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Suppression of bremsstrahlung at nonzero temperature
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The first-order bremsstrahlung emission spectrum is addio/co at zero temperature. If the radiation is
emitted into a region that contains a thermal distribution of photons, then the rate is multiplied by a fac-
tor 1+N(co) where N(co) is the Bose-Einstein function. The stimulated emission changes the spectrum
to aTdm/~ for co(( T. If this were correct, an infinite amount of energy would be radiated in the low

frequency modes. This unphysical result indicates a breakdown of perturbation theory. The paper com-
putes the bremsstrahlung rate to all orders of perturbation theory, neglecting the recoil of the charged
particle. When the perturbation series is summed, it has a diFerent low-energy behavior. For ~ &&aT,
the spectrum is independent of co and has a value proportional to dao/a T.

PACS number(s): 11.10.Wx, 12.20.Ds, 25.75.+r, 41.60.—m

I. INTRODUCTION AND SUMMARY

A. Background

dP)
2co

d k
(1.2)

where co= Ikl and N(to)=[1 —exp(co/T)] ' is the Bose-
Einstein function. When the radiated energy is small, the
matrix element of the electromagnetic current is

gP(k) —te P P —kl2A
p.k pk (1.3)

where A is a rnomenturn-space regulator that will be
necessary later. The current results from an on-shell
charge of four-momentum p radiating an on-shell photon

In studies of the quark-gluon plasma to be produced in
ultrarelativistic heavy-ion collision and, more generally,
in studies of field theory at finite temperature, a central
concern is how the cancellation of infrared divergences
affects various finite, physical quantities. The experimen-
tally measured rates for certain low-energy processes can
be significantly modified by the infrared structure.

This paper will investigate the emission of low-energy
photons by a charged particle that passes through a
fixed-temperature plasma. The charged particle must un-
dergo a collision in order to radiate. If the radiated ener-

gy is much smaller than the energy transfer in the col-
lision, then the inelastic cross section factors

dP da
(Ik ql «lq'I },

dkdq d k dq

with the collision cross section do. /dq independent of
k q, where q =p —p'. Thus, to investigate the probabili-
ty of radiation, P, the details of the hard scattering do not
matter. All that matters is that the charged particle be-
gan with four-momentum p" and ended with four-
momentum p'l". The radiation probability to first order
in+is

of four-momentum k, which gives a Feynman denomina-
tor (p —k} —m = —2p k. For low-energy radiation,
this current is valid regardless of the spin of the charged
particle [1—3]. Because of the denominators in (1.3}, the
radiation is mostly parallel to p or p'. When (1.2) is in-

tegrated over photon angles, the probability of radiating
energy co in any direction is

A=—[1+N (to) ]e
dco co

(1.4)

The charged particle momenta only occur in the function

a 1 1+v
A(p p')= ——ln

U 1 —
U

2

where v is defined by p p'=m (1—v )
'~ . In terms of

momentum transfer Q, the limiting behaviors of A are
[1,2]

2CZA~ for Q&&m,
37r m2

(1.6a)

A~ ln
m

for Q »m . (1.6b)

Formula (1.4) is classical, except for photon quantum
statistics which produce the factor N. The formula fails
at low energies because it predicts that the total energy
radiated will be infinite:

E,„dP)f dto co
0 dco

(1.7)

regardless of the value of E,„. This does not occur at
zero temperature, where the radiation probability is
A /to; but at nonzero temperature, the Bose-Einstein fac-
tor makes it more singular:

AV (to« T) .
dco

The breakdown comes from the smallest values of co,
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where the classical approximation (1.3) works best. The
resolution of the breakdown must occur from a higher-
order calculation.

B. Higher orders

A . coI —+i
2 27TT

obtained at the end of Sec. III is

dP
dco 4~'Tr( A)

(1.12)

To go to higher orders in a, one must quantize the
electromagnetic field with the interaction

Xl = —1"(x)A „(x), (1.9)

with J" the classical current (1.3) and A„ the quantized
field. This interaction will produce multiple emissions
and absorptions of real photons as well as closed loops of
virtual photons. For example, to second order in a there
are three types of contributions to the probability of radi-
ating energy co: Either radiate two photons whose energy
totals co,' or radiate one photon of energy co+co' and ab-
sorb another whose energy is m', giving a net energy of m,
or radiate a single photon of energy co with a one-loop
correction. The infrared divergences cancel among these
processes and give a finite answer dP2/des to order cx .

