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Lattice study of the gluon propagator in momentum space
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We consider pure glue QCD at P=5.7, P=6.0, and P= 6.3. We evaluate the gluon propagator both in

time at zero three-momentum and in momentum space. From the former quantity we obtain evidence

for a dynamically generated efi'ective mass, which at P=6.0 and P=6.3 increases with the time separa-

tion of the sources, in agreement with earlier results. The momentum space propagator G(k) provides

further evidence for mass generation. In particular, at P=6.0, for 300 MeV (k 5 1 GeV, the propagator

G(k) can be fit to a continuum formula proposed by Gribov and others, which contains a mass scale b,

presumably related to the hadronization mass scale. For higher momenta Gribov's model no longer pro-

vides a good fit, as G(k) tends rather to follow an inverse power law =1/k2+". The results at @=6.3
are consistent with those at P= 6.0, but only the high momentum region is accessible on this lattice. We

Snd b in the range of 300 to 400 MeV and y about 0.7. Fits to particle + ghost expressions are also pos-

sible, often resulting in low values for yDF, but the parameters are very poorly determined. On the other

hand, at P= 5.7 (where we can only study moments up to 1 GeV) G(k) is best fit to a simple massive bo-

son propagator with mass m. %e argue that such a discrepancy may be related to a lack of scaling for

low momenta at P=5.7. From our results, the study of correlation functions in momentum space looks

promising, especially because the data points in Fourier space turn out to be much less correlated than in

real space.

PACS number(s): 12.38.6c

I. INTRODUCTION

The possibility of studying nonperturbatively on the
lattice gauge-dependent quantities provides in principle a
unique tool to test QCD at the level of the basic fields

entering the continuum Lagrangian. From this point of
view, the gluon propagator in the pure glue theory is
perhaps the simplest quantity. From its study one ex-
pects to obtain among other things a better understand-
ing of the infrared behavior of the theory and of the
mechanism of gluon confinement. As a result we may also
hope to acquire a better understanding of the hadroniza-
tion phenomena and of the glueball spectrum [1].

Let us first review what is known from perturbation
theory: consider the expression (in Minkowski space-
time)

D„'„(k)=i fd x(O~T—[A„'(x)A„(0)]~0)e'"".

From the Faddeev-Popov quantization in a class of co-
variant gauges one gets the simple Slavnov identity

k kD' (k)= i5' —gpv PV k2

k„+a "'
k

1

1+II(k, a)

(3)

Equation (2) implies that the longitudinal part of the
propagator gets trivially renormalized, so that the vacu-
um polarization II(k, a) just renormalizes the transverse
propagator. The renormalization constant Z3 for the
gauge fields, A; =Z3 A;, is defined as

Z3 '=]+II —,a
P

where A is an ultraviolet cutoff and k = —p is a space-
like value of the momentum. In general Z3 is gauge
dependent.

One can then rewrite the unrenormalized transverse
gluon propagator as

k"k "D' (k) = ia5'b—
|MV 7 (2)

(5)

where a is the gauge parameter. From Lorentz covari-
ance, the general solution to (2) can be written as

Unlike QED, in QCD we know from the properties of
the P function that perturbation theory can only be ap-
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plied to the study of the large-k behavior of Green's
functions. In such a region one gets, at the one-loop level
[2]

Z3=1+
2

— 31g 13 A

16m 3 p
(6)

In general, at each order in g perturbative corrections
depend logarithmically on k, so that in the deep Euclide-
an region (k ~ ~ ) gluon propagators behave essentially
in the same way as the photon propagators, as long as
one considers a finite order in perturbation theory.

In the infrared region things are probably different. In
fact, in the simpler QED case perturbation theory is still
reliable, and one can evaluate order by order the vacuum
polarization function. In particular, one finds that
11o (k =0) is finite if all the fermions are massive (we
omit from now on the explicit a dependence of vacuum
polarization functions). This implies that the k =0 pole
of the free photon propagator is still present after radia-
tive corrections are taken into account, so that the pho-
ton remains a massless particle. Such corrections only
affect the residue at the pole, resulting in charge renor-
malization.

