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Bottom quark mass prediction in supers3tmmetric grand unification: Uncertainties and constraints
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Grand unified theories often predict unification of Yukawa couplings (e.g., hb =h, ), and thus certain
relations among fermion masses. The latter can distinguish these from models that predict only coupling
constant unification. The implications of Yukawa couplings of the heavy family in the supersymmetric
extension of the standard model (when embedded in a GUT) are discussed. In particular, uncertainties
associated with m, and mb, threshold corrections at the low-scale, and threshold and
nonrenormalizable-operator corrections associated with a grand-unified sector at the high-scale are
parametrized and estimated. The implications of these and of the correlation between m, and the pre-
diction for a, are discussed. Constraints on the tang range in such models and an upper bound on the t
quark pole mass are given and are shown to be affected by the a, -m, correlation. Constraints on the
low-scale thresholds are found to be weakened by uncertainties associated with the high scale.

PACS number(s): 12.10.Dm, 11.30.Pb, 12.15.Ff

I. INTRODUCTION

Recent CERN e+e collider LEP [1] and other pre-
cision electroweak data are known [2] to be consistent
with coupling constant unification within the minimal su-
persymmetric standard model (MSSM) [3], in which the
standard model (SM) matter is minimally extended, i.e.,
the Higgs sector contains one pair of Higgs doublets and
there is a grand desert (up to small perturbations) be-
tween the weak (low) and unification (high) scales. Re-
cently, it was further shown [4] that corrections associat-
ed with the t quark and Higgs scalar thresholds, sparticle
spectrum (for example, see Ref. [5]), Yukawa couplings, a
possible embedding of the MSSM in a grand unified
theory (GUT) [6], and nonrenormalizable eFects [7], as
well as constraints [8,9] from proton decay nonobserva-
tion [10], introduce theoretical uncertainties but do not
alter the successful unification; e.g. , the prediction of
a, (Mz) =0. 125+0.010 [4] agrees well with the observed
value. Such uncertainties depend on seven different
effective parameters in addition to the t-quark mass and
Yukawa coupling. [The +0.010 is a sum (in quadrature)
of the different theoretical uncertainties estimated using
reasonable ranges for the various parameters. ] This
theoretical uncertainty is sufficiently large that few mean-
ingful constraints can be derived from the a, (Mz) pre-
diction by itself. Similar conclusions were reached by
Barbieri, Hall, and Sarid [11].

If, indeed, coupling constant unification is a hint for a
supersymmetric (SUSY} GUT, then a next step is to
study the predicted relationships among fermion masses
in such theories [12], in a way that consistently incorpo-
rates the different theoretical uncertainties listed above.
(The nature of the theoretical corrections, and in particu-
lar the presence of adjoint representations, also distin-
guishes such models from many string-inspired ones. ) Let
us assume in the following (in addition to the MSSM}
that we have (i) coupling constant unification, and (ii)
third-family two- Yukawa unification. That is, at the

unification point MG (the point above which all the GUT
gauge group supermultiplets are complete) we have
hb(MG ) =h, (MG ), as is the case [12] in a minimal SU(5)
unification, which we will assume below for definiteness,
and in similar unification schemes. h is the MSSM Yu-
kawa coupling of a fermion of type a and MG = 10' —10'
GeV.

Assumption (ii) can be incorporated into more ambi-
tious attempts [13] to explain the origin of all fermion
masses. Such models, which assume extended high-scale
structures ("textures"), were shown recently [14—20] to
have successful predictions as well as possible implica-
tions for neutrino masses. However, limiting our analysis
to assumptions (i) and (ii), we neglect hereafter the Yu-
kawa couplings of the first two families (where empirical-
ly md Im, = 10m, Im„, rather than m4/m, = m, /m„; the
latter would be implied by extending assumption (ii) to
the first two families and their negligibly small Yukawa
couplings} and also flavor mixings. The usual argument
goes that some perturbation modifies the couplings or
masses of the first two families without significantly al-
tering (ii). We do not elaborate on any such mechanism.
A special case of (ii) is a third-family three-Yukawa
unification, i.e., h, (MG)=hb(MG)=h, (MG), which is the
situation in some SO(10) models involving a single com-
plex Higgs 10-piet. %e will consider such a possibility as
well.

'This holds in models such as SU(5), SO(10) and E6 for the Yu-
kawa coupling of Higgs fields in the fundamental (5, 10,27) rep-
resentations.

2In the texture models mentioned above, such a mechanism is

realized by introducing large Higgs representations [e.g., 45 of
SU(5) or 126 and 210 of SO(10}] and (in most eases) a set of
fiavor symmetries. For a different possibility involving non-

renormalizable operators, see Ref. [21].
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I.et us stress that we do not take (ii) to be independent
of (i). The coupling constant unification assumption by
itself is not enough to significantly constrain the MSSM
parameter space. Here, we examine whether more can be
said when imposing (ii) as an additional assumption that
can possibly distinguish GUT models from some GUT-
like string-inspired models [where (ii) is not expected to
hold in general]. Assumption (ii) was considered recently
by several groups. Some [22], either (a) carried out a
one-loop analysis, (b) assumed a low a, (Mz ) [e.g. ,
a, (Mz)-0. 11, which is lower than the value expected
from coupling constant unification] as an input, (c) ig-
nored the correlation between m, and the predicted value
of a, (Mz), and/or (d} allowed the running b-quark mass

m& to be as high as 5 GeV (which, as we discuss below, is
a more appropriate upper bound on the pole mass). More
recent results of two-loop analyses [5,18,23] imply a very
constrained parameter space, i.e., only a small allowed
area in the mP'"-tanP plane, where mtt " is the t-quark
pole mass and tanP is the ratio of the two Higgs doublet
expectation values, vt, /vz . Therefore, one would

up doom

hope that linking (i) with (ii) (and considering uncertain-
ties associated with m, and m&) will result in some useful
constraints on the MSSM parameters, assuming a
minimal SU(5)-type unification (for example, see Ref. [5]).