The semiclassical interaction (1.9) does not conserve
energy momentum: It allows the particle of momentum
p" to radiate and still have momentum p" (provided the
hard collision eventually deflects the charge to p'"). This
is a sensible approximation if each photon energy (real or
virtual) is much smaller than the energy of the charged
particle. To maintain this consistently in higher orders,
it is convenient to introduce the momentum cutoff A in
(1.3}and require A«(p' +m )'/ and A«(pz+mz)'/2.

Because the current is classical, one can compute the
generating functional for the multiphoton Green's func-
tions by performing a Gaussian functional integration.
This allows one to calculate the exact multiphoton ampli-
tudes At The p.robability of radiating a net energy co to
all orders in perturbation theory is

dP 0d4, d@„5(k,+ +k„—c0)0
dco

Here A a: a is the same function of p p' as (1.5). This re-
sult also applies if co is negative, which means that the to-
tal emitted energy is less than the total absorbed energy.
For co = —8 & 0, it has the property

dP -gT dP=8
1co dco

(1.13)

In the first-order result (1.4), this corresponds to
exp( co/T)—[1+N ( co) ]=N(co }. The zero-temperature
limit of (1.12) is discussed in Appendix A.

At co=0 the exact result (1.12) is finite. This resolves
the total energy problem that arose in (1.7). The most in-
teresting feature of (1.12) is that it involves two dimen-
sionless quantities: A and co/T. To display a simpler
form, it is helpful to assume A « 1. This is quite reason-
able because extremely large momentum transfers are
necessary to make A large (for example, A =

—,', requires

Q/m = 10 ). Even with A « 1, the behavior of (1.12) de-
pends on the size of co/T. If A m. «co/T, then

dP A
[1+N(c0)]e "

( A n T «co),
dco co

(1.14)

which agrees with (1.4). However, this does not hold at
the smallest values of co. To approximate (1.12) for
A «1 and co « T, one can use I (z) =1/z when ~z~ && l.
Then

dP AT (co«T) .
dco co +( Am T)

(1.15)

Naturally, (1.15) agrees with (1.14) in the region of over-
lap, Am. T«co«T. But for m« AmT the radiation is
suppressed relative to the first-order rate [4]. Figure 1

X ', g ~AI(k„. . . , k„)~'. (1.10)
Pol

Positive k 's correspond to emission of photons; negative
k 's correspond to absorption of photons. The phase
space integration includes the appropriate statistical fac-
tors:

1+N(k), k =+k,
d4= X '

02k(2m}3 N(k), k = —k .
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ity:

The amplitudes A(, contain infrared divergences from the
virtual photon integrations, but the integration over the
real photons in (1.10) produces an infrared-finite proba-
bility. This is the Bloch-Nordsieck cancellation at TAO.
The cancellation is very delicate: It would not occur if
negative k 's (i.e., energy absorption from the heat bath)
were omitted from the 5 function in (1.10).

C. Summary of results

Remarkably, one can calculate the probability (1.10)
with only the approximation T «A. The final answer

10- 2

10

Energy: w/T

10
10 10 10 10 10 10 1O 1O

FIG. 1. Dimensionless probability TdI'/des for a charged
particle to radiate a net energy co. The first-order result fails
when co& AmT. For co« AmT, the exact result is constant,
TdP/d co= 1/A vr . In this plot, A =0.01, which corresponds to
a momentum transfer Q/m =3.
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f dcoto = AT ln
dP 1

0 Geo Am.
(1.16}

and numerically small. In the denominator of (1.15},the
quantity A AT appears to be some type of thermal mass
of order e T. However, the following discussion will ar-
gue that AmT=I /2, where I is the radiation-damping
rate.

It is necessary to emphasize several points. (i) At T =0
the exact bremsstrahlung probability does not enjoy this
damping. It is peculiar to TAO. (ii} Whenever T )0 the
suppression will occur for a charge of any energy.
Whether the charge is relativistic or nonrelativistic alters
the value of A, but the plateau shown in Fig. 1 will al-
ways exist.

D. Interpretation of the suppression

One can understand the suppression of low-frequency
bremsstrahlung as the radiation reaction brought about
by unitarity. First, we examine the failure of the first-
order bremsstrahlung probability by writing it as

dP(

dco

iF, (co)i

2'
(1.17)

' 1/2

( ) ~ 1+N (to)

compares (1.12) with the first-order result over a wide

range of co.