On the other hand, consider QCD without quarks. The
corresponding Lagrangian does not contain any mass
scale in four dimensions, yet if the theory is confining a
mass scale must be dynamically generated in some way,
since the confinement potential V (r)=Kr contains such a
scale. Such a mass M cannot be generated in perturba-
tion theory, since it must satisfy

generate an anomalous dimension y [4]; in such a case for
k ~ ~ the propagator behaves like 1/k +~. The non-
perturbative behavior of the Euclidean gluon propagator
has been investigated in the continuum by many authors
with different methods and in different gauges [5—10]. In
some of these attempts a very singular gluon propagator
was found, behaving like k in the limit k ~0 [10],and
a confining property was inferred from such behavior.
On the other hand, other work points towards the elim-
ination at the nonperturbative level of the singularity at
k =0 of the propagator [6,7,9], as a consequence of
dynamical mass generation.

In particular, a very peculiar momentum dependence,
consistent with the above scenario, has been predicted as
arising from a modification of the standard path integral
Faddeev-Popov formula in the Landau gauge by the in-

troduction of a nonperturbative gauge-fixing procedure
[5,8]. Such improved implementation of the Landau
gauge is expressed by the equations

B.A =0 and XFp[A]&0, (10)

kG(k)=
k "+b

where X„p[ A ] is the Faddeev-Popov operator in the Lan-
dau gauge, which in general is not positive definite. The
positivity requirement in (10) can be seen as a recipe to
get rid (although not completely [11]) of Gribov copies
[5]. In the gauge (10), the (transverse) gluon propagator
in momentum space has been argued to be of the form

M(g, p) =p exp
g dg

(7) where b is a dynamically generated mass scale. Equation
(11) corresponds to the case m =0,b 40 in (9). It implies
that in the continuum

const
M(g, p, )=@exp when g~0

where p is a renormalization scale p. For small g, one
has G(k=O, t) =e cos —t —sin t

—(bi+2)f
V'2 v'2

(12)

so that M (g) has an essential singularity at g =0.
Such a mass scale may show up in the vacuum polar-

ization function for the gluon. Indeed, while contribu-
tions to II(k ) proportional to finite powers of g have for
large k a logarithmic momentum dependence, nonper-
turbative effects may generate terms in II(k ) proportion-
al to negative powers of the squared four-momentum: for
instance,

2 4
11(k')= — ' '"'+ " ' '"'+O(g'),

k k4

where m (g,p), b(g, p) have the dimension of a mass and
depend nonanalytically on g. For example, the case
b =0, m&0 gives rise to a mass pole in the gluon propa-
gator and corresponds to the standard Schwinger mecha-
nism [3].

In the above formula 0 (g ) denotes contributions
which can be represented as a power series in g . Such
series, when truncated to a finite order in g, behave like
polynomials in ln(k /p ) for large k . On the other
hand, the sum of the contributions to all orders in g can

1
TI

3

where a is the lattice spacing. Thus the lattice gluon
propagator in x space is the expectation value of

G„(x,y)=Tr[A„(x)A (y)] . (14)

An important point is that on the lattice one can define
and implement the analogue of the gauge condition (10).

Remarkably, the same predictions were also obtained in
the study of Schwinger-Dyson equations [7].

The above expression lends itself to intriguing specula-
tions: the absence of any particle singularity on the real
k axis predicts the absence of an asymptotic gluon state.
It may describe a short-lived excitation, giving rise to a
gluon jet. In this framework, the mass scale b appearing
in the above formulas may perhaps be interpreted as a
hadronization scale.

The lattice gluon field can be defined as [12)

U„(n)—U„(n) U„(n)—U„(n)
A, (n)=

2ia 2la
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In fact, given any link configuration I U], one can define

a function of the gauge transformations g on [ U]:

FU[g]= ——+Re Tr[U„(n)+U„t(n—p)],1

n, p

(15)

where V is the lattice volume and Ug indicates the
gauge-transformed link Uz(n) =g (n) U„(n)g (n +P).
An iterative minimization of FU[g] obtained by perform-
ing suitable gauge transformations generates a
configuration [ U I which satisfies the lattice version of
(10), defined in terms of a lattice Faddeev-Popov operator
[13]. This is just the Hessian matrix associated with

FU[g], that is, 5 F„[g]/5g,5gz. As we have already
mentioned for the continuum, such a gauge is not com-
pletely free of Gribov copies. This is also true on the lat-
tice, and corresponds to the fact that for a fixed
configuration I U] the function (15) may have several lo-
cal minima (see, for example [14]}.