Below, we carry out a careful analysis under the above
assumptions and consider various theoretical uncertain-
ties in the calculation. We find that requiring (i) and pre-

0.14

dieting a, (Mz ) as a function of mP"' and of tanP [4] in
the range of -0.12-0.13 (see Fig. 1), constrains the tanP
range allowed by (ii}more severely than suggested by pre-
vious analyses. On the other hand, various theoretical
uncertainties can relax the constraints. %'e also obtain
-215 GeV for the upper bound on mr~" (where a, -m,
correlations were taken into account}. Some information
about the low-scale mass parameters can be extracted.
However, corrections associated with the high scale con-
tribute significantly to the theoretical uncertainties and
weaken any constraints. The only spectrum parameter
that is strongly constrained is tanP. In agreement with
other authors, we find low- (-0.6-3) and high-
(-40-58) tanP allowed regions (branches). The former
saturates the h, infrared fixed-point [24] line (the diver-
gence line). The a, —m, correlation modifies the fixed
point value for h, and diminishes the dependence of the
allowed tanP range on mP"'&215 GeV. Theoretical un-
certainties (and in particular, those associated with the
high scale) determine the width of each branch and, thus,
the separation between the two branches.

The various data (and, in particular, the b-quark mass)
and the procedure are reviewed in Sec. II. The con-
straints on the mP"'-t naP plane and the role of the strong
coupling are presented and discussed in Sec. III. The
diferent correction terms are described and evaluated in
greater detail in Sec. IV. %e summarize our conclusions
in Sec. V. Throughout this work we keep the philosophy
(and where relevant, the notation) we introduced previ-
ously [4].

II. INPUT DATA AND PROCEDURE

0.13 -f

200
At the Z pole,

Mz =91.187+0.007 GeV,

and using the modified minimal subtraction scheme (MS)
[25] the weak angle and couplings3 are [4,26,27]

s (Mz)=0. 2324 —1.03X10 [mP"'(GeV) —(138) ]

+0.0003, (2)

0.12
1 = 127.9+0.1,

a(Mz)
(3)

a, (Mz ) =0.12+0.01, (4)
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where we displayed explicitly the quadratic dependence
of s (Mz) on mf"', which is decoupled from the 0.0003
uncertainty [4]. The U(1)„&2, SU(2)1, and SU(3), cou-
plings are given by

FIG. 1. The predicted strong coupling at the Z pole, a, (Mz ),
for different values of the t-quark pole mass m, ", and of the
two Higgs doublet expectation value ratio, tanP.
h&{MG ) =h (MG ) is assumed. m," ' (in GeV) is indicated on the
right-hand side above the relevant line.

A predicted a, (Mz) slightly above 0.13, as it is for a heavy

enough t quark (see Fig. 1), does not contradict (4); the a, (Mz )

prediction still has a fairly large theoretical uncertainty of
-+0.008.
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3 1 —s (Mz}
+t(Mz ) 5 tt(Mz )

given our aim of exploring the strongly constrained
rnid"-tanP plane. Let us then adopt a conservative atti-
tude, i.e.,

1

a2(Mz )

s (Mz)
a(Mz )

mb(5 GeV) &4.45 GeV, (8)

and

1

a3(Mz) a, (Mz}
'

for a Higgs boson mass in the range 50-150 GeV, which
is appropriate for the MSSM. The pole mass is related to
the MS running mass m, to leading order in a, by
m, =(1——', a, /n)mf"' The. v-lepton (MS running) mass
[31] is given at the Z pole by

m, (Mz) =1.7486+0.0006 GeV, (6)

m pole
T

which corresponds to (3)
= 1.7771+0.0005 GeV [32].

The situation regarding the b-quark mass is more com-
plicated. There are ambiguities in the extraction of the
MS running mass mb Gasse. r and Leutwyler [33] point
out that there is no universal prescription for the relevant
scale where a, is to be evaluated, which suggests that the
extraction of mb is to be carried out case by case, or al-

ternatively, for a range of a, . (We will adopt the latter. )

Gasser and Leutwyler identify (to leading order in a, ) the
running mass mb(ms�) with the Euclidean mass parame-
ter. This point was emphasized by Narison, who offers
an alternative definition of mb(mP") [34]. The different
definitions introduce a scale ambiguity. Another theoret-
ical difficulty may arise from the role of nonperturbative
effects of the interpretation of potential models [33].
The next-to-leading correction to the ratio of the MS run-

ning mass to the pole mass was given more recently by
Gray et al. [30], i.e.,

and

'2

m& =mg 1 —— —12.4
4 a,
3 7T

The above comments call for some caution, especially

~Slightly more recent data yield [2S] m)""=134+zs+5 GeV
(for m„o-60—150 GeV and including two-loop aa, m, correc-

tions) and s (Mz) =0.2326+0.0006 (m, free). For our present
purposes the difference with (2) and (5) is negligible. The new
data will be incorporated in future analysis [29].

sThe next-to-leading correction [30,31] is -2% (depending on

a, ). The leading correction given here is -5/o. (See also the
discussion of mb

/rnid"

below. ) We neglect the former (together
with other subleading m, and m, "' effects) while keeping the
latter.

