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We present an analysis of four sum rules, each based on chiral symmetry and containing the difFerence

p&(s) —p&(s) of isovector vector and axial-vector spectral functions. Experimental data from ~ lepton
decay and electron-positron scattering identify the spectral functions over a limited kinematic domain.
We summarize the status of the existing database. However, a successful determination of the sum rules

requires additional content, in the form of theoretical input. We show how chiral symmetry and the
operator product expansion can be used to constrain the spectral functions, respectively, in the low ener-

gy and the high energy limits and proceed to perform a phenomenological test of the sum rules.

PACS number(s): 11.55.Hx, 11.30.Rd, 13.10.+q

I. MOTIVATION

Despite a concerted effort by physicists extending over
many years, an understanding of QCD from first princi-
ples continues to be elusive. Fortunately, data continue
to appear which provide a rather direct probe of the
inner workings of the strong interactions.

A case in point involves semileptonic v lepton decay
and hadron production in e+e scattering. For both of
these, multihadron states such as 2m., 3m, . . . are excited
from the operation of quark vector and axial-vector
currents on the QCD vacuum. In this paper, we shall re-
strict our discussion to the isospin currents [1],

7 'r
V"=q y"q and A"=q y"y Sq,Q 0

where a=1,2, 3 and q=(u, d). Such current-induced
processes provide information about the current bilin-
ears,

(ol T( v."(x)v,"(o))lo)

and

(olT(A."(x)A,"(o))IO& .

It has been long recognized that these quantities appear
in certain chiral sum rules. Since these sum rules follow
rather directly from QCD and chiral symmetry, a test of
their correctness is, in effect, an experimental check on
the validity of QCD itself.

Unfortunately, there are several formidable obstacles
to a successful implementation of this procedure. For
one, the sum rules encompass an infinite range of energy,
whereas existing data covers a very modest range, s & m,
for ~ decay and s ~5 GeV in e+e scattering. More-
over, as we shall see there are uncertainties in existing
data which future experimental work must clear up.

%e feel that such diSculties can be overcome. In this
work, we shall argue that a combination of chiral symme-
try and QCD sum rule methods constrain the low- and
high-energy limits of the dispersion integrals and that
data can be used to fill in much of the rest. The content
of the paper is organized as follows. %e begin by intro-
ducing the spectral functions and their sum rules in Sec.
II, review the state of existing data in Sec. III, and then
describe various theoretical constraints in Sec. IV.
Armed with experimental data and theoretical con-
straints, we present details of a phenomenological
analysis of the chiral sum rules in Sec. V. The final part
in Sec. VI summarizes our findings.

II. SPECTRAL REPRESENTATIONS

In this section, we shall work exclusively in the chiral world of massless u, d quarks. Here, the spin-0 axial contribu-
tion is given by the pion pole and the two-current time-ordered products can be expressed in terms of spin-1 spectral
functions pv „(s) [2],

and

d4 e lP'x
(Ol T( V,"(x)V (0))lo) =in.,f "ds p„(s)( sg"" t)1"a"—)f—

0 (2m) p —s+ie (3)

(OlT(A,"( )Ax"(0))lo) = i5, F t)"t) f— +i5, f dsp„(s)( —sg""—t)"t)")
(2n. ) p +ie & (2m) p —s+ie (4)

For completeness, we also give the corresponding relations involving non —time-ordered products,
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d4«""&OI V."(x)V;(O) 10 &
=m.„p,(q')(q "q —q'g" ),

2&

d'x e'q "(Ol ~~(x)a "(0)lo&=ifi,b[p~(q )(q"q" —
q g"")++ fi(q }q"q"] .

2'

f dss[p~(s) —p„(s)]=0,
0

(8)

ds s ln [pv(s) —p„(s)]
0 A

16~ F
(m+ —m o)

3e

It follows from chiral symmetry and the high-energy
behavior of QCD that the vector and axial-vector spec-
tral functions contribute to certain sum rules [3],

f p v(s) pa —(s)
ds = 4L—, O

=(2.73+0. 12) X 10
0 S

(6)

f ds [pv(s) —p„(s)]=F„=(8.54+0.06)X10 ' GeV
0

(7)

The next two relations W1 and W2 are, respectively, the
first and second Weinberg sum rules [5,6]. The final sum
rule W3 is a formula for the ~*-m mass splitting in the
chiral limit [7]. Although apparently containing an arbi-
trary energy scale A, this sum rule is actually indepen-
dent of A by virtue of W2. For reference, we have
displayed the physical value of the nonzero entries which
appear on the right-hand side of the chiral sum rules.
These quantities have slightly shifted values in a chiral
invariant world. This point is discussed at the end of Sec.
III.

%'e note in passing that the current correlators defined
in Eqs. (3) and (4) have been the subject of much recent
attention. Several analyses have been carried out of had-
ron production in ~-lepton decay in order to obtain a
determination of a, (m, ), the running strong fine-
structure constant evaluated at the r mass scale [8].