In general, Zwanziger [13] showed that on the lattice
one has qualitatively the same scenario for the Landau
gauge as in the continuum. Indeed, there exists a bound-
ed region 0, defined by the positivity requirement for the
lattice Faddeev-Popov operator, which satisfies bounds
analogous to the ones derived for the continuum model.
Considering then a restriction of the functional integra-
tion to the region 0, Zwanziger was able to obtain pre-
dictions for the lattice gluon propagator consistent with
the continuum ones given in (11)and (12).

At this point it is natural to try and test numerically
predictions such as (11)and (12).

Numerical studies have been performed in the past
years for the zero spatial momentum Fourier transform
of (14), namely 6 ( k =0, t }=g3 1G,, ( k =0, t ) [12,15,16].
These studies reported evidence of an effective gluon
mass that increases with the time separation for short
time intervals. This feature, which would be unacceptable
for the propagator of a real physical particIe since it
violates the Kallen-Lehmann representation, is in qualita-
tive agreement with the continuum prediction (12) and
may be in principle acceptable for a confined particle
[7,12]. Another lattice approach to the gluon mass was
given in [17].

Our work aims to test at a more quantitative level con-
tinuum predictions and to extend the above results
through the study of the gluon propagator at nonzero
rnomenta.

gauge fixing. Empirically, at P=6.0 and P=6.3 we find

that when the minimization of FU[g] has reached an ac-
curacy such that in -50 iterations FU[g] changes less
than =0.05%, then the signal for the propagators is
sufficiently stable against additional gauge fixing. In oth-
er words, the variation in each data point for the propa-
gator arising from additional gauge fixing is typically
much smaller than the final error bar associated to the
data point. On the contrary, we will see that at P=5.7
our stability requirement for FU[g] does not suffice to
guarantee a completely stable propagator.

Even at P=6.0 and P=6.3, though, when our empiri-
cal criterion gets satisfied the system has not yet reached
complete equilibrium, in spite of the fact that such an ac-
curacy is roughly one order of magnitude better than the
typical one adopted in simulations of hadron phenome-
nology. This can be seen by performing the following test
[12]: in the Landau gauge B„A„=Oit follows from the
periodic boundary conditions that

Ao(t)

=CIAO(x,

t) (16)

+
+

+ +

should not depend on t. In lattice language, this means
that once the Landau gauge has been numerically imple-
mented in a configuration, then the sum over the sites in
a fixed time slice of the time component of the gauge field
should be the same on each time slice. In Fig. 1 we plot
one of the diagonal elements of the matrix Ao(t) as a
function of t for one of our gauge-fixed configurations on
the 16 X40 lattice at P=6.0. This test shows that even
when the accuracy of our numerical gauge fixing is
sufficient for the gluon propagator, there are other quan-
tities for which the gauge fixing need not be adequate. As
a consequence, it would be dangerous in a calculation to
rely on some standard a priori criterion when estimating
the required precision for the gauge fixing, since such
precision strongly depends on the specific observable un-
der consideration. We remark that the gauge-fixing test
provided by Ao(t) is in fact more stringent than the one
used in [12].

II. NUMERICAL RESULTS
+ ++

We study pure glue QCD on 16 X40 and 24 X40 lat-
tices at P=6.0, on a 24 lattice at P=6.3, and on a
16 X24 lattice at P=5.7.

A. Technical remarks

It is worth remarking that, unlike simulations involv-
ing quenched quark propagators, evaluations of purely
gluonic correlation functions can take full advantage of
the translational symmetry of the theory in order to im-
prove statistics. On the other hand, such quantities turn
out to be very sensitive to the numerical accuracy of

+
5 — +

+++++

FIG. 1. Ao(t) vs t for one gauge-fixed configuration on the
16' X40 lattice at P=6.0.
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B. Results at P=6.0 aud P=6.3

Here we give results for a set of 25 configurations of
size 16 X40 at P=6.0, a set of 8 configurations of size
24 X40 at P=6.0, and finally a set of 20 configurations
of size 24 at P=6.3.

As a first step we have evaluated G (k=O, t); our results
confirm that this propagator exhibits a massive decay in
time, with an effective mass am (t):—1n[G(k=O, t)/
G(k=O, t+a)] that increases with t for short times. In
Fig. 2 we plot am(t) versus t with jackknife errors [18]
on the 16 X40 lattice. Assuming the value of the inverse
lattice spacing a '=2. 1 GeV at P=6.0 [19],the effective
gluon mass m (t) ranges approximately between 220 and
870 MeV. A similar behavior is observed for the 24 X40
lattice, with the effective mass ranging between 240 and
1200 MeV.

