison of results for the Wilson and SW actions
at P=6.0, we observe clear evidence that the &2tt nor-
malization of the Wilson quark fields fails for large quark
mass. This failure is presumably due to large O(m&a)

effects. It has been suggested that such effects may large-
ly be absorbed by the use of a different normalization [5].
We find that such a normalization yields results in agree-
ment with those obtained using the SW action with ro-
tated operators and the &2tt normalization for the quark
fields.

Our best estimates of fD and ftt are

f D=185+ (3st ta)+ ~(syst) MeV,

ftt =160 6+,9 MeV,

(71)

obtained using propagating quarks at p= 6.2. Our
analysis at p=6. 0 yields entirely consistent results. The
latter analysis also suggests that including the static re-
sult in the fits is likely to increase the value of ftt by
around 40 MeV.

The most urgent extension of this work is to determine
the B parameter for B -B mixing, since it is the com-
bination ftt+Btt which is directly relevant for phenome-
nologica1 studies of the mixing and of CP violation. A re-
cent simulation with Wilson fermions found

Bit =1.16+0.07 [3], and it is important to confirm this
result with the improved action.
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