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Pitons at finite temperature
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The properties of pions in hot hadronic matter are analyzed with an effective chiral I agrangian
which includes vector and axial-vector mesons. To obtain the dispersion relation and the absorptive
properties of the pions in hot matter, the real and imaginary parts of the pion self-energy are
calculated to one-loop order. The dispersion relation is very similar to that of free pions even at
T 160 MeV. The mean free path is estimated from the imaginary part of the self-energy. The
mass is obtained from the pole position of the propagator and from the screening limit of the pion
self-energy. Even though the deviation of the mass at finite temperature is small, both masses
decrease as T increases. Pions remain massless in the chiral limit at finite temperature. Possible
mixing of the pions with the A~ mesons at finite temperature is discussed.

PACS number(s): 12.38.Mh, 12.40.Vv, 14.40.Aq

I. INTRODUCTION

A very hot and baryon-free region may be generated
in high energy nucleus-nucleus collisions. If the energy
density in the hot matter is high enough to exceed a crit-
ical value ( 1 GeV/fm ), a new phase of @CD matter,
the quark-gluon plasma, might be formed. As the sys-
tem expands and cools down a phase transition and/or
crossover to a hadron gas, which includes highly excited
hadrons and resonances just after the transition, is ex-
pected. As the expansion and cooling continues these
excited states decay, leading to a final state consisting
mainly of pions. At presently available energies, central
collisions generate final states containing several hundred
pions. Actually, about 400 (300) pions are observed in
0+ Au (S+ S) central collisions at 200 GeV/nucleon [1].
Because of the formation of the quark-gluon plasma and
the expected phase transition, hadronic matter at finite
temperature has been of great interest. In particular, the
properties of pions in hot matter have been extensively
studied [2—9].

At low temperature (T ( 100 MeV), the hadronic mat-
ter mainly consists of pions which can be analyzed sys-
tematically in the franiework of chiral perturbation the-
ory at finite temperature [2—5]. The low energy theorems,
which are obtained from current algebra and PCAC (par-
tial conservation of axial-vector current), can be trans-
lated into a correspondiLg set of exact statements con-
cerning the coe%cients of the low temperature expansion.
At finite temperature T, the typical pion energies are of
order E T. The interactions among the pions generate
power corrections, controlled by the expansion parameter
T /8f, where f = 93 MeV is the pion decay constant.
At low temperature the pion interaction can be, there-
fore, treated as a perturbation.

*Present address: Cyclotron Institute, Texas ASM Univer-
sity, College Station, TX 77843.

However, the mean energy of pions in a heat bath of
T = 100 MeV is of the order of 300 MeV, which is already
too high for a systematic expansion in powers of temper-
ature and energy to be useful. Moreover, in this range of
temperature the pion properties are significantly affected
by contributions from resonances, especially p mesons.
To study pions at temperatures greater than 100 MeV
we need to include the resonances explicitly and use an
approach which does not rely on the low temperature
expansion. It has been suggested that the expansion in
powers of density is a reasonable approximation because
hadronic matter is rather dilute even at T 150 MeV
[6]. The dispersive and absorptive properties of pions in
hot matter are evaluated in the first order of the density,
using experimental data for the vr7t scattering amplitudes
[7,8]. Recently this work has been extended to the second
order in the density [9].

In this paper we use an effective chiral Lagrangian,
which includes vector and axial-vector mesons explicitly,
to describe the interaction of the pions in hot matter.
The conventional finite temperature field theory is di-
rectly applied to the calculation of the pion properties at
finite temperature. The modification of the pions in hot
rnatter is included in the self-energy. The real and imag-
inary parts of the pion self-energy are evaluated from
one-loop diagrams. We exploit the fact that the efI'ec-

tive Lagrangian reproduces the experimental results at
the tree level very well and the hadronic matter is rather
dilute at T ( 150 MeV.