The constituent mass parameter in these models is identified
with the pole mass.

respectively.
For the fermion masses, from electroweak precision

data we have, for the I quark [4],

m '"=138+ +5 GeV

which corresponds, for example, to mP" & 5 GeV,
a, ~0. 17, and using (7). The next-to-leading correction
term in (7) reduces mb, and mP" =4.5 GeV, a, & 0.2 im-

plies m„&4 GeV. For example, mP" =4. 5 GeV,
a, =0.25 gives mb =4.0 GeV when neglecting the next-
to-leading term, and mb =3.7 GeV when using (7). The
mb prediction, on the other hand, lies (in general) above 4
GeV. Given the above, we do not specify a lower bound
equivalent to (8). Also, requiring mb(4. 45 GeV)&4. 45
GeV [which will correspond to ms ( rnb ) =4.25 +0.20
GeV [33], where we have doubled the uncertainty] is
somewhat more constraining [e.g., mb(4 45 G. eV) —mb(5
GeV) =0.05 —0. 15 GeV —depending on a, ].

We use u(Mz}, s (Mz) and the v-lepton and r-quark
Yukawa couplings,

m, (Mz)
174 GeV cosP

and

4 a, (Mz}
h(M )= 1 ——

t Z

pole
t

174 GeV sinP
' (10)

7i.e., case (b) in the notation of Ref. [4].

to predict a, (Mz} and hb(Mz), for a definite point in

the IP"-tanP plane. One should note that h, depends
on mP"' also via the a, (Mz } correction in (10) (and via
the a3 contribution to the running —see below}. As we

pointed out, s (Mz} depends quadratically on mP'".
Therefore, we neglect all subleading logarithmic depen-
dencies on mP"' (for a discussion, see Ref. [4]},including
small corrections to (10). We further neglect the error
bars in (1)—(3} and in (6). Also, a; are converted to the
dimensional reduction (DR} scheme, using the proper
step functions [35]. Using two-loop renormalization
group equations (RGE's) [36] iteratively, we are able to
predict a, (Mz) and hb(Mz) as functions of mP"' and
tanP. We take 100&m/"'&200 GeV as a reasonable
conservative range, and constrain tang only by requiring
the Yukawa couplings to stay perturbative, i.e., h~(p) & 3
where Mz &p, &MG and a=t, b, ~. (This range can be
also justified by requiring two-loop contributions to the
RGE's to be less than a quarter of the one-loop ones
[18].) We then run down using three-loop QCD and
two-loop QED RGE's [31] to find mb(5 GeV), where the
m& prediction is that of mb, but without (theoretical)
corrections to the RG calculation.

In any realization of the MSSM, there are small pertur-
bations (order of magnitude of two-loop terms} to the
grand desert and unification assumptions, as described
above. Thus, in general, mb=p 'mb where p '%1 is a
correction parameter which incorporates the uncertain-
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ties in the running from Mz up to MG. Let us stress that
in our formulation one does not change the MSSM P
functions to those of the SM at m, or at some other
effective scale. Rather, leading m~~" effects are account-
ed for in (2), and all other such effects determine p '. A
point in the m,~"-tanP is excluded if either
h, & 3 ( tanP 5 1 —2 and/or mP" & 215 GeV), hi, ( —h, ) & 3
(tanP & 58), or

mi, (5 GeV)=p 'mi, (5 GeV)&4. 45 GeV .

Incorporating uncertainties associated with rn, "and
Yukawa couplings (in addition to the DR conversion step
functions) in the numerical procedure we have to further
consider uncertainties associated with the sparticle and
Higgs thresholds, high-scale thresholds, and Planck-scale
nonrenormalizable operators. For simplicity, we will as-
sume that we have one heavy (MH »Mz) Higgs doublet
that decouples with the sparticles, and another light
(m& -Mz) SM-like doublet that is responsible for all fer-
mion masses. We are able to obtain an (approximate)
analytic expression for p

' by expanding one-loop ex-
pressions around their unperturbed values. This will be
carried out in Sec. IV, where we study the different con-
tributions to p

' in GUT models, and estimate p
' in the

minimal SU(5) model. High-scale corrections to the cou-
pling constant unification (and not the details of the spar-
ticle spectrum) constitute the larger uncertainty. We
take