= —(6. 19+0.03) X 10 GeV (9)

(10}

In the remainder of the paper, we shall refer to the above
sum rules, respectively, as W0, W1, W2, and W3. In
the first one, W0, the quantity L &0 is related to the renor-
malized coefficient LIz'(p) of an O(E ) operator appear-
ing in the effective chiral Lagrangian of QCD [4]. Al-
though the value of L~(z'(p), which is measured in the ra-
diative pion decay ~chevy, refers to a renormalization
scale p, the quantity L,0 is itself independent of p,

P7l

192 p
= —( 6.84+0.3 }X 10

III. DATA INPUTS

It is possible, in principle, to analyze the chiral sum
rules on the basis of pure theory. For example, in the
original derivation of W3, the pion electromagnetic mass
difference was estimated by using p(770) and a&(1100)
contributions to saturate the vector and axial-vector
spectral functions [7]. However, a more sound procedure
is to use data from ~ lepton semileptonic decays into
pions and/or pion production in e+e annihilations.

The rate for v. decay into an even or odd number of
pions at invariant squared energy s is given by [9]

even
dI p, (s) 0

, (m, —s) (m, +2s)
( )

+m,

and the corresponding n m. branching ratio is

6 V m m

B„„= I„„with I„„= d$1-
s~r, .„"" (nm„)

2

1+
~ p„(s) .2$

Pl
(12)

In addition to the Particle Data Group (hereafter PDG)
[10], the primary sources for r decay data are the
ARGUS [11]and CLEO [12] detectors, via the reaction
e+e ~~+~, and the CERN Large Electron-Positron
Collider (LEP) detectors [13] via the decay Z ~r+r
A review of r physics up to 1988 is given by Barish and
Stroynowski [14]. Experimental aspects of r decay con-
tinue to be presented up to the most recent conferences
[15—17].

At first, using e+e annihilation data to test the chiral
sum rules would appear to be problematic. Although the
range of energy is (at least, in principle) unlimited, the
production mechanism involves the electromagnetic
current and so is generally a mixture of the needed
isospin-1 component and an unwanted isospin-0 com-
ponent. However, for final states which consist of an
even number of pions it is only the isovector electromag-
netic current which contributes. This is a consequence of
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the G-parity relation G„=(—}",together with the prop-
erty that any nm. final state produced by the action of the
electromagnetic current on the vacuum must have charge
conjugation C= —1. Since G=C( —), it follows that
I=1 for n even. Of course, the isospin components
which are measured in e+e scattering and ~ decay are
distinct, having I3=0 and 1 —

1,2, respectively. The cor-
responding 2m and 4m. states are related by

tially in mass (due to increasingly higher mass thresh-
olds), exhibit slowly deceasing peak values (from competi-
tion with other channels as constrained by unitarity), and
become increasingly broad (since phase space grows with
particle number). As energy increases, one soon enters
the asymptotic domain and the sum over all modes be-
comes featureless, in a manner similar to the total e+e
hadronic cross section.

Let us now present a critique of the current status for
various individual contributions:

T l2~+2~ ) =2&21m. n+2n . ), (13}

T I~+a 2~ )=~2I~ 3n )+2v 2I~+m 2~ ) .

Extraction of the nn component of p~(s) from e+e
data proceeds via the relation

A. r lepton properties

The most recent complilation given by PDG for the
primary ~ lepton properties of mass (m, ), lifetime (r, ),
and electron branching ratio B,= I', ,„„/I, ,&~

are
T 8

p y (s )= s 0'I —)(s ) .1

16m. a
(14) ~;Do=i.784 GeV, FDo=305 fs, B»G=0.1793.

For the specific case of two-pion production, the e+e
annihilation data is often expressed in terms of the pion
electromagnetic form factor F "(s) evaluated at squared
energy s. In this notation, one has

2 3/2
4m

p ~(s) = 1 — IF~"(s)I
48~ s

(15}

A plot of the pion form factor in the timelike region ap-
pears in Fig. 1. Early results on pion production in e+e
scattering is summarized in Ref. [18]. Experiments at
Frascati, Orsay, and Novosibirsk have continued to sup-
ply data [19-26].

As a whole, ~ and e+e data reveal that each of the
multipion contributions rises fairly sharply from thresh-
old to a peak value and then falls rather more slowly. At
energies below 2 GeV, the role of meson resonances is
significant. Thus, the 2~ contribution has the familiar
narrow resonant structure of p(770), the 3m modes are
dominated by a, (1260},and the 4m sector is influenced

by p(1450} and p(1700). Although lacking a detailed
dynamical understanding of higher multiplicity distribu-
tions, we can anticipate their form as a consequence of
general physical considerations. They will occur sequen-

Be Oe 061 25
10 ' sec

(18)

is not exactly satisfied. Thus, the relation between n~
branching ratios and spectral functions in Eq. (12} de-
pends on which of the following relations is assumed,

or

(i) B„=4.39, I„
10 ' sec

(ii) B„=71.31B,I„„.
(19)

(16}

However, there have been recent downward revisions to
[27]

m, =1.777 GeV, ~,=297 fs, 8, =0.1771,

and these are the values that we shall use throughout our
analysis. Observe that there is a slight inconsistency be-
tween the listed central values for m„~„and B, in Eq.
(12). As a result, the theoretical constraint

50

40—

I I I I l

[
I I

Throughout this paper, we shall for definiteness assume
that B,=0.1771 in our numerical work. This value is an
average of the value in Eq. (16) and the recent experimen-
tal determination cited in Ref. [28].

30—

20—

10—

0
0 0.5

FIG. 1. Timelike pion form factor.