Naturally, the net radiated energy is finite,

dP~ 1 I
de 2n toz+(r/2)2

(1.23)

II. THERMAL BREMSSTRAHLUNG

When charged particles are described by classical
currents J", quantizing the radiation fields becomes ele-
mentary. The generating functional for multiphoton
Green's functions is

Z(J)= fD[A]exp i f d x(Xo JA )— (2.1)

where C is a contour in the complex x plane that incorp-
orates the temperature. For a real-time formulation
[6—8], this gives

d4k
Z (J)=exp f J"(k)D (k)J"(—k) (2.2)

where the finite-temperature propagator is

which coincides with (1.15) in the weak-coupling, low-

energy limit. Note that this radiation damping does not
come from modifications to the charged particle trajecto-
ry, as would be the case in multiple scattering [5].

The remainder of the paper describes the calculation
that yields (1.12). Section II formulates the bremsstrah-
lung problem in detail, and Sec. III performs the neces-
sary integrations. Appendix A discusses the T =0 limit
of (1.12) and its relation to conventional T =0 calcula-
tions. Appendix 8 discusses the relation of (1.12) to some
previous work of mine.

Let the Fourier transform of this be
1

D„„(k)= —g„„
k +is

—i2n5(k )N (2.3)

F, (t)= f e '"'F, (co) . (1.18) with N =[exp(iki/T) 1] '. The a—mplitude for one real
photon is

Then the bremsstrahlung probability has a time depen-
dence

(1.19)

At(k)= ik e„(k} — (2m)
5J"(—k)

=e„(k)JI'(k)Z(J) . (2.4)

where I =2n AT. The—refore dP, /dt~r as t~ oo. It is
obviously unphysical for the radiation probability to
remain constant after an infinitely long time. This prob-
lem is familiar in elementary atomic physics calculations
of radiative transitions (e.g., 2p~ls+y in hydrogen).
The resolution is that at higher orders the transition am-
plitude usually falls exponentially with time. Hence a
reasonable guess is that higher-order calculations should
replace (1.20) by

F(t) = i8(t)&I'e— (1.21)

As t ~ 00, the Fourier transform of (1.17) behaves like

(1.20)

This amplitude describes emission if k & 0, absorption,
if k & 0. The amplitude for n photons is

JN(k„k~, . . . , k„)=Z(J) g [e„(ki)J"(k,)] . (2.5)

To compute probabihties, one must square the amplitude
and integrate over photon momenta. For the photon
phase space, it is convenient to employ the notation

d4k,
d4 = 5(k )[8(k )+N(ll il)]

(2m )
(2.6)

This correctly weights photon emission with the statisti-
cal factor 1+%and photon absorption with the factor N.
The probability of radiating a net energy co is

The Fourier transform to frequency gives

F(co)=
Q)+EI /2

The guess gives a radiation probability

(1.22)

dP 0
dt's . d4'„5(ki+ . . +k„—co)0

n=i

x, y iW(k, , . . . , k„}i'.
pol

(2.7)
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The polarization sums give

g(Af(k„. . . , k„)~ =)Z(J}) P J„(k,)J"(k, ) .
pol 1=1

(2.8)

It is important to note that the current (1.3) has the prop-
erties

represents all virtual photons (emitted and absorbed). At
small k, J"—1/k and N —1/k. Expanding out the
exp(+ikz) for small k shows that the linearly divergent
terms dk/k cancel and the logarithmically divergent
terms dk/k cancel. Thus R is a completely finite func-
tion. [See (3.15) for R.]

J„(k)J"*(k)=J„(k)J"(—k)

= —J„(k)J"(k)(0 . (2.9)

III. EXPLICIT INTEGRATION

A. Angular integration

Virtual photons. The integration over all virtual pho-
tons is contained in the multiplicative factor ~Z (J)

~
. Us-

ing (2.2) and (2.3) gives

The remaining task is to perform the integrations
necessary for the probability (2.14). The first step is to
write

~
Z (J)

~

=exp( V),

d kV= —f J (k)J"(k)[1+2N].
2k (2~}

(2.10) R(z) = Ae "~ ([1+N]e'"'+Ne '"'—[1+2N]),
0 k

(3.1)

Because J—1 jk, this integral contains both linear and
logarithmic divergences in the infrared.

Real photons. The 5 function that constrains the real
photon energies can be represented as

5(k0+ +k„—co) = dz i(k +
I Q)Z~ 1

2'
+k„)z

(2.11)

R (z)= fd4e'" 'g ~e„(k)J"(k)~~ .
pol

(2.12)

In (2.7) each integration over d"k& will give the same
function of z:

m m

(E' —p' k) (E —
p k)

—k/A

where A contains the angular integration

k
Ae "~ = f J (k)J"(k) .

