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Condensations of the boson fields in the Glashow-Salam-Weinberg model of the electroweak interac-
tions are considered. Apart from the well-known phase with the Higgs boson condensation the new
phases appear. The electroweak magnetic phase with a very deep energy density minimum of & =44.382
GeV* for charge density equal approximately to 0.5539 GeV> emerges. In this phase the W;t bosons are
massless and the photon 4, acquire the nonzero mass. Droplets of this phase could be experimentally
observed by their very small ratio @ /M, <1/80.13 GeV ™! (where Q is the electric charge of the droplet
with the mass Mj). Another phase with Z, condensation and its stability are also examined. The exper-
imental knowledge of a droplet of this phase with the upper possible mass M’ ;3 (where 1 3 is the weak iso-

topic charge of the droplet) could give us the value of the Higgs mass.

PACS number(s): 11.15.Ex, 12.10.Dm

I. INTRODUCTION

The Glashow-Salam-Weinberg (GSW) theory of weak
interactions is quite a well-established and verified model
[1], especially in its perturbative regime. The aim of this
paper is to examine the nonperturbative phenomenon of
boson condensations in this theory. The gauge field con-
densations [2] are interesting from the theoretical point
of view where they may play the same role as the Higgs
fields in the process of breaking the symmetry [3]. Boson
condensations are also the subject of growing interest in
the field of astrophysics where the presence of superdense
matter is taken into account (for example, neutron starts
or even more exotic cases [4]).

The boson condensation induced by the external
charge may change the physical system. The new vacu-
um state may be interpreted as the coherent state [5] (see
also Appendix A). It may drastically change the physical
system. It is suggested that the electromagnetic vacuum
in the presence of the external charge is unstable [6]. As
a result the new charge vacuum which is accompanied
with particle-antiparticle pair production may appear.
Such phenomenon could happen in heavy-ion collisions
[7] or inside astrophysical compact objects (neutron stars,
strange stars, or boson stars [4]).

In this paper we emphasize boson condensation in the
Glashow-Salam-Weinberg (GSW) model in the presence
of external sources. The GSW model gives the rich struc-
ture of possible phases. Apart from the well known
phase with the Higgs boson condensation the new phases
with the gauge boson condensations may appear. In this
paper it will be shown that the energy density of the new
phase with the “electroweak magnetic field” has a very
deep local minimum of &~(2.5811 GeV)* for charge
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density equal approximately to 0.5539 GeV>. In this
phase the Wf bosons are massless and the photons 4,
acquire a nonzero mass. This means that the electromag-
netic interactions will be suppressed in a similar fashion
to the superconductivity case. We may expect such bo-
son condensations in very dense objects where they pro-
duce locally the lowering of the energy.

Also another phase [8] appears with Z,, boson conden-
sation. There exists an upper limit for the Higgs non-
linear A parameter in a certain range of the Z, boson
condensation.

II. THE GENERAL THEORY

The Lagrangian density of the electroweak

SU,(2)XUy(1) model is summarized as

L=—1Fi F**—1B, B*+(D,H)"D*H—U(H)+L,
(1)

with the fermionic part L ; given by

L;=iLy*D,L +iRy*D,R —V2"-(LHR +H.c.), )

where m is the physical mass of the electron and v is the
constant parameter. Here the Uy(l) field tensor is

defined as
B, =9,B,—0d,B, (3)
and the SU; (2) Yang-Mills field tensor as
Fi,=3,Ws—3,Wi—ge, WOWS , @)

where the g, are the structure constants for SU;(2)
(€45 1s antisymmetric under the interchange of two
neighboring indexes and €,,3=+1).

The covariant differentiation D, is given by

D,H =6HH +igW, H +%ig'YB”H , (5)
D,L=9d,L +igW, L +%ig’YB#L , (6)
1468 ©1994 The American Physical Society
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D,R =8pR +%ig'YBuR s 7
where
— a aa
W# = W“_2— (8)

is the gauge field decomposition with respect to the su(2)
algebra generators.
The potential of the scalar fields is

UH)=MH*H—1v?? )
with the Higgs doublet
H +
H= Ho , (10)

which after making a local symmetry transformation can
be written as

=L (11
V2 lel
Here ¢ is the Higgs field.

