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Boson condensations in the Glashow-Salam-Weinberg electroweak theory
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Condensations of the boson fields in the Glashow-Salam-steinberg model of the electroweak interac-
tions are considered. Apart from the well-known phase with the Higgs boson condensation the new

phases appear. The electroweak magnetic phase with a very deep energy density minimum of 4 =44.382
GeV for charge density equal approximately to 0.5539 GeV emerges. In this phase the 8'~+ bosons are
massless and the photon A„acquire the nonzero mass. Droplets of this phase could be experimentally
observed by their very small ratio Q/M& 1/80. 13 GeV (where Q is the electric charge of the droplet
with the mass M& ). Another phase with Z„condensation and its stability are also examined. The exper-
imental knowledge of a droplet of this phase with the upper possible mass M 3 {where I is the weak iso-I
topic charge of the droplet) could give us the value of the Higgs mass.
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The Glashow-Salam-Weinberg (GSW} theory of weak
interactions is quite a well-established and verified model
[1],especially in its perturbative regime. The aim of this
paper is to examine the nonperturbative phenomenon of
boson condensations in this theory. The gauge field con-
densations [2] are interesting from the theoretical point
of view where they may play the same role as the Higgs
fields in the process of breaking the symmetry [3]. Boson
condensations are also the subject of growing interest in
the field of astrophysics where the presence of superdense
matter is taken into account (for example, neutron starts
or even more exotic cases [4]).

The boson condensation induced by the external
charge may change the physical system. The new vacu-
um state may be interpreted as the coherent state [5] (see
also Appendix A). It may drastically change the physical
system. It is suggested that the electromagnetic vacuum
in the presence of the external charge is unstable [6]. As
a result the new charge vacuum which is accompanied
with particle-antiparticle pair production may appear.
Such phenomenon could happen in heavy-ion collisions

[7] or inside astrophysical compact objects (neutron stars,
strange stars, or boson stars [4]).

In this paper we emphasize boson condensation in the
Glashow-Salam-Weinberg (GSW) model in the presence
of external sources. The GSW model gives the rich struc-
ture of possible phases. Apart from the well known

phase with the Higgs boson condensation the new phases
with the gauge boson condensations may appear. In this
paper it will be shown that the energy density of the new

phase with the "electroweak magnetic field" has a very
deep local minimum of e=(2.5811 GeV} for charge

density equal approximately to 0.5539 GeV . In this
phase the W„* bosons are massless and the photons A„
acquire a nonzero mass. This means that the electromag-
netic interactions will be suppressed in a similar fashion
to the superconductivity case. %e may expect such bo-
son condensations in very dense objects where they pro-
duce locally the lowering of the energy.

Also another phase [8] appears with Z„boson conden-
sation. There exists an upper limit for the Higgs non-
linear A, parameter in a certain range of the Z„boson
condensation.

EI. THE GENERAL THEORY

with the fermionic part Xf given by

&f=tLy"D„L +t'Ry"D&R ~2 (LHR +H.—c. ), (2)

where rn is the physical mass of the electron and U is the
constant parameter. Here the Ur(l) field tensor is
defined as

(3)

and the SUL (2) Yang-Mills field tensor as

F„'„=a„W„—a„w„' —g ~.b,
W'b e"„,

where the E,b, are the structure constants for SUL (2)
(c,b, is antisymmetric under the interchange of two
neighboring indexes and s,23 + 1).

The covariant differentiation D„ is given by

D„H =B„H+ig 8'„H +—,'ig'FB„H,

D„L =B„L+ig W„L +—,'ig'FB„L,

(5)

The Lagrangian density of the electroweak
SUL (2) XUr(1) model is summarized as

4I"„g'" —,'&„„&""+(—D„—H)+D"H —U(H)+Sf
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D„R =B„R+ ,'i—g'YB„R,

where

a
8'„=S'„'

U(H)=A, (H+H —
—,'v ) (9)

is the gauge field decomposition with respect to the su(2)
algebra generators.