In Sec. II, the pion self-energy at finite temperature
is calculated with one-loop diagrams. There are six dia-
grams to be considered. Only for the dominant contribu-
tions are the detailed calculations and results shown. We
have applied the same procedure to the other diagrams
but the resulting expressions are too complicated to be
written explicitly. In Sec. III, the dispersive and absorp-
tive properties of the pions in hot hadronic rnatter are
obtained from the real and imaginary parts of the pion
self-energy calculated in Sec. II. The mean free path of
the pion in hot matter can be evaluated from the imag-
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inary part of the self-energy. In Sec. IV, we calculate
the pion mass at 6nite temperature. Because there is no
unique way to de6ne the mass at finite temperature, we

use two well-known de6nitions in many-body theory. We
make some concluding remarks in Sec. V.

II. PION SELF-ENERGY'

To describe hadronic matter at T & 100 MeV, we in-
clude the vector and axial-vector mesons as well as pions.
We consider p, ~, and Ai mesons which can be regarded

I

as gauge bosons of the SU(2)L x SU(2)R x U(1)& sym-
metry. The left-handed A~L and right handed A~R vector
fields are related to the physical 6elds as

1
A~~ ———(p" + (u" + Ai ),L

1A" = —(p" + (u" —A"),R

(2.1)

(2.2)

with p" = p"w /~2, ur" = ur"1, A~&
——A~& r /+2, and

w 's are the Pauli matrices. The Lagrangian consists of
nonlinear o terms with covariant derivatives and Yang-
Mills fields with mass terms [10]:

F2TrD—„UD"U + F2T—rM(U + U —2) — Tr(FL —FLi v + FR FRpv) + zzz2Tr(ALALi + ARARAT. )
1 1 1

i(Tr(D—„UD„UtF""+D„UtD„UF"")+ aTrF„„UF""Ut (2.3)

where

2z .PA; 2zU=exp ) ' ' =exp

gLR g ALR g ALR z ~ALR ALR]
pv V v v p, gL p & v J&

D„U= B„U—zgA„U+zgUA„.
(2.4)

Note that D„is the chiral covariant derivative and g
is the efFective gauge coupling constant that should be
determined phenomenologically. The degenerate spin-1
mass mo breaks gauge invariance but not chiral invari-
ance, and the splitting of the degenerate mass occurs due
to the partial Higgs mechanism. We include the mass
term ( M) of Goldstone bosons which breaks chiral
symmetry explicitly. The A's are the Gell-Mann matri-
ces for Ny = 3 and Pauli matrices for Ny = 2. [In this
section SU(3) notation is used. ] We also include nonmin-
imal coupling terms which are necessary to reproduce the
experimental results. The ( and o are parameters that
should be determined phenomenologically.

The anomalous interaction of the vector mesons are
included explicitly in the efFective Lagrangian through
the gauged Wess-Zumino term which is given by [11]

I

higher loop corrections and these loop corrections are al-
ready included efFectively [12]. In finite temperature field
theory there are corrections due to the interaction with
the heat bath as well as the vacuum corrections. We
use the fact that hadronic matter is rather dilute at the
temperatures in which we are interested; for example,
the mean &ee path of the pion is about 2 fm at T
150 MeV. In this approximation the leading contribution
to the temperature-dependent loop corrections is given
by the process of a single interaction with a particle in
the heat bath [13]. The one-loop approximation in fi-

nite temperature field theory includes both contributions
from the tree diagrams at zero temperature and from the
single interaction in the heat bath.

There are six diagrams which are to be considered
(Fig. 1). The dominant contributions come from first two
diagrams; other diagrams are suppressed by the Boltz-
mann factor since these diagrams have only heavy mesons
as internal lines. We will consider only the first two dia-
grams. Mathematically these two diagrams are

I \
I l
I I

'I."" P~„Tr[LL Lp]
48vr2

+ 2
I."" ~„B„Tr[ARLp —AL Rp16a2

+ig(AR UtALpU —AR ALp)), (2.5)

where %, is the number of colors, t'" ~ is the antisym-
metric Levi-Civita tensor with e = 1, and I and R
are the left and right Sugawara currents:

I =UtB U, R =UO Ut. (2.6) (c)