CD

cu

~mall
tang
branch

1

I
I

/

correction terms are included, MG can grow significantly
[9,4, 11] and no useful constraints on tanP can be derived
from proton decay nonobservation [9]. For comparison,
we show in Fig. 4 the equivalent parameter space with
(13) replaced by 0.85m', (4.45 GeV) &4.45 GeV. The al-
lowed tang range is reduced by -0.03—0. 10 for the
low-tanP branch and by 3-4 for the high-tanP one. Re-
placing (13} with 0.85m', (-5.1 GeV) &4.6 GeV would
have a similar but opposite effect (i.e., slightly decreasing
the separation between the two branches). A smaller
(larger} uncertainty in (12) will have an effect similar to
the former (latter). The p '-range estimate (and the m&

upper bound) determine the width of each branch, and
thus the excluded intermediate tanP range. Perturbative
consistency (i.e., the divergence lines discussed above} ex-
cludes the very small and the very large tan@ ranges and
determines the upper bound on m, "', m, "'&215+10

p
' = 1.00+0.15, (12)

159

which is a conservative estimate derived for reasonable
ranges of the various correction parameters. Using (12),
the exclusion condition (11) reads

CD

large
tang
branch

mi, (5 GeV) &0.85m&(5 GeV) &4.45 GeV . (13)

III. THE mP"'-tanP PLANE

Given the above, we find that assumptions (i) and (ii)

allow for a low-tan P branch and a high-tanP branch.
The allowed parameter space is shown in Fig. 2, where

'

the narrow strip corresponding to three- Yukawa
unification is also indicated. The low-tanP branch is
shown in greater detail in Fig. 3, where the lines corre-
sponding to p

' = 1 and h, (MG )=2 are displayed for
comparisan. The farmer is, in fact, the h, infrared fixed-

point [24] line, which is the h, -divergence line.

[h, (Mz) &h,"*' h, (p) »1 for p(MG. ] This point was

also discussed recently in Refs. [18,23]. p 'Al only
slightly extends the allowed tanP range. It is also interest-
ing to note that constraints from proton decay via
dimension-five operators would exclude the high-tang
branch for p i= 1 (i.e., tanP54. 7 [8]). However, once

sin the notation of Ref. [4], 6 """"'",6,",and 5", ""'"',are all
directly incorporated in the calculation.

In such a case, SU(2)-breaking effects are, in general, negligi-
ble above m, .

113

CD
CD
~0

I

10
f

20
I

tang
40

I

50 60

FIG. 2. The mP'"-tanP plane is divided into five diferent re-
gions. Two areas (low- and high-tanP branches) are consistent
with perturbative two- Yukawa coupling unification
[hb(MG}=h, (MG)] and with 0.85m'~(5 GeV)(4. 45 GeV. Be
tween the two branches the b-quark mass is too high. For a too
low (high} tanP, h, (h~} diverges. The strip where all three
(third-family) Yukawa couplings unify intersects the allowed
high-tang branch and is indicated as well (dash-dotted line).
Corrections to the h, /'hb ratio induce a —+5% (vertical) uncer-
tainty in the m,~" range that corresponds to each of the points
in the three-Yukawa coupling unification strip. a, (Mz), aG,
and the unification scale used in the calculation are the ones
predicted by the MSSM coupling constant unification, and are
sensitive to the t-quark pole mass, m,~" (see Fig. 1). The m,~"
range suggested by the electroweak data is indicated (dashed
lines) for comparison. m,~" is in GeV.
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FIG. 3. The low-tanP branch of Fig. 2 is shown in greater de-

tail. .The lines corresponding to p '=1 (thick) and h, (MG) =2
(dashed) are indicated. To the left of the allowed branch one
obtains h, (MG) & 3.

GeV, where the +10 GeV uncertainty is due to pt p.
The h, divergence line eventually becomes approxi-

mately parallel to the tanp axis (and determines the upper
bound m, "'5 215 GeV). Some intermediate values of
tanp are thus allowed for mp"') 200 GeV. (The hb and

h, divergence lines meet near the hb=h, line. ) Other-
wise, Yukawa unification at the grand unification scale is
ruled out' if 2.7Stanp 40. Furthermore, the low-tanp
branch, where h, —1 and which many would consider a
more natural choice, saturates the fixed-point line and
has to be adjusted to a few parts in a hundred (a few parts
in a thousand, if p '=1) for a given mf " (see Fig. 3).
The large-tanP branch is more spread and implies, in gen-
eral, a much lower h, and h, (hi, . (h, can still be large
for a large enough m, '", and h, &hb above the three-
Yukawa-coupling unification strip. ) While we find no
constraints on m~~" & 215 GeV from two- Yukawa-
coupling unification, three-Yukawa-coupling unification
is ruled out unless 1695m+"5196 GeV. (A slightly
larger range, i.e., mt~" ~ 160 GeV, is allowed when one
includes corrections to the h, /hb ratio which induce a

For a large tanp (v„((vq, v) some caution may be re-
down UP

quired regarding the scale at which the Higgs potential is mini-
mized and tanp is defined, as was pointed out by Bando et al.
[22] and by Chankowski [37].

FIG. 4. The same as Fig. 2, except the constraint is replaced
with the more restrictive one, 0.85mb(4. 45 GeV) &4.45 GeV.
The allowed tanP range is reduced by -0.03 —0. 10 for the
low-tanP branch (the effect is hardly seen in the figure) and by
—3—4 for the high-tanp branch [where the corresponding range
for 0.85m&(5 GeV) &4.45 GeV is indicated —dashed line —for
comparison].