The potential of the scalar fields is

jg=Ly" YL+Ryl'YR,
aj'"=Iy" I-, ~here a =1 2 3 .

Accordingly, the Higgs field satisfies

Oy= ( ,'g—'W—'„W'" ,'g—'2B—„B"+gg'WQ")qr

—Av qr+Ayi+ni (eL ez+H. c. } . (19)

with the Higgs doublet

H'
H= 0 (10)

III. THE BOSON CONDENSATIONS

The effective potential of our model is given as the vac-
uum expectation value of the Lagrangian density

which after making a local symmetry transformation can
be written as

0

Here q is the Higgs field.
In our notation we specify only the electron and its

neutrino. The contributions from quarks and other lep-
tons can be treated in a similar way. Here we adopt the
notation

VL

eL
and R =(ea ) . (12)

The coupling constant for SUL (2) is called g, and by con-
vention the Uz(1) coupling is g'/2. The weak hyper-
charge operator for the Uz(1) group is called Y. Quan-
tum numbers in the electroweak SUL (2) XU&(1) model
are given in Table I.

The relations among the Weinberg angle 8n, , g, and g'
are as follows:

for W'"(o =1,2)

OW'~+g~ e" B.e"~

g2( 1 2Wap WbWbv Way+ WavWbWbIr} gjay

(15}

and for W"

a@'~+g~,„e""a„e"~
) g 2~2 ~3@ )~e~2g p g

2 orb prbv pr3p

cos8n = and sin8a = . (13)
g +g g +g

The field equations for the Yang-Mills fields are
(0=—B„B")for B"

I

OB"+dl'dQ"= „'gg'qPW "+,'—g'—p B" ~jP—, (14)

8„=8„+b„,
q)=q)+5 .

(21)

Here W&, B„,and y are quantum fields with a vanishing
vacuum expectation value and co„', b„, and 5 are classical
constant fields related to them. The appearance of these
classical fields can be interpreted as a consequence of the
condensation. We choose the coordinate system in which
the condensations co„' and b„are to be of the following
form:

~O=Crn',

co;'=Ps„bn and n'n'=1,
bo=p,
6; =0.

(22)

(23)

In Eq. (22) (n') plays the role of the unit vector in the ad-
joint representation of the Lie algebra su(2). It chooses a
direction for the condensation. It is easy to see that

co„'co'"=o 28 and b„—b&=P2 . (24)

When we define the "eleetroweak magnetic field" as
S;.=1/2s;JkF~~ and the "electroweak electric field" as
8;=F 0 then in the homogeneous case
[8=const, o =const(n'}=const] we receive for 8%0 the
"electroweak magnetic field condensation (2P, )0" and
the "electroweak electric field condensation (8;)0" in

the form

(ga ) g y2n in a

(20)

where the new vacuum state ~0) (the ground state of the
system configuration) is the Glauber coherent state (see
the Appendix).

We decompose the initial fields into the quantum fluc-
tuating fields and the classical condensates (see the Ap-
pendix):

8"= W'+

+g'8""Wb Wb& —gj'I' . (16)
and (25)

Here the matter current densities are given by the equa-
tions (4;)&=god(5„.—n'n'} .
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From Eqs. (1)—(12) and (20)—(21) we obtain the classi-
cal part of the effective potential for the "boson conden-
sates induced by external matter sources" configuration
(hereafter, we will call it the BCMS configuration):

where the mean matter current densities are as follows:

aJ'"= Ly" L
2

cy —]g2& b dp c ev 1g252 a ap
and

J(r=((Ly"YL )0+(,Ry"YR )0) .