1.5

B. Two-pion component

Data for pz comes from the ~ m part of the one-
prong ~ decay [11,29], and from the n+m flnal state in
e+e scattering [19,21,26,33]. The consistency of r de-
cay and e+e annihilation results in the vicinity of the
p(776) peak has been verified by Gan in Ref. [30]. We
display in Fig. 2 the two-pion spectral function pz (s) as
inferred from the pion form factor data of Fig. 1. Nu-
merical integration of pz yields a 2m branching ratio of
Bz =0.247. There are also recent determinations of the
h m'0 (where h is a hadron) and n n branching ratios by
CLEO [12]and LEP [13],
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0,08

0.06

decay rates and employ total three-pion branching ratios
in this same range. This is in accord with the findings of
Davier who, in a review of early and recent 3~ branching
ratio determinations, summarizes the current situation as
[17]

0.04 +& —=8 —
&

o =0 0903+0.0036, (24)

0.02

0

I
Ir

Z
X

0.5
I

1

s (Gev )
1.5

~~em~~~. .t
2

but at the same time makes the cautionary remark the
"extreme care should be exercised when using world
average values for branching ratios. "

The equality of I and I o is expected of a

final state which is dominated by the A, resonance. The
isospin decomposition

FIG. 2. 2m vector spectral function. —~p'~ &
— — p ~'&

2
(25)

8 =0.2483+0.0015+0.0053,

8„- o =0 243+0.008

8 cLEo 0.2435+0.0055,

(20)

where the m ~ value is inferred by subtracting off the
K* branching ratio from that of h m . The above are
in reasonable accord with the value cited by the PDG
[10],which is based on earlier data.

All in all, the two-pion part of the vector current spec-
tral function is well determined. As we shall now see, al-
though much is known about the three- and four-pion
distributions, more experimental input would be wel-

come.

shows that the ~+2m. (from the first term) and the
2n. (from the second term) final states will occur with

equal probability.
As regards the spectral function p~, reconstruction

from experiment would require 3m mass distributions for
both m. +2m and ~ 2m. modes. None of the latter exists.
However, in view of A, dominance it suffices to know
just the sr+2m spectrum. We refer the reader to Ref.
[14] for histograms of the 3m. mass distribution measured
some time ago by the DELCO, MAC, and MARK II
detectors. The literature also contains an early ARGUS
determination [11], corresponding to the rather small
branching ratio 8 + =0.056+0.007. In this paper,
we shall employ recent ARGUS data [32] to determine
p„". From the number of counts AN per energy bin AE,
one can construct the 3m spectral function via

C. Three-pion component

We denote branching ratios for the two 3n. modes in ~
decay as B + and 8 o. Basic isospin considera-

7T 27r 7r 2'
tions imply the inequalities [31]

2m, 83„ 1

24m V„d B, (1 —s/m, ) (1+2s/m, '

1 AN

2EN„, 6 (26)

1
8 +~ — 4 1 -z.o 1

and
2 83„5 5 83 2

(21)

and (22)

PDG lists the three-hadron branching ratios based on a
number of experiments as

8„+ „=0.084+0.004

where E=&s. Upon taking Bs =0.17 rather than the
value given in Ref. [32] (which would imply Bs =0.13),
we obtain the spectral function shown in Fig. 3. The
large error bars near the endpoint occur because one
must divide the number of counts per energy bin by a
phase space factor which vanishes at s =m, . Even so, it
is clear from Fig. 3 that ~ decay data is able to cover
essentially all the region where p„ is nonvanishing.

B " =0.0821+0.0015+0.0038+0.0028,

B'E' =O. 104+0.008,

B„"+",„——0.0949*0.0036+0.0063 .

(23)

Collectively, these imply that B + ——8 o and indi-

cate a total 3~ branching ratio of 16—19 %. For
definiteness, we shall assume that both modes have equal

B~ q
0=0.103+0.009 .

CLEO [12] and LEP [13]have recently announced the re-
sults

D. Four-pion component

Pv"(s) Pv (s)+Pv (s), (27)

where the quantities on the right-hand side are inferred
from the four-pion mass distributions in the m. 3~ and
~+~ 2m modes. It is also possible to obtain the quanti-
ties p v and p ~ from e e ~4' cross sections via

In ~ decay, there are two 4~ modes, m 3~ and
m

+
m 2m . The corresponding four-pion final states in

e +e scattering are 2~+2~ and m ~ 2m. . The four-
pion spectral function measured in ~ decay can be decom-
posed as
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FIG. 3. 3w axial-vector spectral function.
FIG. 4. Cross section for e+e ~2m+2m. .

the relations

—ooo
pv ( )= 3, ,„+~

3277 C
(28) 0 020 i i

I

i i i i
I

i i i i

I
i i i

py (s) 3 $(cT~ + +20' + 0),+--o
3277

(29)
0.015

The set of ~ 3~ and h ~3m. v decay branching ra-
tios taken from recent conference presentations Refs.
[12,13] and the average cited by the PDG [10] provide a
reasonably consistent picture,

0.010
N

C
O
O

IB =0.0098+0.0007+0.0012+0.0003,

B$ 3
=0.01 53+0.004+0.006

B& & 3 o 0 027+0 009

0.005
(30}

x x x

xxXX
~X
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FIG 5 pv~1nferredfrome+e scattering
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B"+~"'.——0.054+0.004+0.OO5, (31)

2
s (Gev )

Bg+2I & 1
0 =0.053 0.004 0.0000
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where the ARGUS value is preliminary. Two of these
values include unknown amounts of strange particle con- FIG. 6. Predicted 4' mass spectrum in ~~m 3m. v .