-5% theoretical uncertainty. We comment more on this
point in Sec. IV.) One expects mutual implications [29]
between the above observations and radiative-breaking of
SU(2)U(1), an attractive feature of the MSSM that
prefers h, ) hb [38].

To demonstrate the effect of calculating mb using the
predicted a, (Mz) rather than a fixed input value, i.e., of
associating the Yukawa coupling unification with the
rather high values of a, (Mz) predicted by a, —a2
unification, we compare Fig. 2 with Figs. 5 —7. There,
a, (Mz ) is fixed [a,(Mz ) =0.11, 0.12, and 0.13, in Figs. 5,
6, and 7, respectively], and thus assumption (i) is relaxed;
i.e., for a, (Mz ) =0.11(0.12,0. 13) there is a -7%
(-3%) split between a3(MG) and the aG defined by a,
and e2. Let us stress that the different corrections are not
treated on equal footing in this case, because some are in-
cluded in p

' while others [such as nonrenormalizable
operators (NRO's}] are absorbed in the fixed value of
a, (Mz ). Furthermore, the appropriateness of this
decomposition depends on which type of uncertainties
shift the predicted a, (Mz). (We elaborate more on this

point in Sec. IV.) Nevertheless, the comparison illus-

trates that a low a, (Mz ) is preferred by mb. The allowed

parameter space for a, (Mz ) =0.11 (Fig. 5}is much larger
than that for a, (Mz ) =0.13 (Fig. 7). For a lower value of
a, the radiative corrections that reduce hb are dimin-
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FIG. 5. The area in the m p"'-tanp plane which is consistent

arith perturbative two-Yukawa unification and with O.S5mb(5
GeV)&4.45 GeV assuming a, (Mz)=0. 11. The uni5cation

scale and ag used in the calculation are those predicted by

a& —u2 uni5cation. We chose p '=0.85 for comparison with

Figs. 2 and 3. m,l "is in GeV.

FIG. 7. The same as Fig. 5, except a, (Mz ) =0.13.

ished, and thus a given h, (MG ) =hb(MG }implies a lower
hb(Mz). However, the low value a, (Mz)=0. 11 requires
large corrections to the coupling constant unification.

The above discussion also explains the slight
differences between our results and those of previous
analyses. Requiring (i) and using (2) for s (Mz) imply
that a, (Mz) grows with mP" [4], e.g., a, (Mz)-0. 12 for
mP"'-100 GeV, and a, (Mz }-0.13 for mtt'"'-180 GeV
(see Fig. 1). Indeed, Fig. 2 roughly coincides with Fig. 6
for the former and with Fig. 7 for the latter. A, (Mz) in

(10)-mtt""/sinP, but is diminished by (the mP'" depen-
dent) a, (Mz). These all affect the balance between posi-
tive and negative contributions to the Yukawa coupling
RGE's (i.e., the fixed paints), and thus modify the
hb(Mz) prediction and increase the upper bound on
m Pole

IV. THE CORRECTION TERMS

113
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tang
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FIG. 6. The same as Fig. 5, except a, (Mz )=0.12.

60

%e now turn to a detailed discussion of the correction
parameter, p '. The coupling constant two-loop RGB's
are solvable analytically, and it is convenient to write [39]

1 l +b;I+8;+H,. —5; for i =1,2,3,
a;(Mz) aG

where

MG
t = ln =5.3

2m Mz

is the relevant scale parameter, and uG=, '4 is the cou-

pling constant at the unification point, MG. b,-=6.6, l,
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+[a,(Mz)] b, [b,„h2,53],
1 1

[a, , a~, 8, , 8~]+b, [6, b~],
aG aG

t=t [a„a2,8„8~]+b,, [b,„b,~],

(15a)

(15b}

(15c)

where we explicitly separated the two-loop predictions
with no corrections (6; =0) from the contribution of the
correction functions, 5;. The expressions for 5

s 6
and 6, are given in Appendix A.

The integration of the two-loop RGE's for the Yukawa
couplings [36] is rather complicated and has to be done
numerically. To estimate the theoretical correction terms
it is useful to display the (one-loop} RGE's, i.e.,

dy

ya i =1,2, 3

b ;a; + g. b &y&+ . dt', (16)

where y =h /4a for a=t, b, r; t'=(I/2~)ln(p'/Mz);
and we have omitted higher-order terms. bb.; = —

—,', ,—3, —
—", , for i =1,2, 3, respectively; and bb.&=1,6, 1, for

l—3, ——", ; and b, .&=6, 1,0.) The balance between the neg-
ative b ., a; and the positive b .&yf3 terms determines the
infrared fixed point in the Yukawa coupling renormaliza-
tion flow [24]. From (16) we obtain

QL(M )
b1 ' /2b

h (M )=h (M )g (17)
"(M )

Fbebpb,

and similarly for h, (MG ). The a; are the one-loop (OL)
couplings [i.e., 8;=H; =0 in (14)]. Substituting instead
two-loop (TL) (or input) expressions one has to compen-
sate by properly modifying the two-loop correction eb.
Fb is the correction due to the non-negligible Yukawa
contribution at one loop, i.e., fb &y&dt' p„. incorp. o-

rates the theoretical uncertainties in the RG calculation.
From (17) and the equivalent expression for h, [and as-

suming h1, (MG)=h, (MG)] we have

oL(M )
8/9 '

oL(M )
' 10/99

ms(Mz }=m, (Mz )
aG aG

XF 'e' (18)