(27)

gg—'Y5 cu b" ——Y g' 5 b b"+gJ'"cu'

I

+ Jgb—+—'A, (5 —u ) +
2 " 4

(26)

The dots in Eq. (26) and afterwards signify some quantum
corrections. The Lagrangian density given by the Eqs.
(1)—(12) leads together with Eq. (21) to the classical mas-
sive Lagrangian density for boson fields

'g——E s co co "W W'"+ 'g 5 —W'W'" 'gg—'Y—5 W B"+ —'Y g' 5 B B"+ 'g c0'c—o'"@ 'gg'—Yc—u b"qP

+ ,'g' Y—b„b"y A5y—. ,'A(5——v, )y— (28)

JY=p Y, JY=O, J' =p' and J"=0, (29)

We now assume that we are in the local rest coordinate
system in which

m 2 —
g 2( i 52 a 2+ y2 )

m =g ( —'5 +2@2)

(37)

(38)

I

+—p p+ —'A.(5 —v ) +Y 4 (30)

Now from the field equations, Eqs. (14)—(19},we can
obtain four equations:

(31)

These equations lead to four algebraic equations for the
condensations 8, cr, P, and 5:

( —'5 —2o +28 )8=0
—g (28 +—,'52)a+ ,'g'5 Pn —+p'n'=0,

,'(gon ——g'P)5 +pr=0,

[ j g2(o 2 2/2)+ jgglapn 3 j gl2p2

(32)

(33)

(34)

+A,(5 —u )]5=0 . (35)

where p Y and p' are the matter charge densities related to
U„(1) and SUL (2), respectively. Using Eqs. (22)—(24) we

can rewrite Eq. (26) as

p 5) g2 2y2+ 1 g2y4 1 g 252(a2 2y }

+ ,'gg'5 pan —,'g' 5 p +—gp—'n'a

m- =—'g'252
B 4 7

,'m2 =—A5'+,', A(5—2 ,u') —,'g2—(cr—2 28'—)

+ ,'gg'o —pn' ,'g'2—p'—.

(39)

(40)

B„
and at the same time the "rotation" of the o and p con-
densations to their counterparts g and a as well as the
"rotation" of the charge densities p and p Y to the physi-
cal pz and p&

cose —sine o

cc sine cose p

(g/case)Pz cose —sing (g)p'n'
(g sine)p sine cose (g'/2)pr (43)

Q

Now ustn~ Eqs. (37)-(40) and defining the W+ fields as
W =( W +iW )/ v w2e can rewrite the square masses
of the physical boson fields as follows:

Let us perform for 5%0 the "rotation" of the W„and
B„fields to the physical fields Z„and 3„

3cose —sine
sine cose

P .

Now we choose

(n')=(0, 0, 1) . (36)

m —~ =g [ —,'5 —(gcose+asine) +8 ], (44)

In this case we have for 8%0 an "electroweak magnetic
field condensation" diff'erent from zero (%3)0=—g8
pointed in the x spatial direction and the "electroweak
electric field condensations" (6', )0=(62)0=god point-
ed in the x ' and x spatial directions, respectively.

Using Eqs. (28), (22) —(24), and Eq. (36) we receive in
the classical regime the square masses of the boson fields
as follows:

mz =
—,[mz sM +2g 82 1 2 2 2

+Q(mzsM +2g 8 ) 2(gg 58) ]

m„-= —,'[mzsM+2g 8

+(mzsM+2g + ) 2(gg'5&) ]

(45)

(46)
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1 2 2 1

2g2 z A
—'m z =A,5 +—A,(5 —v )

— (m-g —m -a )
A. Condensations 0%0 and 5%0

Equations (32)—(35) can be now rewritten as follows:

+g (gcos8+asin8) +—1 2 1 2

Q2 4
(47) 1

2 8.2PQSM ~ (53)

where mzsM is the standard counterpart for the boson
Z" square mass which is equal to

P= —, gon +21 3 PY
$2

(54)

mzsM=~(g +g' I (48) 8+—58 — p2 =01 2 4 1

4 4 2 QSM (55)

1
PQ PQ SM+ 2 g

cote —1 pY, (49)

pz=p —pQsin e,
PQsM P + 2PY

(50)

It is useful to write the relations between the matter
weak isotopic charge density p [see Eqs. (29) and (27)],
the matter weak hypercharge density pr [see Eqs. (29)
and (27)], the standard electric charge density p& sM, the
standard weak charge density pzsM and their generaliza-
tions in our model; that is the electric charge density p&
and weak charge density pz.