(2~)' "
Using k"=k (1,k ) in the current (1.3) gives

2 tE I

J„(k)J"(k)=
k (E' —p'. k)(E —

p k)

(3.2)

(3.3)

More explicitly this is

R (z) =f 3
J„(k)J"(k)([1+N]e'"'+Ne '"') .

d k

2k(2n )

(2.1 3)

This is the contribution of the real photons. BecauseJ- I/k, this integral has both linear and logarithmic in-
frared divergence.

The probability (2.7) is

Z(J)~ dz;, + [R(z)]"
dc' —~ 2~ „1 n!

The factors of k completely cancel so that A is indepen-
dent of k. This is the same angular integration that arises
in lowest-order bremsstrahlung and is described in text-
books [2]. It turns out that A is a rather messy function
of momentum transfer Q. It is a bit simpler to express it
in terms of o. =p'.p/m:

ln(o ++o —1)—1 (3.4)

As noted by Weinberg [9], it is simplest to express A in
terms of the relative velocity v of the final particle in the
rest frame of the initial particle (or vice versa) defined by
p' p=m (1—

U )
' so that

e '"'exp R z (2.14)

(the n =0 term has no Fourier transform at TWO), and R
1S

a 1 1+v
A (p p')= ——ln

v 1 —v

—2 (3.5)

R (z) =R (z)+ V

d k=f
2k (2'�)
X ( [1+N]e'"'+Ne '"'—[1+2N] ) . (2.15)

B. Integration over k

R (z) =Ro(z)+Rr(z), (3.6a)

To perform the k integration necessary for (3.1),
separate R into a temperature-independent part and a
temperature-dependent part:

Each term in R has a clear interpretation. Recall that z is
the variable conjugate to the net energy co. In (2.15) the
term proportional to 1+N represents the stimulated
emission of energy, the term proportional to N represents
the absorption of energy, and the subtracted term 1+2N

Ro(z)=A f (e'"'—1)exp( —k/A),ikz

0 k

0 k exp(k IT) 1—(3.6b)

(3.6c)
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Both Ro and RT are infrared finite. For Ro(z), expand
the integrand in powers of z:

1m z

Ro(z)=A y " f "dkk" -'e-""
n! 0

(3.7)

The displayed integrals over k each give (n —1)!A". The
sum on n is elementary:

n=O
Rez

Ro(y)= —A in[1 iA—z] .

For RT(z), put k =2Tx so that

(3.8)

—px
dxx~-' .

' =2'-~r( g
o sinh(x)

'
2

(3.10)

~ dx cos(2Tzx) —1 „(t+zr&x} (3 9}
o x sinh(x)

This is finite at x =0, but it is convenient to multiply the
integrand by an additional convergence factor x" in order
to use [10]

FIG. 2. Location of the branch cuts of the function

exp[R(z}] at z = i/A—in/—T. For co&0, the z integration
contour may be wrapped around the branch cuts in the lower

half-plane.

This gives

R z (z)= lim A 2' "I (p )Re( g[p, g ]—g[p, q] ),
p,~0

(3.11)
The discontinuity across the nth branch cut is

Disc„[exp[R (z)]) = [1—e ' "]exp[R (z)] . (3.17)

where Q =q +iTz and q =1+T/A. Now expand g in a
Taylor series about p=0 using [10]

Then put z =z„+r where r is real:

0[p q]l„=o=—q+-,', (3.12a)
ized) y— '~'n

n=o

dk[p, q)
dp

=in[1"(q)]——,'1n(2n') . (3.12b) X e ' 'exp R z„+r
0 2'

When the limit p~0 is taken in (3.11), the result is
r

I (q+iTz)I (q iTz)—
r(q)r(q)

R (z) is the sum of (3.8) and (3.13).

(3.13)
The value of the function along the branch cut is

7T'T8 i [—n + 1/2)

exp[R(z„+r)]= C„(r)
Asinh rrTr

(3.18)

(3.19a}

l cozexp R z (3.14)

C. Integration over s

The last integration to perform is the Fourier trans-
form

r(1+2T/A+ n +i Tr )C„r =
I'(1+n+t Tr)[I (1+T'/A))2

(3.19b)

At this stage it is necessary to make the approximation
T «A so that C„(r)~1. This allows the summation on
n in (3.18}to be done:

where the integrand is dP e e sin( A n. ) rrT I (co)

dco sin( A m/2 i co /2T) . —A 2' (3.20)

r(q +iTz)r(q iTz)—
(1—i~)r(q)r(q) (3.15)

dp "+"dz
d Ctl 0 rt 27Tf e ' 'Disc„[exp[R(z)]I . (3.16)

and q =1+T/A. Since A is noninteger, (3.15) has an
infinite number of branch cuts in the variable z. For
co) 0 (corresponding to net emission of energy by the
charge), one can close the z contour in the lower half-
plane. Then there is a branch point at zo= —i /A and an
infinite set of branch points at z„=—i/A —in/T for
n =1,2, 3, . . . that come from the poles of I (q iTz}—
Choose the branch cuts to run from z„ to z„+ao as
shown in Fig. 2 so that