In our notation we specify only the electron and its
neutrino. The contributions from quarks and other lep-
tons can be treated in a similar way. Here we adopt the
notation

vL

L= and R =(eg) . (12)

The coupling constant for SU, (2) is called g, and by con-
vention the Uy(1) coupling is g'/2. The weak hyper-
charge operator for the Uy(1) group is called Y. Quan-
tum numbers in the electroweak SU;(2)XUy(1) model
are given in Table I.

The relations among the Weinberg angle 6, g, and g’
are as follows:

’

(13)

cosOy = and sinOy =

‘/g2+g12 ‘/g2+g12 :

The field equations for the Yang-Mills fields are
(0= —24,9") for B#

OBH-+83,8"=—gg' W +1g 79?8 ~ £t . (19

for We%(a =1,2)
OW*+ge,, Wb W
=g { LG W — WEW Wb+ WO WEW ) —gjo |

(15)
and for W3
OwW3#+ge;, W W
= %g2q32W3"—%gg':sz“—ngf,W""W""‘
+g:Wrhwewor—gjd (16)

Here the matter current densities are given by the equa-
tions

j$=Ly*YL +Ry*YR , (17)
. = o°
1""=Ly“7L, where a =1,2,3 . (18)

Accordingly, the Higgs field satisfies
Op=(—1g’WiW* —(g" B, B*+gg' W B")p

—kv2¢+)~¢’3+m%(€Lex +H.c.). 19

III. THE BOSON CONDENSATIONS

The effective potential of our model is given as the vac-
uum expectation value of the Lagrangian density

Us=—(L)y, (20)

where the new vacuum state [0) (the ground state of the
system configuration) is the Glauber coherent state (see
the Appendix).

We decompose the initial fields into the quantum fluc-
tuating fields and the classical condensates (see the Ap-
pendix):

W,=W,tao,,
B"=§“+b“ , (21)
o=p+6.

Here WZ, B u» and @ are quantum fields with a vanishing
vacuum expectation value and “’fu b ur and § are classical
constant fields related to them. The appearance of these
classical fields can be interpreted as a consequence of the
condensation. We choose the coordinate system in which
the condensations w;, and b, are to be of the following

M
form:

wf=on®,
a=
0 w:‘l:‘?eaibnb and n’n°=1, (22)
b0=B ’
o= ‘bi=0 - 23)

In Eq. (22) (n°) plays the role of the unit vector in the ad-
joint representation of the Lie algebra su(2). It chooses a
direction for the condensation. It is easy to see that

me“"=02—2192 and b“b“=Bz. (24)

When we define the “electroweak magnetic field” as
Bi=1/2¢;3 Fj;, and the “electroweak electric field” as
6{=F{ then in  the homogeneous  case
[ =const,o =const(n?)=const] we receive for 370 the
“electroweak magnetic field condensation (B{)y” and
the “electroweak electric field condensation (&¢);” in
the form

(B)g=—g*n'n®
and (25)
(68)5=g0 38, —n°n’) .
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From Egs. (1)-(12) and (20)-(21) we obtain the classi-
cal part of the effective potential for the “boson conden-
sates induced by external matter sources” configuration
(hereafter, we will call it the BCMS configuration):

= 1,2 b _du_.c_ev__ 282 a w°
cuef_ 78 €abc€ade Pu®@ "G)VCD 8 K

88 Y80l — L Vg 6% bV gl

+E-T4b, + MBI+ - (26)

+1gY? b p? — A8%p  — LA(8% —v )@

We now assume that we are in the local rest coordinate

system in which
JO=py, Jy=0, J°=p® and J¥=0, (29)

where py and p? are the matter charge densities related to
Uy(1) and SU, (2), respectively. Using Eqgs. (22)-(24) we
can rewrite Eq. (26) as

UL 3,0,B,8)=—g20? P +1g¥9*— 1g26% (o> —29%)
+%gg:8230n3_%g128232+gpana0,
+g7py/3+_;_u52—u2)2+ . (30)

Now from the field equations, Eqgs. (14)-
obtain four equations:

av?cuefz aa?’lef= aB(aef= aﬁcuef'—_o . GD

(19), we can

These equations lead to four algebraic equations for the
condensations 3, o, B, and 6:

(182 —20%+28%)9=0, (32)
—g (29 +18%)0 + 1g'8’Bn 3 +pn= (33)
Lgon’—g'B)8*+py=0, (34)

[—1gX0?—28%)+1gg'oBn’— g B?
+A(82—v?)16=0. (35
Now we choose
(n9)=(0,0,1) . (36)

In this case we have for 970 an “electroweak magnetic
field condensation” different from zero ($§)6= —gd?
pointed in the x? spatial direction and the “electroweak
electric field condensations” { });=(63);=go point-
ed in the x ! and x? spatial directions, respectively.