2

5+ 8 —v 5 ——p2=0.
2A,

(56)

From Eq. (55) we see that the condensation 8%0 only
when p~ s„%0.

When we notice that the relation between the weak hy-
percharge quantum number Y and the electromagnetic
charge quantum number Q can be written for matter
fields in the form Q =p Y/2 where suitable p (p%0) are
given in Table I, then the relation between the weak hy-
percharge density p„and the standard electromagnetic
charge density p&sM can be written in the similar form

and (51)

PY
PQSM I (57)

—[1+8(8/5) )g +g'
tane =

'2 1/2 '

[1+8(8/5) ]g —g' +
2gg

(52)

pz sM p pQ sMsin e3 ' 2

Here the 8 angle is the modified mixing angle which is
given by the formula

After using Eq. (57) we solved numerically Eqs.
(53)—(56) and we obtained the condensations squared 8z
and 5 as functions of p&sM with p as a parameter.
Different values for p (see Table I) represent different
matter fields which could be the sources of charge densi-
ties.

The results of solving Eqs. (53)-(56) for the a and g
condensations [see Eq. (42)] and the 8 and 5 condensa-
tions are shown in Figs. 1 —4.

Now Eq. (21) has the form

W03=Wo3, 8'( =W( kid/W2, W2 =8'2+8/V2,
When 8—+0 then it is not difBcult to ascertain that out of
Eqs. (49)—(52) the well-known GSW results emerge.

Z —Z

A;=A;,

Zo=ZO+g, where g=o cos8 —Psin8,
(58)

Ap = Ap+a, where a =cr sin8+P cos8

IV. DISCUSSION

The calculations below are done for the boson conden-
sations in extrema of the effective potential 'Q, r unless it is
stated differently. From Eqs. (32) and (37) we can see
that the solutions of Eqs. (32)—(35) for boson condensa-
tions in the extrema of the effective potential Q,f split
into two major cases. The first one for 8%0 gives us the
phase with m ~ =0. The second case for 8=0 gives us

the phase with m —~ %0 which depends on the values of
condensations (with m -~ =0 as the limit of the stability

for this phase). Each of these two splits then into the
5%0 and 5=0 cases. We chose in our numerical calcula-
tions the standard boson JY" mass m+, SM=80. 13 GeV,
the standard boson Z~ mass mzsM=91. 187 GeV, and
the fine structure constant = 1/137.

p = 1/2

2000 .

1000 p= 4

p= —2

0

—500-

5 x 106 1 x 107

ff}'q s~ [Gev3]

FIG. 1. The a condensation of the Ao gauge boson fields as
the function of the standard electric charge density p&sM
(8%0,5%0).
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100-
p=2

200

~p=4p='
~~p

p = 1/2

OO.M [G.V']

5 x 10 & x 10" 1,5 x10'
p 1

—100-
100

—200 .

—300 .
p = 1/2

p= —2
'0 5 x 106 1 x 10 1.5x10

gq sM fG~V ]

2x107

FIG. 2. The g condensation of the Zo gauge boson fields as
the function of the standard electric charge density

p~ sM(8%0, 5%0).

The masses of the q, Z, and A were calculated accord-
ing to Eqs. (45)—(46) and (40) and the appropriate results
are shown in Figs. 4-6. The masses of the W fields are,
according to Eqs. (32) and (37) (for the 8%0 phase), equal
to 0.

The results for the ratio sin8/sin8+ [see Eq. (52)] and
the physical charge density p& [see Eq. (49)] for boson

FIG. 3. The 8 condensation of the W =2' and W ==1' gauge
boson fields as the function of the standard electric charge den-
sity pg sM(8%0, 5%0).

condensates given by Eqs. (53)—(56) as functions of p&sM
are presented in Figs. 7 and 8, respectively.

