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Heavy quarkonium potential model and the P1 state of charmonium
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A theoretical explanation of the observed splittings among the P states of charmonium is given
with the use of a nonsingular potential model for heavy quarkonia. We also show that the recently
observed mass difFerence between the center of gravity of the Pz states and the P& state of cc does
not provide a direct test of the color hyper6ne interaction in heavy quarkonia. Our theoretical value
for the mass of the Pj state is in agreement with the experimental result, and its E1 transition
width is 341.8 keV. The mass of the g,

' state is predicted to be 3622.3 MeV.

PACS number(s): 14.40.Gx, 12.39.Pn, 13.20.Gd, 13.40.Hq

I. INTRODUCTION

A quantum-chromodynamic potential model was pro-
posed by us [1] in 1982, which not only yielded results
for the cc and bb energy levels and their spin splittings in
good agreement with the existing experimental data but
its predictions were also con6rmed by later experiments
at the Cornell Electron Storage Ring [2]. An essential
feature of our model was the inclusion of the one-loop
radiative corrections to the quark-antiquark potential,
which had been derived by us in an earlier investiga-
tion [3]. Subsequently, the model was improved by using
relativisitic kinematics [4] and a nonsingular form of the
quarkonium potential [5]. As shown by us, in addition to
the energy levels of cc and bb, our model also yields re-
sults in good agreement with the experimental data for
the leptonic and E1 transition widths. It was further
shown by Zhang, Sebastian, and Grotch [6] that the Ml
transition widths for cc and bb obtained &om our model
are in better agreement with the experimental data than
those predicted using other potential models.

Recently the mass of the Pq state of charmonium has
been determined by the E760 Collaboration [7] in pp an-
nihilations at Fermilab, and the splitting between the
center of gravity of the 3PJ states and the Pz state, de-
noted as LM~, is found to be approximately —0.9 MeV.
This experimental result has created much interest since
it provides a new test for the potential models for heavy
quar konia.

If the spin-dependent forces in the quarkonium poten-
tial could be treated perturbatively, the AM~ splitting
would arise solely from the spin-spin (color hyperfine) in-
teraction. However, the spin-dependent forces are known
to be quite large and, as observed by Lichtenberg and
Potting [8], the contributions of the spin-orbit and tensor
interactions to AM~ cannot be ignored in a nonperturba-
tive treatment. We shall analyze this complex situation

II. cc SPECTRUM

Our model is based on the Hamiltonian

H = Ho + V„+ V.,

where

He ——2(m + p )'~ (2)

is the relativistic kinetic energy term, and V„and V are
nonsingular quasistatic perturbative and con6ning po-
tentials, which are given in the Appendix. We found
a trial wave function introduced by Jacobs, Olsson,
and Suchyta [12] particularly suitable for obtaining the
quarkonium energy levels and wave functions.

Our results for the energy-level splittings as well as the
individual energy levels of cc are given in Tables I and II.
For experimental data we have generally relied on the
Particle Data Group [13], but for the rk state we have
used the new result announced by the E760 Collaboration

with the use of our model which avoids the use of an
illegitimate perturbative treatment, and provide an ex-
planation for the observed splittings of the charmonium
P states.

Several authors [9—11]have recently shown that a theo-
retical value for AM~ in close agreement with the exper-
imental value can be readily obtained &om the spin-spin
interaction terms in the quarkonium potential. However,
since they have employed an illegitimate perturbative
treatment, the signi6cance of this simple interpretation
remains an open question.

Only a quarkonium model which is in good overall
agreement with the experimental data can be taken se-
riously. Our model for heavy quarkonia satis6es this re-
quirement.
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Scalar
58?.7
105.1
60.5

430.5
28.6
80.0
—5.8

2.375
3.329
0.295
0.183

Scalar-vector
588.9
109.0
63.5

428.6
44.6
95.8
—0.9

2.208
2.580
0.313
0.181
0.245

Expt
589.07+0.13
109.03+3.1

428.35+1
45.64+0.18
95.43+1
—0.93+0.19 + 0.2

TABLE I. cc energy level splittings in MeV. Theoretical
splittings and parameters correspond to the scalar-exchange
and the scalar-vector-exchange forms of the confining poten-
tial. The experimental value of the Q'-qc splitting is not used
for the determination of the cc parameters because of the un-
certainty regarding the g,

' mass.

TABLE III. Contributions to the y, g
-'P» splitting in

MeV from the various types of terms in the cc Hamiltonian.
The spin-independent, spin-spin, spin-orbit, and tensor po-
tential terms are denoted as Vsr, Vss, VLS, and VT, respec-
tively.