Using Eqgs. (28), (22)-(24), and Eq. (36) we receive in
the classical regime the square masses of the boson fields
as follows:

where the mean matter current densities are as follows:
— a
Jar= < L 7,#‘7_ L >
2 s
and (27)
J§=(Ly*YL )5+ (Ry*YR );) .

The dots in Eq. (26) and afterwards signify some quantum
corrections. The Lagrangian density given by the Eqgs.

1)-(12) leads together with Eq. (21) to the classical mas-
sive Lagrangian density for boson fields

mass = — 38 "EabeEade OO W W+ Lg P WIW H — Lg YO W B + 1 Yg'?8?B , B* + g 005" — 1gg' Yo b P’

(28)
ml,,=g*(18* =g+, 37)
ml;=gX(18*+29%), (38)
m}=1g28? (39)
$mL = A8+ M8 —v?)— 1g¥(0?—20%)
+1gg'oBn’—1gp* . (40)

Let us perform for 850 the “rotation” of the W3 and
B fields to the physical fields Z and A

Zu cos® —sin© Wz
,Zfﬂ sin® cosO Eu @1

and at the same time the “rotation” of the o and B con-
densations to their counterparts { and a as well as the
“rotation” of the charge densities p® and py to the physi-
cal pz and py

¢ _ cos® —sinO

a sin® cosO B’ (42)
(8 /cosO)pz cos® —sin® | | (g)p"n®

(g sin@)p, sin® cos©® | [(g'/2)py 43)

Now usmg Egs. (37)-(40) and defining the W fields as
FiW?)/V2 we can rewrite the square masses
of the physxcal boson fields as follows:

+ =g*[18*— (£ cosO+asin®)’ +97] (44)

e
|
oq

+V (m2gy +2829) —2(gg'88)],  (49)

=1V (m3gy+2829)2—2(gg'89)%],  (46)
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2—qs24 Las2_ oy L 2 5 o
%m¢—K8+2}»(8 v*) 282(m2§ m3a®)

+g? §(§00s6+asin9)2+% 2, @D

where m2 gy is the standard counterpart for the boson
Z* square mass which is equal to

mZou=1(g*+gH)8 . (48)

It is useful to write the relations between the matter
weak isotopic charge density p* [see Eqs. (29) and (27)],
the matter weak hypercharge density py [see Egs. (29)
and (27)], the standard electric charge density Posm» the
standard weak charge density p g\ and their generaliza-
tions in our model; that is the electric charge density p,
and weak charge density p,:

pgszSM+% %cote—l Py s (49)
pz=p’—pgsin’6 , (50)
pQSM=P3+%PY

and (51)

Pzsm=P’—posusin’Oy .

Here the © angle is the modified mixing angle which is
given by the formula

tano— | —11+8(9/871g+g"
2gg’
2 172
2 2_ )
o[ e

When 13— 0 then it is not difficult to ascertain that out of
Egs. (49)-(52) the well-known GSW results emerge.

IV. DISCUSSION

The calculations below are done for the boson conden-
sations in extrema of the effective potential U unless it is
stated differently. From Eqgs. (32) and (37) we can see
that the solutions of Egs. (32)-(35) for boson condensa-
tions in the extrema of the effective potential U, split
into two major cases. The first one for 30 gives us the
phase with m;,i =0. The second case for =0 gives us
the phase with mfi,i 70 which depends on the values of
condensations (with mf;,i =0 as the limit of the stability
for this phase). Each of these two splits then into the
870 and 6=0 cases. We chose in our numerical calcula-
tions the standard boson W* mass mpy g =280.13 GeV,
the standard boson Z* mass mzg,=91.187 GeV, and
the fine structure constant = 1/137.