In all the figures the curves for difFerent values of p
coverage for relatively small values of p&sM (i.e., for

p&sM in the range up to values approximately 10 times
bigger than these which correspond to matter densities in

TABLE I. Quantum numbers in the SUL (2) X U r( 1 ) electroweak theory.

Quarks

uL

dL

uR

R

Weak
isotopic

charge I'

1

2

Weak
hypercharge

Y

—2
3

Electric
charge Q

Q=I +Y/2

2
3

1

3

2
3

1

3

p =2Q/Y

Leptons

VL

eL
1

2

Gauge bosons
W+

W

Higgs boson
H+ 1

2

1

2

Quark

configurations

(uLdLdL)

(uLuLdL )

(3xuL —3XdL)
(5xu, —7xd, )

1

2
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1. 10'

6. 10-

p= 1/2

p=l
p=2

p —4

81'

80.6

80.2 80.

0.148808

5x1Q

4x 10
II

3x10-

2. 107

0
5 x 106 1x10" 2x 107

eqsM t«v'1 0.16 0.18

2x1QS .

1x1Q

0.22

0.46

FIG. 8. The physical electric charge density p& [see Eq. (49)]
as the function of the standard electric charge density p&sM
(4%0,5%0). The region for the standard electric charge densi-

ty p&sM which is in the range up to values approximately 10'
times bigger than those for nucleon matter is indicated by the
arrow.

FIG. 10. The mass M&=& of the BCMS configuration (with
the electric charge Q = I } for boson condensates given by Eqs.
(53)-(56) as the function of the mean electric charge radius r&
(8%0,5%0 and for all values ofp%0 from Table I}. The region
in the vicinity of the 'stable" BCMS configuration is indicated
by the arrow.

Mg g
7r g @min(Pg SM )

where rg is the "mean electric charge radius" of a BCMS
configuration and that the electric charge Q =—', 7rrgpg sM.

Then from Eqs. (30) and (53)—(56) we receive
Mg~Qgv/2=Q X80.13 GeV as pgsM~O for all con-
sidered values of A, )0 and p%0 and (see Table I}. The
function Mg l( rg ) is presented in Fig. 10. Con-
figurations of this phase lie only on the Mg-rg curve.
For example, a droplet of the new phase with charge
Q =1 and described by Eq. (59) will have the "mean
charge radius" rg =0.149 fm (in comparison for a proton
kg=0. 805 fm) and the mass Mg, =80.13 GeV. (In
Figs. 3-7 and Figs. 9 and 10 the curves for p and —p
cover. }

B. Condensations 8%0 and 5=0

In that case Eqs. (32)—(35) lead to

py=O,

o = +p /2g and 8=+o .

(60)

(61)

2 — 2 —/Lm -&2=m&=0,

~ 2 —21/3 4/3( 3 )2/3Pl@3 — g P

(62)

(63)

i ~ 2 —
v 2+ 2

—l l /3 4/3( 3 )2/3 (64)

These equations together with Eqs. (37)—(40) give us the
square masses of boson fields as follows:

2. 10'

c

1. 10 .

45.2

44.8

44.4.

o.ss

/I //

b

jl

Ir

-r

!I
jr

ir

rr

and the energy density 8(p ) which is equal to

C(p )=C,l(8%0,5=0)

—32
—7/3 2/3( 3)4/3+ 4 (65)

p~=O p =0. (66)

The quantum numbers of the matter fields in the stan-
dard model (see Table I) give as a result of Eq. (60) the
implication

0
0.1 0.2 0.3

eqsM f«& )

0.5 0.6

So we see that in that case Eqs. (60)—(65) reproduce the
GSW model for 5=0 [the unbroken SUI(2)XU&(1)
high-temperature phase].