~here F=Fb/F„e=eb/e„and p=pb/p, . Setting
e=p=1, substituting the one-loop expressions for ai and

aG, and assuming negligible Yukawa couplings (i.e.,

F=1) gives an exact well-known one-loop expression.
F ' can be estimated analytically for h, )&h1„h, [40]:
i.e.,

—3, for i =1,2, 3, respectively, are the one-loop P-
function coeScients; 0;=0.7, 1.1, 0.6, for i =1,2, 3, are
the two-loop corrections; H; are negligible Yukawa cou-
pling two-loop contributions; and the functions 6; in-

corporate all other corrections to the calculation of order
of magnitude consistent with 6,-. In our scheme, a, and
az are inputs. By taking linear combinations we obtain
three predictions: i.e.,

a, (Mz ) =a, (Mz )[a1,a2, 8, ]

F '=[1+1 lh, (MG)] (19)

which gives F '-0.68 for h, (MG)-3. In general, how-

ever, a numerical analysis is required to fully incorporate
(F,B)&1. The m&(Mz) that we calculate is given by (18)
with p '=1 and numerical values for F and e.

Before we turn to a rather technical derivation of the
correction parameter p ', let us discuss a simple toy
model and point out the ways in which it gets complicat-
ed. If the ideal desert and unification assumptions hold,
then (neglecting two-loop terms)

1 1

, +b, t',
a1(Mz ) aoG

l 1=, +bzt'
a2(Mz } aG

1 1, +b, t'.
a,'(Mz } aG

(20a)

(20b)

(20c)

We use (20a) and (20b) to define aG and t in terms of the
(input) a, z(Mz ). We now turn on the b, and b, 2 correc-
tion functions and assume that no other corrections con-
tribute to p '. The coupling constants are now given by

1

a, (Mz )

1

a2(Mz)

, +b, t'+5 +b, h, —6, ,
aG

1 +b, to+A. +b
aG

1

oa, (Mz)

(21a)

(21b)

+b t+6 +b 6
aG

(21c)

and 5, are determined by the condition
G

+b, A, b, , =0 for i =1,2, while —(in the present ap-

proximation) b, is due entirely to the change in aG and
t, i e., —5 =6 +b3b, . Also,

s G

1

a3(MG)

1 +6
aG

(22)

and the a, term in (18) now reads

a, (Mz )

0
QG

[1+—,'[a, (Mz)b +aGA, ]] .

We thus obtain (in the toy model}

p '=exp[ —', [(a,(Mz }—aG)h b3aGE, ]] . —

(23)

(24)

In a more general case 53%0 and
gSUSY+ gheavy

+b 3 (for the low-scale threshold, high-scale threshold,
and NRO contributions, respectively). NRO's (b ~ )

modify only the a3 value and not any RGE coe%cients
(see Ref. [4] and below) and can be easily incorporated in
our toy model, i.e., (24) is still correct if

+b 3 6 53 . The high-scale thresholds
S

are more complicated because they not only affect
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a, (Mz) but also change the P-function coefficient bi and
the coefficient of the RGE for yb (the bb i) .at the various
thresholds. The expression for p

' will be derived below.
Ignoring for now the threshold changes in bb. 3 the A3"'"
contribution to p '-exp[ —,'[a,{Mz}—aG]b3"""], i.e.,
only the shift in a, (Mz ), which affects the entire t' range
in (16), is relevant. The effect of the change in b3 above
the threshold is of second order because it only affects a
small region of the t' integral. Similarly, the leading con-
tribution of b,3 is p '-exp[ 98[a,(Mz) —a3( —1

TeV)]bs3us" ], which is a second order in small quantities
(because it only affects a small region of the t' integral)
and is therefore negligible.

Hence, the corrections to gauge couplings lead to

p '=exp[ ,'[{a,—(Mz)—ixG)b' b3aG—E,]), (25)

where —5' = —b, + b,a, a, 3 a& 3 t 3—63~""includes all the shifts in a, (Mz ) except those in-
duced by b, 3s ". The additional corrections associated
with the changes in bb. 3 at thresholds will be discussed
below.

A different complication is due to the non-negligible
role of the Yukawa couplings. E is modified when thresh-
olds are decoupled. In particular, once the heavy Higgs

I

doublet is decoupled the Yukawa operators and their
evolution are modified. [Recall that we assume that we
have one heavy (MH »Mz) Higgs doublet that decouples
with the sparticles, and another light (mb -Mz) SM-like
doublet that is responsible for all fermion masses. ] Also,
h (MG)& 1 near either the h, (low-tanp) or Jib (large-
tanP) fixed points, and the most significant high-scale
effect of correcting t ~t +6, is due to the large Yu-
kawa couplings and not to the aGE, term. We will there-
fore treat high-scale 6, effects (p, ') separately from 6

S

and 6 effects. 6 will include 63 contributions which
G S

will be partially canceled by decoupling thresholds from
both the a3 and yb RGE's. Thus, 6 and 6 effects will

S G

be described by p, which we derive first. (Using the in-3'
put value of ai, p~ '-1—see below. ) We will then con-

sider corrections to F (pF ). Lastly, we will derive p,
and rewrite p

' in a way that rejects the correlations
among p, pF, and p, . We will also comment on the3'
role of the high-scale corrections, the case of using
a, (Mz ) as an input, and on corrections to the h, /hb ra-
tio.