At this point we have attempted to fit G(k=0, t) to the
continuum form (12) and to the form commonly referred
to as particle + ghost, that is

G(k=0, t)=C, exp( —M, t)+C2exp( —M2t), (17)

where C2 is constrained to be negative.
As is well known, the data points obtained from a

Monte Carlo simulation are in general statistically corre-
lated; in the present case, the correlated data are the
values of the propagator G(k=0, t) at different time
slices. For this reason, one should perform g fits by us-

ing the definition of y which involves the full covariance
matrix [20].

By inspection of the covariance matrix for G(k=O, t),
it turns out that the off-diagonal matrix elements are typ-
ically of the same size as the diagonal ones, which means
that our data points are highly correlated in t. Conse-
quently, g fits are not well controlled because the covari-
ance matrix is nearly singular. Much higher statistics
would be required to get well-behaved fits.

As it is not possible in this case to make fits using the
full covariance matrix, we are forced to use the naive
definition of g, where the data points are simply weight-
ed by their standard error bar. Of course, in such an ap-
proach y has no simple relation to "goodness of fit."

In this approximation, it turns out that Gribov s for-

mula, i.e., Eq. (11), provides, for small t, a good fit to
G (k=0, t), better than the one obtained from the particle
+ ghost expression. In fact, although yD„is not a reli-
able indicator of the goodness of a fit when the covari-
ance matrix is not taken into account, nonetheless the rel-
ative gDF of two fits provides some indication of which fit
is better. On the 16 X40 lattice at P=6.0, the lowest
value for yDF obtained from a fit to Gribov's formula is

y&F=0. 18, while from the four-parameter fit to particle
+ ghost one gets y~„=0.34. Moreover, the latter kind
of fit is much less stable against varying the initial guess
for the fit parameters; i.e., many local minima for y can
be found. Using a '=2. 1 GeV, we obtain for the b pa-
rameter in (12) b =237+7 MeV, gDF =0. 18, where the er-
ror in b is a jackknife one. Of course one does not get
good agreement by using a conventional four-parameter
double exponential form, that is if one constrains Cz in
(17) to take positive values. Indeed, in this case the
effective mass would always decrease with t, in contrast
with what is observed.

The statistical difficulties mentioned above forbid a
complete analysis of G(k=O, t); in particular, we cannot
effectively study the large-t region, where according to
(12) the propagator may become negative and then oscil-
late.

Our analysis of the momentum space propagator
G(k)—:g„=&G»(k) does not have the same statistical
difficulties as in the case of G(k=O, t). This quantity is
obtained by performing explicitly the lattice Fourier
transform of the propagator (14).

In fact, the covariance matrix associated with G(k)
turns out to be much more "diagonal" than the one for
G (k=0, t); in other words, the data points are much less
correlated in momentum space that they are in t. We find

that G (k) is very well determined in a significant interval
of physical momenta up to k =2 GeV, which is in fact
roughly the value of the ultraviolet cutoff a ' (see Fig. 3).
As a consequence we have been able to obtain good fits to
G(k) taking into account correlations. Figure 3 also
shows that the data points from the two lattices at P= 6.0
are in good agreement over most of the momentum
range.

lu' X 40~
X 4G

G.
0

FIG. 2. Effective gluon mass in lattice units vs t on the
16' X 40 lattice at P=6.0.

FIG. 3. Momentum space propagator vs k in GeV on the
16 X40 aud 24 X40 lattices at P=6.0. We assume a '=2. 1

GeV.
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At this point we atteinpt to fit G(k) to the continuum
formula (11) and, for a comparison, to a standard massive
propagator G (k)=A/(k +rn ). The fits are per-
formed including in y the covariance matrix. Consider
first the 16 X40 lattice: it turns out that for momenta
between =300 MeV and =1 GeV formula (11) fits the
data well (see Fig 4. ) .Indeed, for such a fit we obtain
yz&=1.3 and b =341+12 MeV, assuming a '=2. 1

GeV. The error is given in terms of the parameter co-
variance matrix [20], and we are not including the uncer-
tainty in the value of a

We compare this result to the best fit that one can ob-
tain from the standard massive propagator, for which we
obtain yDF 2.9.