FIG. 9. The minimal energy density of the BCMS
configuration 8;,(p&sM}='Q,i(8%0,5%0}[see Eq. (30)] for bo-
son condeusates given by Eqs. (53)-(56) (for all values of pAO
from Table I) as the function of the standard electric charge
density p& sM which is in the range up to values approximately
10 times bigger than those for nucleon matter. The region in

the vicinity of the "stable" BCMS configuration [see Eq. (59}]is
indicated by the arrow.

C. Coadensations 0=0 and 5%0

+ —,'Al5 —v ) (67)

Using Eqs. (42) —(43) we can rewrite the efFective poten-
tial R,& given by Eq. (30) in a very simple form:

+el(4 i2 f3) 8(g +g )8 0 +PzsMC+PgsM~
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This potential together with the equations
8 'Q,&=B&Q,f=Bs'iV,&=0 yield, respectively, the equations
for the charge density p&sM and the condensations g and
5 [instead of these calculations we could use Eqs.
(32)—(35) and (42}-(43}j:

2x109 '

PQSM (68)

+g 50 PzsM & (69}

alps

and
'0 100 200 300 400

~(52 —")—-'(g'+g'g'=o (70)

The nonzero value of the weak charge density pz sM le d
inevitably to the nonzero g condensation and to the
forced symmetry breaking.

Combining Eqs. (68} and (69) with (67) we obtain the
classical counterpart of the GSW efFective potential for
8=0 (see Fig. 11)

2PZ l+.t(5|&—oipgsM —0}=,+—g(5' —v ) (71)

The solution of Eqs. (69) and (70) leads to

FIG. 11. The classical effective potential
Qj5;8=0,p&sM=O} as the function of the 5 Higgs field con-
densation (A, =1).

2A'"
0 PZSM

g +g'

' 1/2 1/3
Av

PzsM+ PzsM+ 27

6
1/2 1/3

Av
PzsM PzsM+

J

. &p (72)

and

52( )
Pz sM4.

PZ SM (73)

+71~2 ~1 2 ~3 ~3
p p ~ i i

1I c =@'e—pcotes, ,

BO=Bo+p

8 =9
(76)

where g and 5 are only the functions of PzsM. It is not
difficult to ascertain that 5~v and g-+0 as pzsM~O,
and the well-known GSW broken low temperature phase
(5=V) with U&(1) symmetry emerges

Using Eqs. (22)-(23) and (41)-(42) we can rewrite Eq.
(21) for the physical field A„ in the form

or in the physical fields

Z. =Z.
p p~ i i s

1Zu=zu+g where g= — . p,sine&

A„=A„+a„, where a„=(a,0,0,0) . (74)
(77)

Let us notice from Eqs. (68)-(71) that a is not a dynami-
cal parameter so Eq. (74) gains the gauge transformation
interpretation. The a„condensate corresponds to the
nonphysical degree of freedom (unphysical photon} and it
can be removed by the appropriate gauge transformation.
So the requirement that the U&(1) group has to survive

untouched during the symmetry breaking gives us

The appearance of the boson condensates strongly
influences the masses of the Selds in the model and from
Eqs. (44)-(47) (8=0 and a=O) we obtain (see Figs.
12—14)

a=o sines, +pcoses, =O. (75)
nt 2 —

g 252 g2$2cos2e

~ 2 1 (g2+gl2)52

(78)

(79)

We have the result that when the 8'„' and Z„Selds
acquire nonzero masses then the condensations in Eq.
(21) can be rewritten as follows:

m&=0,

—,'m@=A,5 +2k,(5 —V )——,'(g +g' )g

(80)

(81)
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2000.
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250- o.

FIG. 12. The square mass m' ~ of the 8'+ gauge boson fields

[see Eq. (78)] as the function of the standard weak charge densi-

ty PzsM~8=0, 510,P&sM=0).