The pion self-energy at finite temperature is calculated
based on this efFective chiral Lagrangian with one-loop
diagrams. In the efFective Lagrangian approach at zero
temperature, it is assumed that the properties of the sys-
tem are describable at the tree level, where the masses
and coupling constants are to be regarded as the physical
ones. Loop diagrams, which are neglected, produce only
renormalization effects on these parameters. There are

(e)

FIG. l. One-loop diagrams for the pion self-energy.
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d4 d4

p

i ( „„q"q" )
x

I

—g"" +
I (p —k„)— (k . qp —p . qk„) (2vr) b~ ) (q —p —k),

q —m2), m

4
II~ = —2g (5Bg —2B2(k + p ) —4Bsr[k p —(k p) ]),(2') 4 p' —m' (2.7)

where [14]

b=1—(1 —o)m2

(1+ o.)m2~

2

8 =1
6g

m', ( (1 —o)m', )
g1 —o (1+o) m~ ( (1+o)m'„)

(1 —o)m

g F (3 (1+o')m )
g4F4 g( 1 ( (1 —(T)m

B3 —— 1
128ms 2/1 —cr m

~
(1+o)mz

(2.8)

In order to calculate the self-energy at Rnite temperature, we will replace the time component of momentum by i
times the Matsubara frequency [15]. We make the replacement

pp ~ 2n„vrTi, qp
—+ 2n~+Ti, kp ~ 2nI, mTi, (2.9)

and consequently integrals are replaced by a sum over modes,

happ"' ~ir) dqo

27t
(2.10)

where n is the integer.
Applying (2.9) and (2.10) to (2.7) gives

rll ) = ig'ir Q ir )
7l p Yl q

d'p
(27r)'

d3
(2vr) b (q —p —k) —h„

x p —k + p —k q + k q p p —k —p q k p —k2 1 28

mp mp.

+, (~ ~)*&*+(s'~)' ~* —2b ~)(k ~)(~ ")
Imp

1

[(2~m~)' + ~.'(p)1 [(2~m.)' + ~'(q)] '

(s) 2 ). d p 5Bg+2B2(k +p ) —4Bs[k p —(k. p) ]
(2~)s (2m Tn ) 2 + A&

2 (p)
P

(2.11)

where we define

(p) =p +m; p = (2vrrn~) +p .

The Mastubara summation can be done straightforwardly and the results are

(2.12)
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d p t n(w») H&+ —2H&+p ~ k + H2+(p ~ k) —2Hs(p k)(2)[2R+~ ~

Ho —2' p . k + H2 (p k) —2Hs(p . k)
R„

~(~ ) G[(p2ko2+ m2k2) + 2u~kop k+ (p k) ]+ +2(d p Bp

G[(p2ko2+ m2k2) —2(upkop. k+ (p k)2]

Bp
ds n&~

II~ l = —4g ' 5B& —2B2(ke —k +m )+4Bs[p ke+ m k + (k p) ]
(2m)s 2~

(2.iS)

where

g+ = k2 —k +m —m +2ko~ +2p

and

H+ = —(k' —k'+ m') + (k' —k' —m')'1

b (p'k'+ m'k')
p

(2.i4)

i

There are temperature-independent terms (II ') which
are divergent. These are absorbed in the definition of the
pion mass at zero temperature.

Integrating the vector over all angles can be done by
writing

p Q = sky, y = cos8, (2.16)

where 8 is the angle between p and k and p = Ipli k: Ikl.
Now the momentum integration becomes

x 4 —,(ko —k'+ m')
P

$2
+2u) ko 1+ (p ko+ m k )m p

b
2m
p

b
2m p

6~ ko,
(b)
pm,'&

2

~ ko 4 — (ko —k +m )m! '
—4+, (k,' —k'+ m')

p

H3 ——
4 )

mp

G =,(4-4b+ h').1

mp

$2
H~+ = 1 + (p ko + m k + 2ur ko)

p

(2.15)

2m 3 2m
de dy.