On the other hand, in the range of momenta 1-2 GeV
the formula (11) and the massive propagator expression
fit the data very poorly, resulting in yDF & 10. A good fit
in this range is obtained by assuming an inverse power
law behavior G(k)=A/k +r (see Fig. 5). We obtain
y=0. 7+0.2, yD„=1.The fact that (11) does not fit the
high momentum region well presumably explains the
discrepancy between the value of b obtained from G(k)
at low inomenta and that obtained from G(k=0, t),
which depends on the complete range of momenta.

The situation is qualitatively similar on the 24 X40
lattice. However, presumably due to the lower statistics,
there is clear dispersion in the data (see Fig. 3), which
means that no fit will be particularly good. In fact, up to
1 GeV the best fit is given by (11) (see Fig. 4), and we ob-
tain b =333+12 MeV, y&F=5.8. Between 1 and 2 GeV
we are unable to perform fits with the covariance matrix,
due to the poor statistics. Without the covariance ma-
trix, an inverse power law with y =0.6 again reproduces
the data well (see Fig. 5).

Summarizing, the data for G(k) at p=6.0 on the

~ 9 Gribov fit for

Gribov fit for

16' X 40~
16s X 40
24s X 40~
24s X 40

100

0.3 0.5 0.8 0.9

FIG. 4. G(k) vs k in GeV and 5t to the form (11) on the
16 X40 and 24 X40 lattices at @=6.0.

'We have also attempted a fit to a form proposed in [6]. Such
a form in the low momentum region is very similar to a stan-
dard massive propagator. The standard massive form appears to
provide a better fit.

power fit for

power fit for

I

16s X 40~I' X 40 ——.
24s X 40~
24s X 40

1.6 1.8

FIG. 5. G(k} vs k in GeV and fit to an inverse power law on
the 16 X40 and 24 X40 lattices at P=6.0. In the latter case,
the covariance matrix is not included in the fit.

16 X40 lattice up to momenta of order 1 GeV prefer
somewhat formula (11),which describes the mass genera-
tion in the manner of Gribov, over a standard massive
propagator. In the momentum range 1-2 GeV the prop-
agator is best reproduced by the inverse power law
behavior G (k) =1/k +r, where y could be interpreted as
the anomalous dimension of G(k). Indeed, our results in
such a region could also be sensitive to the lattice ultra-
violet cutoff a '. The fact that the p=6. 3 results (de-
scribed below) agree with those at p=6.0 gives some in-
dication that such cutoff effects are not overwhelmingly
large. An additional test for lattice artifacts is described
at the end of the next section.

On the other hand, the results from the 24 X40 lattice,
due to the poor statistics, do not provide by themselves a
strong confirmation for the above picture. Still, in the low
momentum region the Gribov fit works better than a
standard massive one and gives a value for b which is
consistent with the one from the 16 X40 lattice, but we
get a high value for yDF. Moreover, in the higher
momentum region we are unable to use the covariance
matrix.

We consider now a set of 20 configurations on a 24
lattice at P=6.3.

Starting again from the evaluation of G(k=O, t), we
give in Fig. 6 the effective gluon mass with jackknife er-
rors. Again, the effective mass am (t) appears to increase
with t Assuming . a '=3.2 GeV at p=6. 3 [19], m(t)
ranges approximately between 200 and 670 MeV.

It turns out that we have the same statistics problem as
at p=6.0: The data for G(k=O, t) are highly correlated
in t, so that it is impractical to make fits using the full co-
variance matrix.

Next we consider the propagator G(k) in momentum
space. We again find that correlations between different
values of k are much smaller than the correlations in t, so
that the covariance matrix is now well behaved. The best
fit to G(k) is obtained from the inverse power law
G(k)=A/k r (see Fig. 7). We assume a '=3.2 GeV
[19]and get y =0.68+0.08, y „=1.9.

Given the rnomenturn range of such a fit, which starts
around 1 GeV and goes up to momenta of the order a
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0.18

0.08

0.06"
0

FIG. 6. Effective gluon mass in lattice units vs t at P= 6.3. FIG. 8. Effective gluon mass in lattice units vs t on the
16' X 24 lattice at P=5.7.

such a result is quite consistent with the behavior ob-
served at P=6.0. In particular, the value for y agrees
with the one obtained on the 16 X40 lattice.