A. Condensations 90 and §#0

Equations (32)-(35) can be now rewritten as follows:

1
U=E;-—02-pQSM R (53)
B=é gan3+2’;—’2’ : (54)
64 1gogs 1 2 _
6 g? 1
8%+ Haﬁ—vz 54—Ip§,=o. (56)

From Eq. (55) we see that the condensation 90 only
When pQ SM#O

When we notice that the relation between the weak hy-
percharge quantum number Y and the electromagnetic
charge quantum number Q can be written for matter
fields in the form Q =pY /2 where suitable p (p7#0) are
given in Table I, then the relation between the weak hy-
percharge density py and the standard electromagnetic
charge density p,gy can be written in the similar form

Py
PosM =P“2_ . (57)

After using Eq. (57) we solved numerically Egs.
(53)-(56) and we obtained the condensations squared 2
and 87 as functions of Posm With p as a parameter.
Different values for p (see Table I) represent different
matter fields which could be the sources of charge densi-
ties.

The results of solving Egs. (53)-(56) for the a and &
condensations [see Eq. (42)] and the ¢ and & condensa-
tions are shown in Figs. 1-4.

Now Eq. (21) has the form

WE=Wi,, Wi=Witio/N2, Wi=Wi+o/vV2,
Z,=2Z;,, Zy=Z,+¢, where {=0 cos®—fBsinO ,

~ (58)
Ag=Ay+a, where a=osinO+LcosO ,

1x 107

-500 oqsum [GeV?)]

FIG. 1. The a condensation of the 4, gauge boson fields as
the function of the standard electric charge density Posm
(9+0,650).
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FIG. 2. The { condensation of the Z, gauge boson fields as
the function of the standard electric charge density
pQSM(ﬁ?ﬁO,S:#O).

The masses of the @, Z, and A4 were calculated accord-
ing to Eqgs. (45)-(46) and (40) and the appropriate results
are shown in Figs. 4—6. The masses of the W fields are,
according to Egs. (32) and (37) (for the 370 phase), equal
to 0.

The results for the ratio sin® /sin©y, [see Eq. (52)] and
the physical charge density p, [see Eq. (49)] for boson

0 5 x 10° 1x 107 1.5x107 2x107

0Q su [GeV?)

FIG. 3. The & condensation of the W75,!' and W7 S? gauge
boson fields as the function of the standard electric charge den-
sity pg sm(970,850).

condensates given by Egs. (53)-(56) as functions of pg gu
are presented in Figs. 7 and 8, respectively.

In all the figures the curves for different values of p
coverage for relatively small values of pygy (ie., for
Pgsm in the range up to values approximately 10° times
bigger than these which correspond to matter densities in

TABLE 1. Quantum numbers in the SU, (2) X Uy(1) electroweak theory.

Weak
isotopic
charge I’

Weak
hypercharge
Y

Electric
charge Q

o=I+Y/2 p=20/Y

Quarks
up
dy
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dg

Nf— M=

o O

Leptons
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[STES

er

[STES

€r
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w 1
W3
W
B
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H +
HO

[SIE

[SIE

Quark
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(upd;d;)
(upupdy)
(3Xu;,—3Xd;)
(5Xu; —7Xd;)

[T

(=

[P T

Wt

o O © O

—

AR = -

Wl W
|
—

ol
—

1 —1 2
2 —1

—_— — O
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FIG. 4. The 6 condensation of the ¢ Higgs boson field and
the mass ma/\/i of the @ Higgs boson field as the function of
the standard electric charge density pg sm(370,670).

nucleon matter). In that range of values for pygm We
have also that py =~pysy (see Fig. 8). For these reasons
the following calculations in that regime were done for
p =1 (for other p70 in Table I it would be the same).

The minimal energy density of the BCMS
configuration

6lnin(pQ SM )= ‘llet( 347#0,80)

[see Eq. (30)] for boson condensates given by Eqgs.
(53)-(56) as functions of py gy is presented in Fig. 9. For
big charge density pygy (e, for pggy Which corre-
sponds to matter densities approximately 10® times bigger
than those in nucleon matter) the minimal energy density
G minlpgsm) is extremely big increasing rapidly with pg sy
(for example, 6, ~2.9 10'"® GeV* for pygy~1.3 10’
GeV?).