It is convenient to introduce the functions

(pky)"
(ko2 —k2 + m2) 6 2~ko + 2pky

'

(pky)"
(ko2 —k2 + m2) + 2uko —2pky

'

= (—1)"P„+,

and

A„+= P„++ P„=(—1)"(Q+ + Q„).
%ith these definitions one may write

(2.i7)

(2.18)

(2.19)

( ) + II(b)

dpp (—4B + A» 0 + 2A» y + A» 2 + 2A» 3)
g', n((u»)

4m2

p
(2.20)

where

A; = (H++H, —1

A . = A. ((rJ = 4/»

)A+, + (H+ —H,:)A,, —1

m = m —m ), (2.21)

B = 5B& —2B2(ko —k + m )

122+4B,(p'k,'+ m'k'+ -k'p'). (2.22)

To take care of the singularities in the definition of A„,
one has to add a small imaginary part to ko. We analyti-
cally continue ko &om its Mastubara value to ko ——~ —ip
where cu and p are real. Then u is the real frequency in
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the dispersion relation and p is the damping rate. We
assume that p (( ~; otherwise the oscillations do not
propagate. This assumption will be checked later.

III. PROPAGATION OF PIONS

We consider the propagation of pions through a region
containing matter in thermal equilibrium at temperature
T. We 6nd the dispersion relation by locating the poles
of the propagator

The self-energy II includes the physical condition pre-
vailing in the medium which the pion traverses. If
the medium is in thermal equilibrium, then II is deter-
mined by the temperature. As mentioned in the previous
section, the self-energy contains a singular integration,
which indicates the self-energy has both real and imag-
inary parts. The imaginary part of II determines the
absorptive properties in hot matter while the dispersion
relation depends on the real part. We may consider real
wave numbers and identify the damping rate p in terms
of the imaginary part of the pole position in the kp plane,

1

kp2 —k2 —m2 —II(kp, k)

This means we set

(3.1) kp = 4) —zp. (3.3)

kp2 —k —m —II(kp, k) = 0. (3.2)
To 6nd the dispersion relation with a damping factor

p, we let kp m ~ —ip, and then solve for ~(k) and p(k):

0 = kp —k' —m'„—II(kp, k)
= (~ —ip) —k —m —II(~ —ip, k)

Blm[II((u, k)] BRe[II((u, k)] )= (u2 —k' —m' —Re[II(~, k)] —p —i
~

1m[II((u, k)]+ 2~p —p I+Rd
(3.4)

The dispersion relation and the decay rate can be determined by the equations

(u' —k' —m' —Re[II(u), k)] = 0,

1m[II(u), k)] + 2~p = 0.
(3 5)

(3.6)

These relations are correct when the imaginary part of the self-energy is small, which should be examined first.
To calculate the imaginary part of the self-energy we apply the relation

X —Zp + ZC Z Xp
P i7r8(x —zp),

where 'P is the principle value. There is no imaginary part in the tadpole diagram. The contribution from Fig. 1(a) is

Im[II ((u, k)] =—g' 2 n((u~)

4' 2u

[2(w —k ) —m2 + 2m2] 1 (w2 —k2 —m2 )
2

2pk m2 2@k

4m'(~' —k') —(cu —k' —m'+ m )'
(4 —b) 8,m' spk

n(~ ) 1 4m2(u)2 —k2) —(A&2 —k2+ m2 —m')2

2(dp m 8~k
(3.S)

where

o 1 lf ~+l~ +2 +p+ ~~1~+~2 0 o 1 lf ~+l~ B2 +p+ ~Bl~+B2
0 otherwise 0 otherwise.

A's and B's are given by

Ag ——
k((u —k —m +m )

2(cu2 —k2)

f~]f(cu2 —k —m2 + m2)[

2 i(cu —k2)
i

k((u —k2 + m' —m2)

2(A&2 —k2)

/cu/[(cu2 —k2 + m2 —m2)
[

2/(Cd' —k')
[

4m2 (~2 —k')
(ur 2 —k2 —m' + m2 )

2 '

4m2 (cu2 —k2)

((u2 —k2 + m2 —m2)' (3.9)



49 PIONS AT FINITE TEMPERATURE 1561

The results are shown in Fig. 2. We find that the ima in
be ne lected wheh h i h 160 M V d h

e n t at the imaginary part rapidly increases w'

tio b k d thi ht
W i

s own a g temperature and hi h momentum
e c. e

e calculate the mean &ee path A h h d fiw ic is de@.ned by

'g en um where pions cannot propa ten um ga e.