Both at P=6.0 and @=6.3 we have also attempted
four-parameter fits, in terms of the particle + ghost form
G(k)=A/(k +mi)+B/(k +mz), with A )0 and
B &0. Although low values of yDF can sometimes be ob-
tained, the determination of the fit parameters is very
poor.

C. Results at P=5.7 and comparison of lattices

Here we give results for a set of 16 configurations on a
16 X24 lattice at P=5.7. After implementing our stan-
dard level of gauge fixing, we find that the data for
G(lr=0, t) are, as usual, not suitable for y fits with the
full covariance matrix. When fit without the covariance
matrix, the data seem to be best reproduced by a simple
decreasing exponential, unlike what happened on the oth-
er data sets at weaker couplings. Correspondingly, there
is no clear evidence for an increase of the effective gluon
mass am (t) on a significant time interval (see Fig. 8).

In addition, the results for G(k) on this lattice differ
from what we observed at weaker couplings. Assuming
a '=1.2 GeV, our data for G(k) cover a momentum

range up to roughly 1 GeV. The best fit to such data (in-
cluding the full covariance matrix) is provided by a free
massive boson propagator G(k)=1/k +m . We obtain
m =590+30 MeV, with yDF=1.4.

Since from the above analysis the results at P= 5.7
seem to differ significantly froin those at P=6.0 and
P=6.3, we have investigated the effect of improving the
accuracy of the gauge fixing. After 300 additional sweeps
on each configuration, we repeat our measurements.

For G(k=O, t) it turns out that while the central
values of the individual data points do change
significantly, the pattern of the effective mass am (t) is ba-
sically the same. Not surprisingly, the best fit is still pro-
vided by a simple exponential, with a value for the mass
parameter which is close to the one obtained before the
additional sweeps; in other words, to a first approxima-
tion the effect of additional gauge fixing has been a rescal-
ing of the data points. As far as G(k) is concerned, the
individual data points are not much affected by the addi-
tional gauge fixing. In fact, the best fit to the data is still
provided by a free massive boson, but now we obtain
m =630+40 MeV, with g&F=3.3. Moreover, the error
bars of some data points have become slightly bigger (see
Fig. 9).

1000 data before ~
data after ~
fit before
fit after

FIG. 7. The best fit of G(k) vs k in GeV to an inverse power
law (solid line) on the 24 lattice at P= 6.3.

0.5

FIG. 9. G(k) vs k in GeV and fit to a massive boson propa-
gator before and after additional gauge fixing on the 16 X24
lattice at P=5.7.
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Summarizing, we find that the qualitative behavior of
the data is not changed by the additional gauge fixing,
maintaining the discrepancy with the other lattices.
However, since the value of yD„in the fit for G (k) has in-

creased as well as some individual error bars for the data
points, the additional gauge fixing seems to have in-

creased the "noise" in the evaluation of G (k). This may
be related to the existence of Gribov copies in our gauge
[21].

To go back to the main issue, which is the discrepancy
between G(k) at p=5. 7 and at weaker couplings, our
present data give some indication that such a discrepancy
may be due to a lack of scaling at P=5.7. To illustrate
this point we have plotted for each data set the quantity
100XG(k)/G(k =0). Such a quantity should not de-

pend on P, as long as one is in the scaling region. On the
other hand, when comparing G(k)/G (k =0) at different

P one has an uncertainty related to the determination of
the horizontal scale, i.e., the scale of physical momenta,
depending on the values of a '. With this caveat in

mind, we show in Figs. 10 and 11 the quantity
100X G (k)/G (k =0) as obtained from our difFerent data
sets. (For the lattice at p=5. 7 we use the data after the
additional gauge fixing. ) We again assume a '=1.2 GeV
at p=5. 7, a '=2. 1 GeV at p=6 0, and a '=3 2 GeV
at P=6.3.

From the above-mentioned figures it turns out that in
general the data agree well, but significant deviations are
observed in the low momentum region; in particular, the
data at P=5.7 for momenta up to =650 MeV are rather
different from the corresponding data at p=6.0 (see Fig.
10). This may account for the observed discrepancies, al-

though further analysis and better statistics are needed to
clarify this issue.

At this point it is worth mentioning that we have
checked the stability of our fits for G(k) versus the use of
continuum and lattice formulas. In fact, especially when
the data points correspond to lattice momenta of order
a ', one may wonder whether more accurate fits could
be obtained by using lattice versions of our formulas.
One can devise such expressions by substituting k with
2/a g„[1—cos(k„a)] in the continuum ones.