implying 8,=0.01. To our knowledge, there is no

published spectral information from ~ decay data for the
~~e 3nov, mode. However, we can obtain p„(s)
from o + as in Eq. (28). The set of 2m+2m cross-

section data taken from Ref. [22] (for ~s (1.4 GeV) and
from Refs. [20,21] (for v s ) 1.4 GeV} is displayed in Fig.
4. Note that Fig. 4 clearly demonstrates how pz must
extend beyond s =m„ i.e., r decay alone cannot deter-
mine the 4n spectral function over its full range. The re-
sulting pz obtained in this manner is shown in Fig. 5.
From this, we predict the n 3n mass spectrum to have
the form shown in Fig. 6, where a smooth curve has been
added to help guide the eye. Integrating this mass spec-
trum leads to a branching ratio B 0-—0.009, in good

agreement with the values of Eq. (30).
Turning to the larger ~+2~ m v decay mode, we cite

the branching ratio values appearing in Refs. [13,10,16],
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tributions. Allowing for such non-4m contributions, the
PDG and LEP values indicate a m. +2~ m. branching ra-
tio in the 0.040—0.050 range. We are aware of just one
published m+2m. m. mass spectrum measurement, an
ARGUS analysis (Ref. [33]), which cites the branching
ratio B + p

=0.042+0.005+0.009. This value is

smaller than, although not inconsistent with, the more re-
cent ARGUS value of Eq. (31}. Using an appropriate
binning procedure, we can construct the full 4m spectral
function pi,"(s) over the restricted energy region s &m,
by combining the ~+2m m ~ data together with the
2m+2m cross sections. The result is shown in Fig. 7, to-
gether with an asymmetric Breit-Wigner fitting curve (see
Sec. IV).

Alternatively, one could use the combination of cross
sections as in Eq. (29) to determine the total 4m. spectral
function. In principle, at least, this procedure can pro-
vide the 4~ spectral function over a larger energy inter-
val. m+n 2m cross-section data taken from Ref. [25]
(for v's &1.4 GeV) and from Ref. [20] (for v's ) 1.4
GeV) are displayed in Fig. 8. These turn out to imply a
m+2m m r decay branching ratio somewhat smaller than
the recent determinations cited in Eq. (31). For this
reason, we have chosen to base our analytical work on
the determination of pz"(s} as shown in Fig. 7.
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FIG. 8. Cross section for e+e ~m+m 2n. .

B + p =0.0054 0.0005 0.0008 .

Bc Eo 0 0015+0.0004+0.0005+0.0001

B'„D~,„+ ——0.00056+0.00016,

$j"--

2, 25

(33)

E. Higher components

B p
m 4m

B5

3 & 3v 2m ( 8B

10
'

B5 35'

(32)

8 ( 2~ ~ 2~B + p

35 B5

At present, Refs. [12,10,16] provide the following branch-

ing ratio determinations,

0020 t i r I I

I

I I I I

[
I 1

0.015

0.010

The five-pion component in v. decay involves the
branching ratios B p, B +, and B + p. Iso-

spin constraints for these modes are

Noting that B3 2 + B,h 2h+, we find that these values

are consistent with the bounds of Eq. (32). However, the
isospin bounds do not imply any useful information for
disentangling B3 2

rom B3h 2h+ ' To our

knowledge, the above branching ratios are the only 5m

data currently available. To obtain useful spectral infor-
mation for the 5~ mode requires a substantial number of
events, e.g. , as would be generated from a ~ factory.

Some 6m. spectral information is available from e+e
scattering and some 6m branching ratio information is

available, but in view of the paucity of 5m. data we have
not included this sector in the analysis described in this

paper.
Although our statement of the chiral sum rules in Sec.

II refers to the limit of massless quarks, the data reviewed
in this section are taken in the real world of m„d %0. In
principle, we might attempt to perform corrections on
the data set with an eye towards working in the chiral
limit. For example, it is apparent that taking m ~0
would induce minor shifts in resonance masses and phase
space. However, we anticipate that such effects would be
of order m /A with A=1 GeV. Since such changes are
much smaller than the present uncertainty in the data, it
seems most prudent not to try to model the effect of finite

m„d effects. Thus, we shall use the unmodified experi-
mental information in our phenomenological analysis.

0.005 IV. THEORETICAI. CONSTRAINTS

~ t

1

1 1.5 2
s (Gev )

I [ I I

2.5

FIG. 7. pv" from ~ decay and e+e scattering.

Although the vector and axial-vector spectral func-

tions are not theoretically prescribed for all values of s, it
is possible to place constraints on their low- and high-

energy limits.
We begin by taking the Fourier transform of Eq. (3),
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5,(, II„„(q )=ifd x exp(iq x}(0~T[V,"(x)V&(0)](0):5—,~ (q„q„g—„,q')II v(q'),

and of Eq. (4),

S.,II„"„(q )=if d x exp(iq. x)(0~ T(A,"(x)A&(0)}~0)

=4(qi q gp q )lie(q )

—
q "q"II(„'(q ) (35)

In the chiral limit, the spin-0 axial contribution II'z'(q )

is given entirely by the pion pole. The correlators
IIv „(q } are the real parts of analytic functions whose

imaginary parts are the spectral functions p v A (s). Of in-

terest to us are the dispersion relations involving the
difference of vector and axial-vector quantities,