It is very interesting that there emerges a subtle struc-
ture when we investigate more carefully the function
S minlPgsm)- It appears a “stable” (BCMS) configuration
of charge density with p, 570 (see Fig. 9) different from

250

200

m; [GeV]

100

0

0 5 x 10° 1x107 s 2x 107
0q sm [GeV?)

FIG. 5. The mass m5 of the Z* gauge boson fields as the

function of the standard electric charge density pgsm
(9+0,50).

1473

0 5 x 108 1x 107 2x107

oqsu [GeV?)

FIG. 6. The mass m ; of the A" gauge boson fields as the
function of the standard electric charge density pgsm
(950,80). The region for the standard electric charge densi-
ty posm Which is in the range up to values approximately 10°
times bigger than those for nucleon matter is indicated by the
arrow.

that for the standard model [with pyg=0 and
6 min(0)=0]. The numerical calculations for the value of
the local minimum of the function & ,;,(pgsm) reveal lit-
tle dependence on the A parameter of the Higgs potential
(see Fig. 9) and the results are as follows:

EminlPosm)=~(2.5811 GeV)*
for (59)
pQ SM ~0.5539 GeV3 .

This charged BCMS configuration is separated from the
uncharged standard model configuration by a high bar-
rier A6, which depends on the A parameter (see Fig. 9).
For example, when A=1 then A&, ~(180 GeV)*. It is
not difficult to ascertain that & ,;,—0 as pgy gy—>0 for all
considered values of A > 0 and p70 (see Table I).

When we notice that the mass of an electric charged
BCMS configuration is

$inB/sinOy
o
®

o
-

0.2

0 1x107 2x107 3x
0q su [GeV?]

FIG. 7. The ratio sin®/sinBOy (the © angle is the modified

mixing angle [see Eq. (52)]) as the function of the standard elec-
tric charge density pg sm (370,670).
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1. 108
S =1/2
U
& 7 .p=1
g /,// - B
6. 107 1 Pl p=2
,/‘/’/ =4
1 2 3 - p=
/ N avid
/ ,////
. s
2107t / L A=1
. / ,///
r-
b Z
0 5 x 10° 1 x 107 2x107
ogsu [GeV?)

FIG. 8. The physical electric charge density py [see Eq. (49)]
as the function of the standard electric charge density pgsm
(9%0,8%0). The region for the standard electric charge densi-
ty posm Which is in the range up to values approximately 10°
times bigger than those for nucleon matter is indicated by the
arrow.

Mo=47r36 minPosm) »

where 7, is the “mean electric charge radius” of a BCMS
configuration and that the electric charge Q = %vrépg SM-
Then from Eqgs. (30) and (53)-(56) we receive
My —Qgv/2=0X80.13 GeV as pygy—0 for all con-
sidered values of A>0 and p70 and (see Table I). The
function My_,(ry) is presented in Fig. 10. Con-
figurations of this phase lie only on the My-ry, curve.
For example, a droplet of the new phase with charge
@ =1 and described by Eq. (59) will have the ‘“mean
charge radius” ry =0.149 fm (in comparison for a proton
ro~0.805 fm) and the mass My_,~80.13 GeV. (In
Figs. 3-7 and Figs. 9 and 10 the curves for p and —p
cover.)

2.10°
3
<]
‘E
1.10°

0

0 0.1 3 0.5

0qg sm [GeV?)]

FIG. 9. The minimal energy density of the BCMS

configuration & pis(pgsm)=U.A370,670) [see Eq. (30)] for bo-
son condensates given by Eqs. (53)-(56) (for all values of p#0
from Table I) as the function of the standard electric charge
density posm Which is in the range up to values approximately
10° times bigger than those for nucleon matter. The region in
the vicinity of the “stable” BCMS configuration [see Eq. (59)] is
indicated by the arrow.

81y 5x10%
' >
80.6 Qo A=1
4x10° =
| <
30-2| 80.13 b
J 0.148808 3x10°
!
‘ 2x10°}
1x10°}
0.22
rq [fm]

FIG. 10. The mass My_, of the BCMS configuration (with
the electric charge Q =1) for boson condensates given by Eqgs.
(53)-(56) as the function of the mean electric charge radius ry
(950,60 and for all values of p70 from Table I). The region
in the vicinity of the “stable” BCMS configuration is indicated
by the arrow.