The minimal energy density of the BCMS
configuration 8;„(pzsM)='Q, t(8=0,5%0) is as follows
(see Fig. 15):

1
i (PzsM) 0 g +g PZSM+ 64

(g +g

(82)

From Eq. (78) it is clear that the boson condensation
g) 0 leads to the instability in the W'„sector if

245
0 2.5x1Q 5x10' 7.5x10 3 1.25x10

PzsM [«v l

FIG. 14. The mass m /&2 of the q Higgs boson field [see

Eq. (81)] as the function of the standard weak charge density

pzsM ~ 0&5+0&pgsM

this phase is stable for an arbitrary A, (see Fig. 16). For
values bigger than 1.655X10 GeV this phase for given
X will be destabilized at certain value of pzsM=pzm, „
and the system could reach the charged (p&sMAO) stable
phase with 8%0. For A, (g /(16cos eir)=0.0422 the
phase is stable for all values of weak charge density pz&M
(see Fig. 16).

We can also examine the mass

Qg 2+g i2

PzsM (83) M i= ', mrzC—;„(pzsM)

When the equality

PzsM+g +g

is taken into account we obtain the relationship between
A, ,„and pz, „where A, ,„is the value of 1, and pz, „ is
the value of pzsM for which we have m+y =0 (see Fig.
16). The region of possible configurations of this phase is
on and below the A, ,„-pz,„curve.

For weak charge densities

pzsM~gv /(8cos es.)=1.655X10 GeV

of a BCMS configuration with nonzero weak charge den-
sity. Here rz is the "mean weak charge radius" of this
configuration which has the weak isotopic charge
I =

4, ~rzpzsM. We receive the upper (according to the

stability of this phase within the 8' sector) limit M &

for the value of the mass M 3 with the region of possible

configurations of this phase which lie on and below the
M & -iL,„curve (see Fig. 17).

The experimental knowledge of a BCMS configuration
with the upper possible mass M 3 could give us from

this curve the value of A, and eventually the value of the

93-
8 x107;

92
4 x&07.

91.5 ~

2x 107

91
2.5 x 10 5x10 7.5 x10 3 1.25 x10

P»M [t.".V3l
0

2.5x105 5x10' 7.5 x10' fG v3l 1.25 x10
PZSM t

FIG. 13. The mass mz of the Z" gauge boson fields [see Eq.
(79)] as the function of the standard weak charge density pz sM
(8'=0 5%0 pg sM =0).

FIG. 15. The minimal energy density of the BCMS
configuration [see Eq. (82)] Cmm(pzsM) =Vl,i(8=0,8%0,
p&sM=O) [see Eq. (82)].
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3.

2.
region of instability

50'

0
5x10e 1X107 3

2x10
ASM IG«) 0.0002 0.0004 0.0006 0.0008

rz [fm)
0.001

FIG. 16. The partition of the (Apz6M} plane into two regions
of stability and instability of the phase with 8=0 and 510. The
region of possible configurations of this phase is on and below

the A, -pz curve where A, is the value of A, and pz, „ is

the value ofpz sM for which we have m y =0.

FIG. 18. The upper (according to the stability of the phase
with 8=0 and 5%0 in the 8' sector) mass M 3 {rz) of aI =1,max

BCMS configuration (with the weak isotopic charge I'=1) as
the function of the "mean weak charge radius" rz of this

configuration.

Higgs boson mass. The function Mi, ,(rz) is also
presented on Fig. 18.

D. Condensations 8=0 and 5=0

In that case the GSW model for 5=0 is reproduced
[the unbroken SU& (2) XU r(1) high-temperature phase].

V. CONCLUSIONS

In this paper the boson Higgs field and gauge field con-
densations in the presence of the'external matter sources
(BCMS configurations} were examined. Apart from the
Higgs boson condensation (5%0) the rich phases struc-
ture is observed. In general, we notice two physically
difFerent phases. The first with 8%0 and 5%0 appears
only when the charge density p&sMAO. In this phase the

175

Q
II

8'„bosons are massless while the photons A& and bo-
sons Z& are massive. We observe very deep energy densi-

ty minimum (see Fig. 9}with 8;„=44.382 GeV4 and the
charge density p&sM=0. 5539 GeV for which we ob-

tained (for Q =1) a droplet of this phase with the mean
electric charge radius r& =0.149 fm and the mass

M&, =80. 13 GeV. The mass of a droplet of this phase

M&-+Qgu/2=Q X80. 13 GeV

as p&sM-+0 for all values of A, )0. Configurations of this
phase lie only on the M&-r& curve (see Fig. 10) or
equivalently on the E;,-p& sM curve (see Fig. 9).