Allowing a complicated threshold structure near Mz
(and/or near MG) gives a modified one-loop expression
for mb:

(pk) (bb ,
—b,. )/2b, .

m (M )=in, (M ) g g k, F '(I+6, ),
=i k=o tt.(P

(26)

where k runs over the various thresholds; i.e., p =Mz
and p"=M&. b" is the one-loop coe5cient of the respec-
tive RGE between p and p"+'; and hz represents the
threshold corrections to F. By expanding (26} around
(18) [in a similar way to (23)] and using the results of Ref.
[4] we can obtain an approximate expression for p
This yields better insight into the role of the different
correction parameters than purely numerical estimates.

The important effects of the coupling constant uncer-
tainties are in the a3 terms. a2 (in our approximation"}
drops out from (26) and the residual uncertainties from
a& are small when the input value is used. Recall that
our strategy is to use the experimental values of ai(Mz)
and a2(Mz} to predict a3. The dominant corrections to
the mb prediction are the uncertainties in aG and t due to
5, and hz, and the explicit uncertainties in b3 (as was il-

lustrated by our toy inodel). The latter can be divided
into low-scale (b,3 ) and to high-scale (63"""+63 )

Once sparticles are decoupled the degeneracy among various
operators is lifted, e.g., the gaugino-sfermion-fermion coupling
is different from the respective gauge coupling and the
Higgsino-sfermion-fermion Yul{:awa coupling is diferent from
the Higgs-boson —fermion-fermion one (see, for example, Chan-
kowski [37]). In (26) we ignored this effect, which is negligible
for sparticles and the Higgs-doublet below the TeV scale.

contributions. The low-scale uncertainties have only a
small effect on mb because they only affect a small t'
range in (16) (see the toy model). High-scale corrections
affect the entire t' range. They modify both a, (Mz}
(high-scale contributions to b, i constitute a part of 6 )

S

and either the P3 function near MG(b, 3"""}or the a3(MG )

value (b i" ). All (high- and low-scale threshold) correc-
tions to Pi affect the a3 terms in (26).

We denote the heavy X and F vectors, color-triplet,
and the adjoint color-octet, SU(2}-triplet (and singlet)
superfield thresholds by Mz, Mz, and M24, respectively.
Some of the high-scale thresholds are strongly con-
strained by proton decay; i.e., in the minimal SU(5) model
(which we assume) M5-MG and perturbative consisten-
cy constrains MG &3Mi [8,9]. M&4 «MG is possible,
and b, is this scenario can be —+0.5 and the constraints
on M5 are relaxed (i.e., M5&0. 1MG) [9]. Also, proton
decay constraints can be removed by a simple
modification of the model [41].

The sparticles and the Higgs doublet decouple from
the u; RGE at an effective scale, M;, defined in Ref. [4]
(see also Carena et al. [23]), i.e.,

b MSSM g SM

ln = ln for i =1,2, 3 .i

2+ Mz 2~ Mz

(27)
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a~(iL8 )=a, (Mz)+[tr (Mz)]

[~,(p, ')] '=[a0(Mz)]-' —b', t, —a. ,
S

[a,(p, )) '=[a, (Mz)) ' —b, t, b36t, —b, —
S

(28a)

(28b)

(28c)

The summation is over all relevant thresholds, i.e., sparti-
cles and the heavy Higgs doublet, and b;~ is the g-particle
contribution to the respective P function. M; can be split
by a factor of a few. In general, M, grows most
significantly with the scalar mass, M3 with the gaugino
mass, M, and M2 grow the same with the Higgsino mass,
and M, «M, and/or M2 «M3. M „M2 and M3 all ap-
pear in 6,6, and 5, . On the other hand, once either

s G

the gluinos or the squarks are decoupled, all squark-
gluino loops are eliminated and bs 3=b.t, 3[3.7], and two
other scales of relevance are (in the approximation of de-
generate squark masses) Mi=min(M i„;„„M,q„„„)and

M3 max(Msi„;„„M,q„„k). One has M3 M3M3.
We consider high-scale thresh olds and NRO's

(-[a,(Mz) —aG]h), low-scale thresholds
( —[a,(Mz) —a3( —1 TeV))b, ), and corrections to the
coupling constant unification predictions for a, (Mz) and
a6. We will discuss corrections to F and to t below. A
more detailed treatment of low-scale effects will be need-
ed if either some of the spectrum parameters are better
known or if one assumes sparticle thresholds above the
TeV scale. We will take' p'=M3, p =M3 p M24,
and p =M&. The couplings and coefficients [to be substi-
tuted in (26)] read

to lnp
We obtain [for the a3 terms in (26)]

"(M )

()L Pcz)
CX6

(29)

where

8&0 t 8&0 g24 8&0 gNRO)
9 G 5 9 G 3 9G 3 (30)