B. Condensations 370 and §=0
In that case Egs. (32)-(35) lead to
py=0, (60)
o=Vp’/2g and 9=+0 . 61)

These equations together with Eqgs. (37)-(40) give us the
square masses of boson fields as follows:

mli,=m}=0, (62)
mé,3=2]/384/3(P3)2/3 , (63)
%méz_%v2+2"11/3g4/3(p3)2/3 , (64)

and the energy density 6(p>) which is equal to
E(p®)=UH{97#0,6=0)

=32—7/3g2/3(p3)4/3+%v4 . (65)

The quantum numbers of the matter fields in the stan-
dard model (see Table I) give as a result of Eq. (60) the
implication

py=0=—p3=0. (66)

So we see that in that case Egs. (60)—(65) reproduce the
GSW model for §=0 [the unbroken SU,(2)XUy(1)
high-temperature phase].

C. Condensations 3=0 and §+0

Using Egs. (42)-(43) we can rewrite the effective poten-
tial U, given by Eq. (30) in a very simple form:

Ud,@,8)=—1(g>+g')8%E* +pzsmE+Posma
+IME2—v2)? . (67)
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This potential together with the equations
0, U= 0, U= 035U =0 yield, respectively, the equations
for the charge density py sy and the condensations § and
8 [instead of these calculations we could use Egs.
(32)-(35) and (42)-(43)]:

% 82+g'282§=P25M N (69)
and
M82—vH)—L(g2+g'H)E*=0. (70)

The nonzero value of the weak charge density p, g\ leads
inevitably to the nonzero ¢ condensation and to the
forced symmetry breaking.

Combining Egs. (68) and (69) with (67) we obtain the
classical counterpart of the GSW effective potential for
=0 (see Fig. 11)

J

1/3

7\.1/3 ) AUG 172
§lpzsm)= _g_z—-:g—’? pzsmt |Pzsm+ 27
and
4pzsm
52(stm)=—';2:_g,—2§ , (73)

where ¢ and 82 are only the functions of pzgy. It is not
difficult to ascertain that 6—v and {—0 as pzgy—0,
and the well-known GSW broken low temperature phase
(8=v) with Ujy(1) symmetry emerges.

Using Egs. (22)-(23) and (41)-(42) we can rewrite Eq.
(21) for the physical field 4, in the form

A,=A4,+a,, where a,=(,0,0,0). (74)

Let us notice from Egs. (68)-(71) that a is not a dynami-
cal parameter so Eq. (74) gains the gauge transformation
interpretation. The a, condensate corresponds to the
nonphysical degree of freedom (unphysical photon) and it
can be removed by the appropriate gauge transformation.
So the requirement that the Uy(1) group has to survive
untouched during the symmetry breaking gives us

a=o0 sinBy +PcosOy =0 . (75)

We have the result that when the W2 and Z, fields
acquire nonzero masses then the condensations in Eq.
(21) can be rewritten as follows:

BOSON CONDENSATIONS IN THE GLASHOW-SALAM- . ..

+

1475

5x108

%

100 200

6 [GeV]
FIG. 11. The classical effective potential

UA5;8=0,py5m=0) as the function of the & Higgs field con-
densation (A=1).

300 400

2 2
wd(a;0=o,pQSM=0)=%

1
T M= D

The solution of Egs. (69) and (70) leads to

1/211/3
| |

W";2= W}L,Z’ wi=w?3,
W3=W3—BcotO, ,
BO=EO+B ,

B;=B,,
p=9+35,

or in the physical fields
Wr=W= z,=2,

s

27 (72)

Pzsm— P225M +

(76)

1

Zy=Z,+¢ where £=— e
w

B,
(77)

The appearance of the boson condensates strongly
influences the masses of the fields in the model and from
Egs. (44)-(47) (3=0 and a=0) we obtain (see Figs.
12-14)

m;,i =1g282—g2t2c0s’Oy, , (78)
mi=1(g*+g'?)8?, (79)
m%=0, (80)
gm 3 =A8"+ A8 —v?)— g2 +g )5 . (81)
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2000

0 5x10° 1x108 NNy T 2x108

0z su [GeV?] Al

FIG. 12. The square mass m? . of the W gauge boson fields

[see Eq. (78)] as the function of the standard weak charge densi-
ty pz sm(3=0,670,p9 s =0).