Hamiltonian term
Hp

Vsr
Vss
VI.S
V~

Total

gc.o.g. Pl
19.4
—9.6

5.2
—13.7
—2.2
—0.9

16~o.2eq 2 ( l6~, 'l
I'„( S, m e+e ) = ~4(0)i

~

1 — '
~, (4)

M2(QQ) ( 3& j

In Tables IV and V we give the results for the leptonic
and E1 transition widths corresponding to the scalar-
vector-exchange confining potential by using the formulas

V, = ~s, (3a)

[14]. The two sets of theoretical results in these tables
correspond to the scalar-exchange and the scalar-vector-
exchange forms of the confining potential, given by

and

42J+1rs, (S, ~ P)=-
9 3

r„('P, ~ 'S, ) = 4~eqk', ~r, ~2,

I'@y( Py M Sp): —ue&k&~r f
and

V, = (1 —B)Vs+ BVv, (3b)

TABLE II. ec energy levels in MeV corresponding to the
scalar-exchange and the scalar-vector-exchange forms of the
confining potential.

I 'S (J/@)
1 Sp (g, )
2 S hb')
2 Sp (ri,')
1 P2 (X~2)
I '&~ (X.~)
I Po (x,p)
1 'Pg (h, )

Scalar

3096.9
2991.8
3684.6
3624.1
3549.0
3520.4
3440.4
3533.2

Scalar-vector

3096.9
2987.9
3685.8
3622.3
3556.0
3511.3
3415.5
3526.3

Expt
3096.93+0.09

2987.9+3.1
3686.0+0.1

3556.17+0.13
3510.53+0.12
3415.1+1
3526.2+0.15 + 0.2

respectively. The results obtained with the scalar-
exchange confining potential are unsatisfactory, while the
scalar-vector-exchange results are in surprisingly close
agreement with the experimental data, including the ob-
served mass of the P~ state and the AMp splitting. The
scalar-vector mixing parameter B is found to be about
1

In Table III we display the contributions to AMp from
the various types of terms in the Hamiltonian (1) with
the confining potential (3b). The table shows comparable
contributions to AM~ from several sources, which brings
out the complexity of this splitting when spin-dependent
potential terms are included in the unperturbed Hamil-

tonian. The AM~ splitting, therefore, does not provide
a direct test of the spin-spin interaction in heavy quarko-
nia.

The photon energies for the El transition widths have
been obtained from the energy difI'erence of the initial
and the final t-c states by taking into account the recoil
correction. Our results are in good agreement with the
available experimental data [13], and our prediction for
the Fl transition width of 1 Pq ~ 1 So is 341.8 keV.

III. CONCLUSION

We conclude with explanatory remarks concerning
some features of our quarkonium potential.

A. Renormalization scheme

State
I' S,
2 S

TABLE IV. cc leptonic widths in keV.

I'„(theory)
6.68
3.25

I'„(expt)
5.36+0.29
2.14+0.21

We have used the Gupta-Radford (GR) renormaliza-
tion scheme [15] for the one-loop radiative corrections
to the quarkonium potential rather than the modified
minimal-subtraction (MS) scheme. The GR scheme is a
simplified momentum-space subtraction scheme, and the
parameter p can be interpreted as representing the mo-
mentum scale of the physical process. This scheme also
has the desirable feature that it satisfies the decoupling
theorem [16]. On the other hand, in the MS scheme p
appears as a mathematical parameter, and in this scheme
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Transition

2 SIml PJ

1 Pg W 1 SI

1 P] M1 Sp

J
2

1
0
2

1
0

2 ~ 19
1.96
1.47
1.60
1.62
1.62
1.39

I'&( (theory)
24.2
28.1
18.3

293.5
225.2
105.2
341.8

I'@( (expt)
21.7+3.3
24.2+3.6
25.9+3.9

270.0+33
240.0+41
92.4+42

TABLE V. E1 transition widths for cc in keV. The matrix
elements ~ry, j for these transitions are given in GeV

a+b Sg S2
7A +p (10)

which becomes, in the quasistatic approximation,

are not only quasistatic but also nonsingular. In the mo-
mentum space, these potentials are obtained by first ex-
panding in powers of p /(m2 + p ), and then approxi-
mating p as 4k . The perturbative potential in powers
of p /(m + p ) includes, among others, terms of the
form

decoupling-theorem-violating terms are simply ignored.
The one-loop radiative corrections in the GR scheme

can be converted into those in the MS scheme by means
of the relation [15]

n, /49 10 2 . m t

1+ ——— n( + ——) ln
4x 3 9 3 p,

(6)

where a, refers to the MS scheme, and n~ and nh are the
numbers of light and heavy quark Qavors. If we drop the
decoupling-theorem-violating terms that appear in the
MS scheme, we can put n( = ny and ng ——0, and (6)
reduces to

(x, (49 10~. = ~. 1+—'
I

———nX I

4vr i3 9

f(k2)
a + b S, S2
m2+ -'k2

4

It has been observed by Grotch, Sebastian, and Zhang
[11]that while the contribution of f (p2) vanishes for the
P states due to the vanishing of the wave function at
the origin, f(k2) yields a small but nonvanishing contri-
bution for these states. Consequently, for P and higher
angular-momentum states it would be more accurate to
drop terms of the form (10) than to convert them into
the approximate form (11). We agree with the observa-
tion of Grotch et al. Accordingly, in the treatment of
states with l g 0 we shall drop terms of the form (ll) in
the momentum-space potentials and the corresponding
terms of the form

f ( )
a + b Sj ' S2 —2mr (12)

B. Quasistatic potential in the coordinate-space potentials.

In an earlier investigation [4], we arrived at the sur-
prising conclusion that while the quasistatic form of the
quarkonium potential yields results in good agreement
with the experimental data, this is not the case for the
momentum-dependent form. This conclusion has also
been confirmed by the recent investigations of Gara et
al. [17] and Lucha et al. [18].