Im[II(Id, k)]
(3.10)

as a function of the momentum. We find
mean free path tends to zero as k ~ 0 b

e n a very strong momentum de enependence of the mean &ee path Fi . 3 . Th
as ~ ecause the collision time for a

ig. . e

maximum at about k 50 MeV the, e position of the maximum bein a
or a massive particle at rest is finite. A hi e. reac es a
g pro 4' n

or e ispersion relation at low tern erat
he real part of the self-energy b 1 dcan e easi y done when we u th

perature and low momentum. The l t'
e use e re ations

e eva ua ion o

where

R.e[A+,] = L+
2pk

Re[A p] = L
2pk

Re[A, ] = —2kpId

k2-kp —k2 + m2 + kpur

4pk
'-

2pk
'

k0 + k2 —k2+ m2
eL ~)

——— L
L a J 2k a 4k a~

k2 —k2( o k +m) +4~ ko + kpIJ~(k k +m)

k 4) k2 2 2 2
p

(k k2 + m2) (k2 k2 + m2) 2 + 4~2 k2

+ 2 2R [A+ ] = — 2k2+ —[(k2 —k2+ 2)2+4 2k2] (kp —k +m ) +12k ~ (k —k + ) L+

6kp~~(kp2 —k + m ) + Skp(u

16pk a~

(kp k +m2+2pk) —4(u k2
n a 0

(k —k2+ m2 —2pk)2 —4(u2k2 '
a 0

(kp —k' + m') 2 —4((u k + pk)'
(kp2 —k2+ m ) —4(ur~kp —pk)

(3.12)
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We And

2

Re[II (~, k)]= pdp 4 —SB+~ ~(4 —h)(~ —k —m +m )
4vr 2w„qm )

+4/,
/

m'k'+4/,
/ /

—k'+~'
f

p'(&l, , (b )'f1,
qm,'p (m', ) q3

2(cu2 —k2) —m2 + 2m —,((u2 —k2 —m2)2

(4g —g ) [4m2 (u)
2 —k2) —(u)' —k —m' + m ) ]

m2 spk

n(cup) (4 —4b+ 8 &

2ur& \, m

4m2(A&2 —k2) —(~2 —k + m2 —m )

8pk
(3.13)

where IV. MASS OF PIONS

(3.14)

Now Eq. (3.5) can be solved numerically in a self-
consistent way. The results are shown in Fig. 4 at T=120
and 160 MeV. The dotted line is the results obtained
when we include all diagrams. We can see that the other
four diagrams are negligible as expected. The disper-
sion relations are very close to free particles except near
k =400 MeV/c where the imaginary part gets large and
our assumption breaks down. The results are very similar
to those obtained by using the experimentally measured
scattering amplitude [7,8].

Hadron masses at Rnite temperature have been exten-
sively examined recently because the symmetry property
of the hadronic system might be re6ected in the mass
of the hadrons [16]. Since the masses of the low-lying
hadrons are strongly correlated with the quark conden-
sate, which is responsible for the spontaneous breaking
of the chiral symmetry, hadron masses are expected to
change as the symmetry gets restored. The mass of the
pion has been of interest because the pion plays a special
role as the Goldstone boson of the broken symmetry and
so its properties are very sensitive to the symmetry of

0.5
Pion Dispersion Relation

0.20
Peon Pole Mass

0.4
0.15

0.10
M

0.2 0.05

0.1

0 l I I I I I I I I I I I I I I I I I I I I I i I

0 0.1 0.2 0.3 0.4 0.5
pion momentum k (GeV/c)

FIG. 4. Dispersion relation of the pion in hot matter at
T=120 and 160 MeV. The dotted line is obtained when we
include all diagrams shown in Fig. 1.