The minimal energy density of the BCMS
configuration & ; (pzsm)= Uf3=0,870) is as follows
(see Fig. 15):

1 2 1242
——(g?+ ,
gan &8 T8E

(82)

Emin(Pzsm)=1EV 82 +8"pzsm+

From Eq. (78) it is clear that the boson condensation
§ > 0 leads to the instability in the Wf sector if

&> 8 5 om- (83)

When the equality
G =pzsmVg’+g"*/g*

is taken into account we obtain the relationship between
Amay and pz . where A, is the value of A and pz ., is
the value of p; gy for which we have m%,i =0 (see Fig.
16). The region of possible configurations of this phase is
on and below the A ,,-p7 . CULVE.

For weak charge densities

pzsm <8v3/(8cos’Oy ) =~1.655X10% GeV?

93
=
L
S
wN
g
92
91.5
—_— =
91o 2.5x10°  5x10° 7.5x10° 1.25 x10°
’ 0z su [GeV?]

FIG. 13. The mass mj of the Z* gauge boson fields [see Eq.

(79)] as the function of the standard weak charge density pz sy
(8=0,8+0,posm=0).

265
262.5 05
==
Ny —
Y] X —
& P————
SN
255 __//
250
95
y =
—”—’-//
2450 2.5x10°  5x10°  7.5x10° 1.25x10°
0z sm [GeV?)

FIG. 14. The mass ma,/\/'i of the @ Higgs boson field [see
Eq. (81)] as the function of the standard weak charge density
Pzsm (8=078¢OYPQSM=O)~

this phase is stable for an arbitrary A (see Fig. 16). For
values bigger than 1.655X 10® GeV? this phase for given
A will be destabilized at certain value of py oM =pPz max
and the system could reach the charged (pg 70) stable
phase with 950. For A <g2?/(16cos*0,)=0.0422 the
phase is stable for all values of weak charge density p, g
(see Fig. 16).
We can also examine the mass

M13= %'n'r% Gmin(PZ SM)

of a BCMS configuration with nonzero weak charge den-
sity. Here r, is the “mean weak charge radius” of this
configuration which has the weak isotopic charge
I’=%mrip,sv- We receive the upper (according to the
stability of this phase within the W< sector) limit M 13 max
for the value of the mass M ; with the region of possible

configurations of this phase which lie on and below the
-A gy Curve (see Fig. 17).

I3, max /“max .
The experimental knowledge of a BCMS configuration

with the upper possible mass M ;  could give us from
this curve the value of A and eventually the value of the

2x107

0 2.5x10°  5x10° 7,5x10592 su [GeVd) 1.25 x10°

FIG. 15. The minimal energy density of the BCMS
configuration [see Eq. (82)] &nin(pzsm)=UWU{3=0,8%0,
Posm=0) [see Eq. (82)].
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region of instability

4 Amaz — 0Z maz CUTVE

0 5x10° 1x107 2x107
x 0z su [GeV3)

FIG. 16. The partition of the (Apzsy) plane into two regions
of stability and instability of the phase with #=0 and §70. The
region of possible configurations of this phase is on and below
the Apax-Pz max CUrve where An,, is the value of A and pz . is
the value of pz gy for which we have m%,:t =0.

Higgs boson mass.
presented on Fig. 18.

The function M,;_ (rz) is also

D. Condensations 3=0 and §=0

In that case the GSW model for §=0 is reproduced
[the unbroken SU, (2) X Uy(1) high-temperature phase].

V. CONCLUSIONS

In this paper the boson Higgs field and gauge field con-
densations in the presence of the‘external matter sources
(BCMS configurations) were examined. Apart from the
Higgs boson condensation (60) the rich phases struc-
ture is observed. In general, we notice two physically
different phases. The first with 90 and 650 appears
only when the charge density pyg»70. In this phase the

175
Y rF=1
S
E
=
100 region of instability
Mps_1, mez — Amaz ctirve
50
region of stability
00 1 2 3
A
FIG. 17. The upper mass M ;_,  of a BCMS configuration

of the phase with #=0 and 80 as the function of the A,, non-
linear Higgs parameter where A, and M 13— Lmax 8T€ the values

of A and M ;_,, respectively, for which m? ;. =0 (on the curve).