+w pv(s) pa (s)
Il„(q ) —II„(q2)= + f

q 0 s —
q

—rg

1 Pv(s} PA(s}
8$ s

q 0 s —
q

—ie
(36)

In our normalization, the behavior of the individual
II v „(q ) to leading order at large q is

a, (q')
IIv„(q )- 1+ ln

8~ ~ —
q

(37)

where p is the renormalization scale. In order to deter-
mine the difference IIv(q ) —II„(q ) for q large but
finite, one must go beyond the form in Eq. (37). From the
operator product expansion of vector and axial-vector
currents, we learn that the asymptotic dependence is

O(q ) and the local operators which control this
behavior are the four-quark condensates [34,35]. In the
approximation of vacuum saturation, one finds

32m qq 0 1+ q 247 +1 p,(Qa )' a( ')
7T —

q
(38)

It turns out that theory also predicts the low-energy or
threshold behavior of the vector and axial-vector correla-
tors. However, in this case it is the machinery of chiral
perturbation theory that is invoked to show [36]

p2 2

IIv(q }—II„(q )= + ln
1 p 5+-

q 48m. —
q

(Qa, qq )0=(0.24 GeV)s=1.9X10 ~ GeV6

and taking a, =0.2, we obtain

(44)

Note that the difference of the spectral functions is of or-
der a, . Our analysis of the chiral sum rules will require a
numerical value for the coefficient C of the s term.
From the estimate

L ( )(p) (39) C =3.4X 10 GeV (45)

where L(iai(p) is defined in Eq. (10).
The above statements all involve the correlators H~ ~.

Similar threshold and asymptotic constraints can be
placed on the spectral functions pv „(s). Thus, as stated
in Ref. [36] the threshold behavior (s~4m„) of pv(s)
and p„(s) is

p (s)- 1—1

48~

pz(s)-O(p ) .

2 3/2
4m

6((s —4m )+O(p ), (40)

(41)

Later in this section, we shall sharpen the threshold re-
sult for p„by specifying the 3m. threshold contribution in
more detail. the perturbative result for the asymptotic
limit s ~ 00 of the individual pz ~ to leading order is

a, (s)
pv, ~(s)- 1+

8 77
(42)

Finally, Eq. (38} determines the asymptotic form of
P v(s } P A (s}to be

8 a, (+a,qq)0
p v(s) —p „(s)-—

3
=—

3
for large s .s' s

(43)

32& — 2 ——( Qa, qq )0= —f ds s [p v(s) —p„(s)] . (46)

Some care must be taken to interpret this result correctly.
Observe that Eq. (46) is valid to O(a, ). Since the O(s )

tail of p„(s)—p„(s) is itself of higher order in a„one

The magnitude of this quantity is obviously model depen-
dent and quite possibly will be modified by future work.
However, even folding in uncertainties of the vacuum
condensates, it is clear that the coefficient of the s term
is very small, and that pz —p„approaches zero very
quickly at large s. Even if one imagines pv(s) —pz(s) to
exhibit increasingly damped oscillations indefinitely, du-
ality suggests that Eq. (43) captures the correct average
behavior. As we shall see, the asymptotic constraint of
Eq. (43) will have significant impact in the analysis of the
chiral sum rules to come.

The results presented in this section are well known,
and collectively they represent a fairly powerful set of
conditions regarding how the chiral correlators can
behave. Actually, additional thought can reveal even
more. For example, let us employ the asymptotic
behavior of Eq. (38) in the dispersion relation of Eq. (36).
Expansion of the dispersion integral in powers of q
yields the sum rule
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must subtract it off in this relation. Accordingly, we
write

3 2'
9 '

o
&Qa, qq )0= —f ds s [pv(s}—p„(s)]', (47)

where [pi, (s) —p„(s)]' refers to the subtraction pro-
cedure just mentioned.

Finally, let us return now to the matter of the thresh-
old behavior of p„(s). It is associated with the 3' com-
ponent. Using chiral Lagrangian methods [1], we have
determined that in the chiral limit the threshold behavior
1S

&olA"(0}l~p np np ~= (p~++p" —2p~o)

3$+ $

3F„,
Q" (48)

where Q=p++p +po, s =—Q, and s+ —=(p++p ) .
Upon rearrangement of terms, this can be expressed as

&ol~~(0)l~; ~;~; )=,Q~ p~—2 Qpo
(49)

p„"(s)=
2

+
96~(4~F )

(50)

In practice, however, the very low s behavior for the 3m

state turns out to be less important in the chiral sum rules
than the higher energy effect of the A 1 resonance.

Observe that this obeys

&ola„~~(0)I3~&=0,
as must be the case since it is only the spin-1 part of the
axial-vector current which contributes here. The thresh-
old behavior of p„(s) can then be read off' from the gen-
eral form of Eq. (5}by first squaring Eq. (49) and integrat-
ing over 3~ phase space,

cay widths. The particular form of energy dependence is
taken from Lorentz-invariant phase space. The 5m and
higher components are parameterized to give rise to the
asymptotic behavior

5 —
1

pv, A(s) and pv pA
327T2

(51)

This disagrees with the chiral and operator product ex-
pansion results of Eqs. (42) and (43), respectively. The
specific form in Ref. [38] used for the higher components
is chosen to fit the sum rule 8'1 exactly and the sum rule
W0 is evaluated in terms of the fit.