It appears to us that the success of the quasistatic
potential is related to the phenomenon of quark con-
finement. Since a rigorous treatment of quark confine-
ment does not exist at this time, we shall only offer
a plausible argument. It was argued earlier [19] with
the use of a renormalization-group-improved quantum-
chromodynamic treatment that quark confinement can
be understood as a consequence of the fact that quarks
and antiquarks are unable to exchange low-momentum
gluons. Moreover, since, for the quark-antiquark scatter-
ing in the center-of-mass system,

2 1k2+ 1 2
4 4 )

where

C. Confining potential

In our theoretical treatment, our aim has been to
avoid phenomenology except in the choice of the long-
range confining potential, which cannot be derived suf-
ficiently accurately by any known theoretical technique.
It is indeed remarkable that the results obtained &om
our Beld-theoretical perturbative potential supplemented
with an appropriate confining potential are in excellent
overall agreement with the experimental data including
the AMp splitting. It should be noted that we have
neglected the efFect of coupling of the energy levels to
virtual decay channels and possibly other small effects.
Such effects presumably have also been taken into ac-
count in our phenomenological confining potential.
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it follows that if k is allowed to take only large values,
s can be treated as small. This xnay be regarded as a
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Our quarkonium perturbative and confining potentials
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APPENDIX: NONSINGULAR QUARKONIUM
POTENTIALS

The nonsingular quarkonium potentials can be ob-
tained [20] by appropriate modifications of the singu-

lar potentials in the momentum space, and transforming
them to the coordinate space. The nonsingular poten-
tials obtained by this procedure are given below. Some
unwanted terms for states with 1 g 0 have been dropped
as explained in Sec. III.

1. Perturbative quantum-chromodynamic potential

The perturbative potential Vp consists of the direct potential V„' and the annihilation potential V„", and, in momen-
tum space,

where

V„(k) = V„'(k) + V„"(k),

as (k' )'
(33 —2nf)»

l
—,

l127r (~')
167rng 3ng

P 3k2

3(ki+ 4m') i 2~ ) 127r g p~) 3

1287m, Si Sp ( 35n, ) n, (k~ ) 2ln, ( k~ )
+ bip 1 — ' — 33 —2nf ln

l

—+ ln
9 k + 4m~ i 12vr ) 127r ip, ~) 87r (m~)

iS (k x p) lln, n, k~ n, (k~ i
327ras 1 — ' — '

(33 —2nf) ln —, + '
ln

lk (k + 4m~) 18~ 127r p,
~ fr (m~)

64+~s Si k S2 k —
3 k Si S2 4as O. s (k') 3n, ( k' )1+ ' ——

'
(33 —2nf) ln —

l
+ '

ln
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~ (1 —ln2)

l Si Sg ——
k&+ 4m'

(Al)

(A2)

(A3)

In coordinate space, the potential takes the form

V, ( ) = V.'(r)+ V."(r)

where

(A4)

V„'(r) =—

40.,+

as as' + —'(22 —2n2) (in(gr ) + 2g))2' 67r

3n,i, , n,
Ao l

1 — '
l
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Note that the tensor operator is defined as

ST ——3 cr] r cr2. r —cr] . cr2, (A7)

1 2iS (k x p)
k4 k4(k + 4m2)

(Alo)

Ey(z) =
z [e Ei(—z) 6 e Ei(z)] p e * lnz, (A8)

the functions E~ are expressible in terms of the
exponential-integral function Ei as

and

1 1+ sSl S2 6iS (k x p)
k k (k2+4m2) k (k +4m )

and

gy

g2 =

1 —(1+z)e *

Z2

1 —(I + z+ —,'z') e-*
X2

&
—[E+(*)— E-( )]

X2

qE — (I + —,'z') E+(*)—zE (z)

2. Phenomenological con8ning potential

Sg . k S2 . k —-'k Sg . S2
+4 3

k (k + 4m2)

The coordinate-space potentials are given by

A
Vg(r) = Ar — L S [1 —2fg(2mr)],2m2r

and

(A11)

(A12)

(A13)

( 8
Vg(r) = Ar +

~

1+ —Sq . S2
~ (I —e 2™)

2m2r ( 3 j
3A

+ L S [1 —2fq(2mr)]2m2r
A

ST [1 —6f, (2mr)].12m2r

The scalar-exchange and the vector-exchange confining
potentials in the momentum space are

It is understood that the confining potential also con-
tains an additive phenomenological constant C.
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