The region of possible configurations of this phase is on and
below the A, -M 13 max CUTVE:

Mps-1, maz [GeV]

50F

0.0002 0.0004 0.0006

0.0008 0.001
rz [fm]

FIG. 18. The upper (according to the stability of the phase
with #=0 and 80 in the W™ sector) mass M,;_, __(rz)of a
BCMS configuration (with the weak isotopic charge I°=1) as
the function of the “mean weak charge radius” rz of this
configuration.

Wi bosons are massless while the photons A and bo-
sons Z are massive. We observe very deep energy densi-
ty mlmmum (see Fig. 9) with &;,~44.382 GeV* and the
charge density pgsy=0.5539 GeV? for which we ob-
tained (for Q =1) a droplet of this phase with the mean
electric charge radius ry,~0.149 fm and the mass
M, _,=80.13 GeV. The mass of a droplet of this phase

My—Qgv/2=Q X80.13 GeV

as pg sm—>0 for all values of A >0. Configurations of this
phase lie only on the My-ry, curve (see Fig. 10) or
equivalently on the E ;,-pg sm curve (see Fig. 9).

The second phase (#=0 and {7#0) with the Z, gauge
field condensation appears only when the weak charge
density p;s70. This phase is very similar (especially
when pygy—0) to the GSW low-temperature phase.
The region of possible configurations of this phase is on
and below the A, -p7 m.x curve (see Fig. 16). For

A<g?/(16cos*©y,)~0.0422

the phase is stable for all values of weak charge density
pzsm- However, it is stable for an arbitrary A only if

pzsm S8V /(8cos?@y)=1.655X10° GeV? .

For pz sM> Pz, max = 1.655X 10° GeV? this phase is unsta-
ble in the W¥ sector. When pzsy>pzmax the system
may reach the charged stable phase (3+0).

The further evolution of this system seems to be very
interesting. During its evolutions the system will emit
charged particles lowering its energy and the charge.
This emission may come from particle-antiparticle pair
production which will neutralize the charged vacuum
(the Greiner state [6]). Depending on the initial mass of
the BCMS configuration (M13>MQ or M13<MQ) the
system in this process may reach the metastable point
(with 30) or the other ordinary standard model vacu-
um (with 34=0). Such a process may happen in heavy ion
collisions or in astrophysical objects.
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APPENDIX A

Let us consider a system of quantum boson fields ¢ ,
and a new system of quantum boson fields ¢ 4, related to

¢4 by
b4 :{5,4 +&4

where the shifts £, are the classical fields. These shift
transformations can be expressed as

$4=DE$,D'E L,

where

DEN=expS S [dk(ENaln—EMa s -
4 7

(A1)

Here 3, , is the sum over all shifted fields and 3, means
the sum over all degrees of freedom for these fields. The
@ 4xn and a4, are the annihilation and creation opera-
tors for the ¢ , field. The coefficients &7, are the Fourier
transformations of the £ , fields.

Now we assume that in the Hilbert space #f there ex-
ists a normalized vacuum vector |0) which is annihilated
by the operators a 4,
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@ 44,/0)=0 and (0[0)=1.

The shifts cause the changing of the ground state of a
system according to the relation:

10) —[0)=D(£ ,)l0) .

The new vacuum state |[0) is simply the Glauber
coherent state. This state includes the infinite number of
excited states of ¢ , fields. The state [0) is also normal-
ized, i.e., (0]0)=1.

As the state |0) is the vacuum state for the ¢ , fields
also the state |0) may be considered as the vacuum state
for the ¢ , fields. Hence, when we have (0|4 ,|0) =0 we
also have (0|4 ,|0) =0 and

(01 410> =(0lg,10)+&,=¢, .

The point is that when the ground state [0) is attained
as the result of the transformation as in Eq. (A1) which is
not the gauge symmetry transformation or as the result
of the appearance of some new external charges in the
system it leads to the conclusion that the Fock spaces
which are built on the ground states |0) or [0), respec-
tively, are not unitary equivalent. This means that some
classical boson fields & , may attain physical interpreta-
tion.

We use the notation (A )y for the mean value

(0lA0).
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