The summary given in Sec. III of available data
demonstrates that there is hope for successfully extract-
ing much about the spectral functions p„„(s) from ex-

periment, but that our knowledge of them will always be
limited. In view of the current database, we have decided
that for the purpose of testing the chiral sum rules, it is
most prudent to take the empirical 2m, 3m., and 4m modes
explicitly into account, and to treat all higher com-
ponents according to some reasonable prescription. We
have followed two distinct approaches in doing so.

(i) Xumerica1: We ensure that the empirical databases
for pv „(s) evolve smoothly in the variable s to the
correct asymptotic limits by generating smooth curves
separately for p v and p„which pass through the experi-
mental data sets at low energy and which satisfy the
asymptotic limits, while reproducing the four chiral sum
rules.

(ii) Analytical: This actually encoinpasses a class of fits
to the difference of spectral functions pv

—p~ in which
all contributions higher than the four-pion sector are
lumped into a single theoretical term. A convenient
method for constructing the spectral functions this way is
to start with a 5 function form, then introduce finite
widths via Briet-Wigner representations, and finally
modify these to a more realistic asymmetric form.
Let us consider each possibility in turn.

V. EMPIRICAL DETERMINATIONS
OF CHIRAL SUM RULES

Before discussing our own methodology, we wish to
take note of two interesting works involving aspects of
chiral sum rules. In the earlier of these [37], spectral
functions based on 2m. , 3m, and 4m. data extracted from ~
decay are used to study the sum rules W1, W2, and W3.
The associated spectral integrals are studied as a function
of cutoff so for so 2. 5 GeV . However, the 3m analysis
was taken from Ref. [11]data, which as we have seen is
not in agreement with a large number of more recent
branching ratio measurements. In addition, the 2m spec-
tral function was too small in the vicinity of the p(770)
peak by roughly a factor of 2. Interestingly, these two
features combined to make the sum rules appear reason-
ably in agreement with expectations, although this result
was fortuitous.

In the analysis of Ref. [38], 2ir and 4m. data are inferred
from e+e scattering, but the 3m data again comes from
Ref. [11]. In fitting these components, use is made of
Breit-Wigner resonance forms with energy-dependent de-

A. Numerical representation

Surely the simplest method for generating acceptable
global versions of pv „ is to numerically smoothly join
the low-energy empirical data with asymptotic theoreti-
cal information. A reasonable region for matching the
two occurs at about s =4—5 GeV . As we have already
seen, the constraint of Eq. (42) reveals that the spectral
functions approach a nonzero constant at infinite energy,
with an additive correction factor proportional to a, (s).
In general, we expect the large s behavior

V, A V, rf

s

We can obtain a determination of the dominant power
correction in the large s limit as follows. Using an opera-
tor product expansion, Braaten, Narison, and Pich have
displayed the structure of the correlators H v ~ for Eu-
clidean momenta —Q in Appendix A of their paper [8],
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V, A( ) gV, A( ) B2~=0.240, B3~=0.165, B4~=0.048, (58)

11p2'"(s) — a, G for large s .
192m ~ p

(54)

Let us estimate the magnitude of this quantity at s =5

GeV . The strong fine-structure constant is determined
in terms of an assumed value for the QCD scale parame-
ter,

(53}

where s = —Q and each of the a„"(Q) is expandable in

powers of a, (Q). We require the imaginary part of this
expression, analytically continued to timelike momenta.
Since the O(Q ) contribution to II& „ turns out to be

proportional to quark mass, the coefficient p&~ "(s) van-

ishes in the chiral limit. Thus, the first nonvanishing sub-
leading contribution is the O(Q ~) component, from
which we extract the result

curves for pi, pz, and pt —p„are displayed, respective-

ly, in Figs. 9-11.

8. Analytical representations

1. 5 function

In the 5 function description, the spectral functions are

4

pv(s) —p„(s)= g ( —)"+'Fk5(s —mk) .
k=1

(59)

k=1

k
)

Nlk
(60)

This representation of the spectral functions, although
crude, provides a nice pedagogical example with which to
organize one's thoughts. We begin by noting that there
are two parameters per contribution, a mass m and a cou-
pling F. In this approach, the four sum rules reduce to

A&cD=150 MeV=a, (5 GeV )=0.26 (55)

and the gluon condensate from phenomenological appli-
cations of QCD sum rules,

g ( )k+1F2 F2
k=1

W2= g ( —)"+'m F =0

(61)

(62)
G =(0.02+0.01) GeV~ ~ ~

F 0
(56) k=1

Altogether, these values imply that the O(s ) com-
ponent to p z „has a tiny coeScient,

gr3 g ( )k+ lm 2F21nm 2

k=1
(63)

p2'"-—0.9X10 GeV

As a result, even at the modest energy s =5 GeV the
O(s ) term has a negligible effect. Of course, this com-
mon addition to p z and p „wi11 cancel when the
difference is taken and hence mill not contribute to the
chiral sum rules. In addition, the difference of the spec-
tral functions was chosen to be compatible with the
asymptotic constraint given in the previous section.
Again the magnitude of this contribution is so smal1 that
it is essentially irrelevant at modest energies. Thus while
we have made an effort to generate spectral functions
with the right high-energy behavior, the precise value of
the high-energy terms is not important since their numer-
ical size is quite small.