0.00
0

I. . . , I

0.05 0.1 0.15 0.2
Temperature (GeV)

FIG. 5. Effective mass determined from the pole position
of the propagator. The dotted line is the total contribution
from all diagrams and the solid line is the contribution from
the two diagrams considered in the text. The dashed line is
the result in the chiral limit.
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m (T) m—
q (qq) T / f2 (T), (4.1)

the system. The change of the pion mass at finite tem-

perature is expected to be weak, since the Gell-Mann-

Oakes —Renner relation might hold at finite temperature
[17]:

ture dependence of m (T) is expected to be weaker than
that of other hadrons.

The mass of the particle is not uniquely defined at
finite temperature because of the lack of the Lorentz
invariance of the system. There are several definitions
which are used in different contexts. One may define the
effective pion mass as the pole position of the propaga-
tor. This pole mass can be obtained from the Eq. (3.2)
in the limit k -+ 0:

where the mass is determined from the pole of the
propagtor, D (~, q), in the limit q ~ 0. This shows

that, because of the small quark mass mq, the tempera-
I

(u' —m' —Re[II ((u, k m 0)] = 0 .

In the limit k ~ 0,

(4 2)

+ ko~+m~ ( 1 2(k&2+m2)(ko+m —2p ) 16p (ko+m )0
a ( a a )

(4 3)

where

= (ko+ m ) —4(u ko . (4 4)

Substituting these expressions to Eq. (3.13) yields

Re[II (ur, k ~ 0)] = g 2 n((u~) —m2+ m

ri(~ ) (4 —4/+ P ) 4p u (ur + m2 —m2)

2ur ( m ) (u) + m2 —m2)2 —4(u (u
(4.5)

where

Qi ——4+ (4 —b)(a —m + m ) —8[5Bi —2B2(ur + m )],
P

(b'r'
Q2 =4~ (, I

—8Bs
(m2 y

(4 6)

Q3 ——4(2u —m + 2m ) + (v —m ) + (4 —b)[4~ m —(u —m + m ) ].
P P

Now Eq. (3.13) can be solved self-consistently. The
pole mass is given in Fig. 5 as a function of temperature.
As temperature increases the pole mass of the pion de-

creases, but the change is very small, as expected &om
the Gell-Mann —Oakes —Renner relations [Am (T) 10
MeV at T = 160 MeV]. This behavior is opposite to
the result of chiral perturbation theory, which shows an
increase of the pion mass with temperature [2]. How-

ever, one can find a similar decrease in the pion mass
at finite temperature (up to 160 MeV) in the Nambu-
Jona-Lasinio model [18] and linear cr model calculations
[19].We should note that there are uncertainties near the
phase transition region (T 150 MeV) for all of these
approaches.

In lattice simulations the screening mass, which can be
obtained from the static in&ared limit of the self-energy,
is widely used. The screening mass of pions can be writ-
ten as

m" = gm2 + Re[II (~ = 0, k m 0)] . (4.7)

In the static in&ared limit we have

8pI spI'I,+ -+, +, +O(k') . (4.8)

The real part of the self-energy in the static infrared limit
is

4 m2 2d
R [11.( =O, k O)]=--

3 Il2 (2ir)' 2(u
(4.9)
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The screening mass of the pion can be obtained from
Eqs. (4.7) and (4.9), and is shown in Fig. 6. Even though
there is a slight decrease, the screening mass is almost
constant at temperatures we consider. When we compare
the result with that obtained from the pole position, we

get different values at T )100 MeV (Fig. 7). This result
reminds us to be careful of the definition of mass at finite
temperature.