The second phase (8=0 and (%0) with the Z„gauge
field condensation appears only when the weak charge
density pzsMAO. This phase is very similar (especially
when pzsM~O} to the GSW low-temperature phase.
The region of possible configurations of this phase is on
and below the A, ,„-pz curve (see Fig. 16). For

A, &g /(16cos 8&}=0.0422

the phase is stable for all values of weak charge density

pz sM. However, it is stable for an arbitrary A, only if

100 region of instability pz sM
&gv /( 8 cos 8u, )= 1.655 X 10 GeV

50.
I, me &tea& cur ee

region of stability

0

FIG. 17. The upper mass M 3, of a BCMS configuration

of the phase with 8=0 and 5%0 as the function of the A, non-
linear Higgs parameter where ~„and M 3 are the valuesI =1,max

of A, and M 3, respectively, for which m ~ =0 (on the curve).

The region of possible configurations of this phase is on and
below the A, -M 3 curve.I,max

For pzsM&pz, „=1.655X10 GeV this phase is unsta-
ble in the 8'* sector. When pzsM&pz the system
may reach the charged stable phase (8%0).

The further evolution of this system seems to be very
interesting. During its evolutions the system will emit
charged particles lowering its energy and the charge.
This emission may come from particle-antiparticle pair
production which will neutralize the charged vacuum
(the Greiner state [6]). Depending on the initial mass of
the BCMS configuration (M 3 & M& or M 3 (M& ) the

system in this process may reach the metastable point
(with 8%0) or the other ordinary standard model vacu-
um (with 8=0}.Such a process may happen in heavy ion
collisions or in astrophysical objects.



1478 R. MANKA AND J. SYSKA 49

ACKNOWLEDGMENTS

This work was supported in part by a U.S.—Poland
Maria Skl'odowska-Curie Joint Fund II.

APPENDIX A

Let us consider a system of quantum boson fields P„
and a new system of quantum boson fields P„related to

4~ by

(t'~ =4~+4~ (Al)

where the shifts gz are the classical fields. These shift
transformations can be expressed as

where

&(g, )=-py y fd'«PAgaggq Pggaggv) .

Here g„ is the sum over all shifted fields and g„means
the sum over all degrees of freedom for these fields. The

a&&„, and a&&„are the annihilation and creation opera-
tors for the P„ field. The coefficients P„i, are the Fourier
transformations of the g„ fields.

Now we assume that in the Hilbert space % there ex-
ists a normalized vacuum vector ~0) which is annihilated
by the operators a&&„

a„i,„~0)=0 and (0~0) =1 .

The shifts cause the changing of the ground state of a
system according to the relation:

lO& lO& =n(g, )lo& .

The new vacuum state ~0) is simply the Glauber
coherent state. This state includes the infinite number of
excited states of P„ fields. The state ~0) is also normal-
ized, i.e., (0~0) =1.

As the state)0) is the vacuum state for the P„ fields

also the state ~0) may be considered as the vacuum state
for the P„ fields. Hence, when we have (0~$„~0)=0 we
also have (0~$„~0)=0 and

(o~y„~o&=(o~y„~o)+g„=g„.

The point is that when the ground state ~0) is attained
as the result of the transformation as in Eq. (Al) which is
not the gauge symmetry transformation or as the result
of the appearance of some new external charges in the
system it leads to the conclusion that the Fock spaces
which are built on the ground states ~0) or ~0), respec-
tively, are not unitary equivalent. This means that some
classical boson fields g„may attain physical interpreta-
tion.

We use the notation (A )o for the mean value

(ofa/o).
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