Let us summarize our procedure at this point. We
have generated numerical representations for pv and p„
which fit a11 available data on multipion production, and
which are compatible with the theoretical behavior ex-
pected at high energy, and which when integrated yield
the correct experimental values for the four chiral sum
rules. Although highly constrained at low and high ener-
gies, the spectral functions have a modest uncertainty in
the s =2—4 GeV range, and this was exploited in order
to precisely dupHcate the expected values of the sum
rules 8'0, 8'1, $V2, 8'3. Of course, both this numerical
procedure and the analytic one to follow are subject to
the choice of input values. Given the uncertainties in
especially the 3m and 4m. branching ratios, we have ex-
plored a variety of possibilities. Corresponding to the in-
put set

and the ~ decay branching ratios become

Pl
Bk =71.62B,Fk 1 — 1+

2' k

2ill ~

(k =1,2, 3) . (64)

0.10 I I I
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I
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0.00
I 8 3 4
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FIG. 9. Numerical fit to p&.

We can specify the mass parameters m1 z 3 from the ob-
served nest (n =2, 3,4} distributions and the coupling
strengths F& 2 3 from the observed branching ratios [cf.
Eq. (12)]. Even in the extreme narrow width approxima-
tion of the 5 function representation, this step turns out
to be a surprisingly accurate one, e.g., finite width effects
modify the branching ratio relations by only a few per-
cent.
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This leaves the problem of determining the coupling F4
and mass m4. It seems reasonable to require that the
sum rules Wl and W2 be obeyed exactly rcf. Eqs. (61)
and (62)]. Thus we determine F4 from Eq. (61) and m4
from Eq. (62). Doing so leaves the remaining sum rules
WO and 8'3 as predictions.

2. Breit-signer

In the finite width Breit-Wigner (BW hereafter) exten-
sion of Eq. (59), the spectral functions are represented by

FkmkI k
2

(65)
(s —mk ) +(mk I k )

4
( )k+1

p„(s) p„(s)= —g
k=1

Each contribution still has mass and coupling parameters
mk and Fk, but now, in addition, a width I k. In the
most general Breit-Wigner resonance form, decay widths
are taken to be energy dependent, e.g. , the 2~ widths
have the O(p ) threshold behavior to reflect the P-wave
nature of the 2n. system. However, in order to maintain a
simplicity of description and the ability to represent each
n~ component in analytic form, we shall employ energy-

F&G. & &. Numerical fit to p~ —p~.

Fmr
paw(s)

(s —ni ) +(rn nr)
(66)

where r =I /(urn) is an expansion parameter for finite
width effects, we can evaluate integrals such as

Iaw = ds paw(s)(0)
Sp

1 mr=F 1 ——arctan—
(A/m )

—1

1 Kr——arctan
1 —(so/m i) (67)

and

independent widths throughout.
An advantage of the 5-function approach was the abili-

ty to express all the sum rules and the tau branching ra-
tios in elementary form. This is still true in the BW ap-
proximation for the sum rules 8'0, 8'1, 8'2, and the ~
branching ratios. For example, working with a generic
Breit-Wigner spectral function,

Iaw = ds spaw(s)(1)
Sp

m (1—so/m ) +a r

By passing to the limit r =0 of zero decay width, we re-
gain the results of the 5-function model.

Analogous to the procedure used in the 5-function
model, parameters for the first three BW poles are ob-
tained by fitting to experimental data. In passing, we
note that since a given spectral contribution has the
asymptotic behavior O(s ), the indiuidual BW spectral
integrals for 8'2 and S'3 are divergent. The numerator
of the fourth pole is fixed by demanding that the O(s )

asymptotic term in p~ —p„vanish. This implies

4

g (
—)"+'F m I =0

k=1

CBW 4pv(s) pa(s)= 3
+O(s ),

S

where

(70)

( )k+1F2 3I
I& =1

The constant C~w may be considered either as a quantity
to be fixed by Eq. (43) or as a prediction of the analysis.

We find it hard to see how any analytical study of the

By virtue of this relation, the asymptotic behavior of the
vector and axial-vector spectral functions becomes



49 CHILL SUM RULES AND THEIR PHENOMENOLOGY 1523

sum rules could succeed without incorporating the above
features or something similar. In our approach, all the
chiral sum rules are convergent even though individual
pole contributions may diverge. Moreover, the condition
given by Eq. (69) ensures that our description has the
smoothness in energy expected from duality.

analytically, the resulting expressions can be quite
cumbersome. In practice, it is more eScient to employ
the recursion relation

2m&1{ "+ ] —I{ ~+2~
BW g(1+ 2 2) BW BW

3. Asymmetric Breit- signer
$0

—n+1
+-

n —1
(75)

pi, (s}—p„(s}= g ( —)"+' P/, (s)F/, m/, r/,
(72)

(s —mk) +(m„I k)

The functions Pk(s) are polynomials

2 k
sic

Pk(s)= 1 ——
s

Although having the virtue of simplicity, the represen-
tation of Eq. (65) is deficient in several important
respects. A Breit-%igner form is symmetric about its
resonant energy whereas the n m contributions to p z z ex-
hibit asymmetric bumps. Besides, the B%" contributions
extend to energies lying below thresholds which charac-
terize the various n~ components.