In the chiral limit where m ' = 0, the effective
Lagrangian has an explicit chiral SU(X~)L, x SU(Nf)~
symmetry which is spontaneously broken in the hadron
phase. The pions are regarded as the massless Goldstone
bosons corresponding to the broken symmetry. This
means that the pion should remain massless at low tem-
perature as long as the chiral symmetry remains broken.
We can see explicitly that the screening mass, defined
from the static infrared limit of the real part for the self-
energy, becomes zero in the chiral limit. One can show
that the pole mass goes to zero as the mass of the pion
becomes zero. This fact can be checked numerically. In
Fig. 8 the dispersion relations of the pions in the chiral
limit are shown. The pole mass can be read from the
dispersion curve at the limit k -+ 0. These indicate the
self-consistency of our Lagrangian and approximation to
describe the broken symmetry phase.

V. CONCLUSION

We have analyzed the pion properties in hot hadronic
matter. The analysis is based on the effective chiral
Lagrangian with vector and axial-vector mesons. We
assume rather low density of the hadronic matter at
T = 100—150 MeV. We believe that the approximation
is reasonable to describe the hadronic system up to the
phase transition.

The self-energy of the pion is approximated by the one-
loop diagrams. The imaginary part of the self-energy is

~ 200.
Screening Mass vs Pole Mass
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FIG. 7. Comparison between the screening mass (dashed
line) and pole mass (solid line).

rather big when the temperature is bigger than 160 MeV
and momentum is bigger than 400 MeV/c. In this region
we cannot analyze the pion propagation consistently and
the pion might not propagate. The mean free path of
the pion is very small in the high temperature and high
momentum region. At low momentum there are peaks
and the mean free path is bigger than the size of the hot
system formed in a nucleus-nucleus collision (5—8 fm).
One would expect that any particles with a mean free
path greater than the size of the system could not be
thermalized [2j. This suggests that low momentum pions
may escape the hot zone without interaction and have a
small chance to be thermalized.

The dispersion relation of the pion is obtained at low
momentum with the assumption that the imaginary part
of the self-energy is small. When the temperature is less
than 160 MeV the dispersion relation is very similar to

0.20
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I Dispersion Relation in the Chiral Limit
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FIG. 6. Screening mass as a function of temperature. The
dotted line is the total contribution from all diagrams and the
solid line is the contribution from the thoro diagrams considered
in the text.
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FIG. 8. Dispersion relation of the pion in the chiral limit
when T=120 (dashed line) and 160 MeV (solid line). The
dotted line is the result for free pion.
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that of the free pion gas. Even though there is an in-

creasing attractive force which pulls down the dispersion
curve, the modification of the pion dispersion relation is
not enough to produce a dip or Hattening. When the mo-
mentum of the pion gets close to 400 MeV/e we can see
that the group velocity of the pion is bigger than 1, which
contradicts causality. However, such a behavior can be
seen in electrodynamics when there is an anomalous ab-
sorption, and it is not in contradiction with causality.
The large group velocity of the pions, similarly, indicates
strong absorption of the pion in hot matter. In this range
the damping is high and the propagating modes are ab-
sorbed after times which are very short so that the group
velocity has no longer has any meaning. This modifi-
cation in the dispersion relation of the pion might be
observed in the spectrum of dileptons from hot hadronic
matter.

The mass of the pion is determined in two different
ways and different values of the mass are obtained at
finite temperature. This rejects the different physical
properties of screening and of propagation. Both masses
show a slight decrease with increasing T and become zero
in the chiral limit.

There is an interesting possibility of a mixing of the
pion and Aq mesons at finite temperature. The diagram
which is responsible for this mixing is shown in Fig. 9.
The diagram represents the possible process in which the
pion (Aq meson), which passes through medium, inter-

FIG. 9. Mixing of the pions ~ith the Aq mesons at finite
temperature.

acts with a pion or a rho meson in the heat bath, and
converts to the Aq meson (pion). Because of the momen-
tum dependence of the couplings, the contribution of this
diagram to the self-energy can be written as i times an
integral which includes a singularity. The detail calcula-
tion of the integral shows that the pion mass, which is
obtained in the limit either k + 0 or ko ——0, k ~ 0, is
not affected by the mixing. It is expected that its con-
tribution to the real part of the self-energy is very small.
However, it is interesting enough to deserve future inves-
tigation.
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