We have also checked the stability of the results under
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P=6. 3 ~
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FIG. 11. Same as Fig. 10, in a higher momentum region.

III. CONCLUSIONS

Let us summarize our results.
We have evaluated G(k=O, t) and G(k) on four

different lattices at three different values of P. All the
data provide evidence for dynamical mass generation, in
agreement with previous results for G(k=O, t).

(1) For G (k =0, t) the data at p=6.0 and p=6. 3 show

change from covariant to noncovariant fits. It turns out
that when the covariance matrix is well behaved, which is
what typically happens on our lattices for G (k), the fit is
not very sensitive to the different definitions for y .
Moreover, the fits are not sensitive to the difference be-
tween continuum and lattice formulas, not even in the
higher momentum region. This is shown in Fig. 12 for
the 24 lattice at p=6. 3, where we compare lattice and
continuum versions of the best fit to an inverse power
law, with and without the full covariance matrix.

One gets from the fit to the lattice formula, without co-
variance matrix, y =0.69, and from the fit to the continu-
um formula, without the covariance matrix, @=0.61.
These numbers should be compared to y=0. 68+0.08,
which is the result we obtained from the fit to the contin-
uum power law which included the full covariance ma-
trix.

100 I

16' X 24,
163 X 40,
24' X 40,

244,

P=5. 7 ~
P=6. 0 ~
P=6. 0 ~
P=6. 3 ~

1000
data ~

continuum power law, with cov. matr.
continuum power law, without cov. matr.

lattice power law, without cov. matr.

10
0.2

FIG. 10. 100XG(k)/G(k =0) on the different lattices (low
momentum region).

FIG. 12. G(k) vs k in GeV on the 24 lattice at f3=6.3 and
the best fits to an inverse power law.
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an effective gluon mass which increases with the time
separation, for short times, in agreement with previous
results. At P=5.7 there is no clear signal for an increas-
ing effective mass over more than 1 time slice. A more de-
tailed analysis of G (k=0, t) is not possible, due to statist-
ical difficu1ties.

(2) The most interesting quantity is the momentum
space propagator G(k), which we have evaluated for the
first time. It is characterized by a clear numerical signal;
in particular, it turns out that the data in momentum
space are much less correlated than in real space. At
/3= 6.0 the propagator G (k) up to momenta = 1 GeV can
best be described by the dynamical mass generation
mechanism in the manner of Gribov; however, a descrip-
tion by a standard massive propagator is not ruled out.
At higher momenta the propagator is best described by
an inverse power law, which could be interpreted in
terms of an anomalous dimension. The results at P=6. 3
are consistent, but only the high momentum region is ac-
cessible because of the small physical size of the lattice.
Thus the behavior of the propagator for the above values
of P could be summarized by the determination of a mass
scale b and an anomalous dimension y. In spite of the
uncertainties in the determination of a, our numerical
values for y are consistent between P=6.0 and /=6. 3

lattices, when assuming a '=2. 1 GeV at P=6.0 and
a '=3.2 GeV at P=6.3. For b, the results are con-
sistent between the two different volumes at )(3=6.0,
which are the only lattices on which it is determined.

On the other hand, at P=5.7 G(k) is best fit, up to
momenta = 1 GeV, by a simple massive propagator. We
argue that such a discrepancy may be related to a lack of
scaling between IS=5.7 and 6.0 for G(k) at low momen-
ta.

In some cases, four-parameter fits to particle + ghost
expressions for G (k) result in small values of yD„,but as
the parameters are typically very poorly determined,

such fits are not very illuminating.
In conclusion, the lattice study of gluon correlation

functions, in the gauge-fixed framework which we have
discussed, appears to be technically possible, although
challenging. In particular, the feasibility of the study in
momentum space is very promising for future applica-
tions.

A very careful analysis of systematic lattice effects and
statistical errors is necessary. At the same time, a study
of the gauge dependence of the mass scales related to the
propagator is also in order.

Note added. After this paper was submitted we re-
ceived a paper by Zwanziger [22] in which he makes an
interesting observation regarding our Fig. 3. He notices
that G(k =0) seems to have the same numerical value on
our two lattices at P=6.0. He suggests that the apparent
volume independence indicates that G(k =0) goes to a
constant at infinite volume.
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