An improved treatment can be realized in a variety of
ways. One simple parameterization which treats the vari-
ous components uniformly, yields a reasonable fit to data
and allows us to maintain analytic control is

Upon applying relations of this type, we have carried out
the calculational program described earlier in this sec-
tion. As stated earlier, because of the uncertainty in the
experimental 3m and 4m contributions, we have per-
formed the analysis for several different sets of r lepton
branching ratios. Typical results are shown in Table I,
where we display both input values (parameters for the
2m, 3n, and 4m asymmetric SW poles and the associated
branching ratios) and results (parameters for the fourth
pole, the coeScient C and the values for 8'0 and W3)
[39]. We have purposely exhibited two solutions [Nos. 1

and 2] to show that it is possible to fit the sum rules yet
not obtain an acceptable value of C. The graph of
p/

—p„corresponding to solution No. 3 of Table I is
displayed in Fig. 13. The overall appearance of this
curve clearly mimics the one in Fig. 11 which is based on
the numerical approach. We view the fact that the
different methods generate rather similar spectral func-

each containing two parameters, a threshold energy sk

and an integer-valued exponent nk =1,2, . . . . Although
the choice nk =1 is the simplest one, it yields an nn spec-
tral function which rises linearly just above threshold.
This does not appear to provide an adequate fit to the
data, and thus we have used nk =2 (k =1, . . ., 4). A fit

of this type to the 3m spectral function appears in Fig. 12.
Introduction of the polynomials Pk(s) will clearly lead

to integrals involving inverse moments of Breit-Wigner
forms,

Trial No. 1 No. 2 No. 3

Ml
fi
I'1

$1

Bq

0.763
0.157
0.123
4m„
0.243

T~o-pion inputs
0.763
0.157
0.123
4m 2

0.243

0.763
0.157
0.123
4m 2

0.243

TABLE I. Asymmetric Breit-Wigner representation. The
energy unit is GeV.

0.030 I I I

0.085

I' "'= d
(s)

B% S
Sp s

Although it is straightforward to evaluate such integrals
M2

f2
I2
$2

B3

Three-pion inputs
1.117 1.117
0.244 0.234
0.470 0.470
0.500 0.510
0.185 0.168

1.117
0.250
0.470
0.550
0.176

0.020

0.015

0.010

M3

f~
I3
$3

B4„

Four-pion
1.500
0.192
0.564
0.700
0.048

inputs
1.500
0.188
0.700
0.710
0.041

1.490
0.215
0.765
0.690
0.053

0.005 Q( );

0.000 I 1 I I

s {Gev )

)(
l l I

FIG. 12. Fit of asymmetric Breit-signer solution to 3m spec-
tral function.

M4
f4
I4

8„4„
8'0
W3
C

2.288
0.068
0.221
0.0001
0.0261

—0.0062
0.013

Output values
2.055
0.083
0.750
0.0015
0.0266

—0.0062
0.003

1.869
0.116
0.873
0.0046
0.0268

—0.0062
3.8X10-'
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FIG. 13. Fit of asymmetric Breit-Wigner solution No. 3 to
pv P~.

tions as an indication that there is not great freedom in

p &
—

p ~ once the theoretical and experimental con-
straints are imposed.

VI. CONCLUDING REMARKS

%'hat we have done in this paper is to suggest a pro-
cedure for comparing four well-known sum rules of chiral
symmetry with data from the real world of experiment.
In addition, we have phenomenologically constructed the
vector and axial-vector spectral functions to the extent
possible by using the full collection of available 7 decay
and e+e cross-section data. To be specific, the data
which constrains the spectral functions includes the
e+e ~a+~, 2vr+2n. , and m+m 2m cross sections,
the ~~2m, 3m., and 4n. branching ratios, and the energy
spectra for m m. , 2~ ~+, and 2m ~+a. final states in ~
decay. Theoretical constraints include chiral symmetry
at low energy, isospin relations for handling the data, and
the operator product expansion of QCD at high energy.
It is clear to us that this activity will be repeated by our-
selves or by others in the future. That is, we (perhaps op-
timistically) anticipate the emergence of improved data
which will provide a yet more reliable foundation upon

which to base the phenomenology. However, we feel that
our results are the best determination of the spectral
functions that can be made at this time.

As regards the data, we urge that e8'orts be made to
improve the determinations of the 3m. and 4n. contribu-
tions to the spectral functions. The 3m. component can
only be inferred from the ~ decay hadronic distribution.
In this paper, we were fortunate to have access to the re-
cent ARGUS determination of p z . Cross checks are al-
ways welcome, so we urge that data from ~ production at
both LEP and the Cornell Electron Storage Ring CESR
be analyzed to extract the spectral function p„". In addi-
tion, the need for an improved 4~ determination in e +e
cross-section data is especially acute for the m+m 2~
final state. Additional information on the 4m ~ decay
modes (m+m. 2' or m 3m ) would also be welcome.

In the latter part of our paper, we addressed the ques-
tion of whether experimental data is consistent with the
chiral sum rules. On the basis of our study, we conclude
that existing data is indeed consistent with the chiral sum
rules. It is important to not misinterpret this remark. Of
course, since physical data will always be less than per-
fect, it is not possible to claim "proof" of validity for the
set of sum rules. It is evident to us that to insist on such
proof would be foolhardy. However, given the number of
constraints on the spectra1 functions, it is far from trivial
that all of the chiral sum rules can be satisfied. Agree-
ment at the level we obtained is an aftirmation of the sub-
tle and complex theoretical intuition (involving chiral
symmetry, dispersion relations, the operator product ex-
pansion, and the asymptotic behavior of QCD) that leads
to the sum rules.
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