I(co}=f dr e '""[sinh(n Tr)]
0

(3.21)

This is a known integral [10]:

I (1—A)1 ( A /2+ico/2mT)
T2' "I (1—A /2+i. co/2n T)

(3.22)

A+. co

2 '2~T

(3.23}

Using the reAection property of the I function gives the
final result quoted in (1.12}:

' A
dP e~~»e —~«2~T

I ( A)4&T
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Emin b(&), (A6)

where b(A)=1 —(7rA ) /12+ . is a different function
than the I /I (1+3 ) that occurs in (A4).

APPENDIX A: ZERO-TEMPERATURE LIMIT

At zero temperature (1.12) has the simple behavior
'

A e-""
dto co A I (A)

(Al)

and easily satisfies

(A2)

n d2kt, ~At

y fg, eE.,„—yk,
J

(A3)

Since all detectors have some energy threshold for detec-
tion, physical probabilities must include an integration
over the below-threshold photons. If the detector mea-
sures total radiant energy deposition (as in a calorimeter)
above E;„,then the appropriate probability is

APPENDIX B:
COMMENT ON A PREVIOUS CALCULATION

In a previous paper on the semiclassical approximation
[11],I computed the residual effects of infrared cancella-
tion on processes which occur in a finite-volume heat
bath but with no photons detected outside the heat bath.
The absence of high-energy photons means none were ra-
diated by the charge. The absence of low-energy pho-
tons, which have a short mean free path, is unavoidable
because all those radiated by the charge would be
thermalized in the heat bath and lose their identity. Con-
sequently, there is a threshold energy e that depends on
the size of the system. In the notation of Sec. II, the pho-
tons with k & e contribute

d k
R, (z) =f,J„(k)J"(k)([l+N]e'"'+Ne '"') .

o 2k(2tr)'

(Bl)

min gp
0 8CO

A

Emin 1

r(I+~) '

This probability is the integral of (Al)

(A4) dI',
f de ' =exp[R, (0)],

0 8CO

(B2)

There is no constraint on the total energy co, and so the
probability of no detected photons is

with exp( —co/A) neglected.
The more familiar situation is a detector that is sensi-

tive to single photons each of which has energy above
some threshold E;„.In that case the single 0 function in
(A3) is replaced by a product:

where

R,(0)= V+R, (0)

-"' 1+2N e-k/A (B3)

8(E;„—k, )9(E;„—k 2 ) 8(E;„—k„) . (A5)

This calculation is discussed by Weinberg [9] and gives a
probability

If e((T, then R,(0)= 2AT/e H—owever, f.or reason-
able mean free paths it invariably turns out that e & T,
which made these thermal corrections small.

[1]D. R. Yennie, S. C. Frautschi, and H. Suura, Ann. Phys.
(N.Y.) 13, 379 (1961).

[2] C. Itzykson and J. B. Zuber, Quantum Field Theory
(McGraw-Hi11, New York, 1980).

[3] S. Weinberg, Phys. Rev. 135, B1049 (1965).
[4] The importance of radiative corrections when co is small

compared to AT was mentioned by S. Weinberg, Contem-
porary Physics, Vol. 1, Trieste Symposium, 1968 (Interna-
tional Atomic Energy Agency, Vienna, 1969), p. 559.

[5] G. Raffelt and D. Seckel, Phys. Rev. Lett. 67, 2605 (1991).
[6] A. J. Niemi and G. W. Semenoff, Ann. Phys. (N.Y.) 152,

105 (1984).

[7] N. P. Landsman and Ch. G. van Weert, Phys. Rep. 145,
141 (1987).

[g] R. J. Rivers, Path Integral Methods in Quantum Field
Theory (Cambridge University Press, Cambridge, England,
1987).

[9] S. W. Weinberg, Phys. Rev. 140, B516 (1965).
[10] I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals,

Series, and Products (Academic, New York, 1980).
[11]H. A. Weldon, Phys. Rev. D 44, 3955 (1991); in Hot Sum

mer Daze: BNL Summer Study on QCD at Nonzero Tem

perature and Density, edited by A. Gocksch and R. Pisar-
ski (World Scientific, Singapore, 1992), p. 226.