[a, is a, (Mz) ]
a, (and az) uncertainties feed into b, , b,~, and 5, (we

discuss the latter below). There are also p
' corrections

1

from thresholds and NRO's analogous to (30) from the
[&i(Mz)/t'ai(MG)]' factor. However, these are negli-
gible ( S 1% or p

' —1) when the experimental input
1

value for a, (Mz) is used. We take in (26) p '=1. The
1

a, term in (16) does, however, lead to a small contribu-
tion to the p,

' term.
b, b, , b,

&
and b,

&
are defined in Ref. [4] and are

given in Appendix A for completeness. They involve the
low- and high-scale mass parameters introduced above, as
well as the NRO effective strength g. To leading order g
is the only NRO free parameter and it incorporates the
degrees of freedom associated with the strength, sign,
scale, and normalization of the dimension-five operators

1 Tr(F„„@F""),
Mplanck

[a3(p )] '=[a3(p }] ' —b3ln =[a3(p )]
3

[tx,(p )] '=(a )
' b, t, +6, ——b, N"

[tt (p5) ]
i —[tr (p )] i —(txo ) I+g gNRO

b0 bsM — 7 b1 $ b2 bMssM
3 3 & 3 & 3 3

= —3,b3 =0,b3 =1,

(28d)

(28e)

(28I)

(28g) PF 1+~F (31)

where F„ is the field strength tensor and 4 is the adjoint
scalar field. The range —10& i) ~ 10 suggested in Ref. [4]
is constrained only by perturbative consistency of the
analysis.

Threshold corrections also afFect the one-loop contri-
bution from the Yukawa sector, i.e., F '~F '(I+6, },F
and it is convenient to define

bb ~ 3 bb ~ 3 bb ~ 3 8) bb ~ 3 bb ~ 3

16=b4. =bMssM
b;3 b;3 (28h)

4 aG M24 M5
ln —ln

3 m MG MG

ti ( 1 /2n )ln(M, /Mz ), 5ti = ( 1 /2it)ln(M3/M, ), and
t =8112/n )ln( M8/M)G. (We replaced a+~ by the two-loop
a, G which introduces a negligible inconsistency. ) In the
[M„,M, ] interval we cannot use (26) because b', =0, and

instead we have b,' ,a, (t4') f",d. lnp', which contributes

F ' is a correction term, but it can be as 1arge as a
-30% correction (which, in fact, is responsible for the
successful m& prediction in the MSSM), and, as we shall
show, AF =2%—4%. M24 «MG will not contribute
since the adjoint superfield couples (to one loop) to the
Yukawa operators via its coupling to the Higgs doublets,
which drops out from the ratio. However, new and large
Yukawa couplings will (radiatively) increase h (p) and
thus affect the infrared fixed points and the perturbative
limit; i.e., they affect F rather than the ratio F. (Such an
effect may shift the h, and hb divergence lines in Figs.
2—7 inwards towards each other. ) New Yukawa opera-
tors (that do contribute to the ratio' ) are also generated

The generalization to M, & M24 is straightforward. The
MI &M& case is much more dificult to describe. The heavy X
and Y supervectors couple to the SU(3) X SU(2}X U(1) Yukawa
operators in a complicated way. However, M I, —'MG and the

effects cannot be large.

' Their efT'ect can be estimated by observation of the SU(5) in-

variant operators, i.e., Fb/F, ~1 above M, : (19) is slightly
modified for M, &MG, and the divergence lines move slightly

outwards.
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if M~ &MG (see, for example, Hisano et al. [9]). The ex-
act magnitude of such effects will be determined by the
details of the high-scale Lagrangian.

There are, however, low-scale corrections to F '. We
naively change the Yukawa coupling RGB's below the
heavy Higgs doublet threshold [tH =( I /2n)ln(. MH/Mz)]
to those which are appropriate given the SM fermion
spectrum with one SM-like Higgs doublet (for example,
see Giveon et aI [2.2]). We will also neglect (near Mz)
hbcosP, h, cosP-O. We obtain

pF =expI [—,'y +—.'y»n'P]tH ] (32)

where here y, is taken at Mz (or more correctly, between

Mz and MH), and tH & 0.38. pF
' increases m~ by slightly

diminishing the effect of F ' in (18). Note that the F
behavior distinguishes the MSSM, where only hb gets
corrected (to one loop) by h„ from the SM where all fer-
mions couple to only one Higgs doublet, and both hb and

h, get corrected. For h, & 1. 1 (as is reasonable at the low
scale) pz 1.04, which is a naive overestimate. Includ-
ing a hb(Mz) —h, (Mz) (&0.4) contribution can increase
pz' by less than -2%%uo (the upper bound is for a large
tanP). In most parts of the plane the correction is
moderate; i.e., pF 1.02 if either sinP-0 or h, «1. Let
us stress that this is a somewhat naive description which
gets complicated in many ways. For example, a light t
squark and a light chargino will still couple to the SM-

I

like effective Yukawa operators. Such effects will have to
be accounted for if and when the spectrum is better
known and a refined analysis is required.

Lastly, t (which is determined by a, —a2 unification)
can be corrected by either corrections to the coupling
constant unification [see Eq. (A3)] or by a split between
the coupling constant and Yukawa coupling unification
points. In the latter case, from our definition of MG,
b, , &0 (and it is reasonable to take 5, &) —1). [Effects
(e.g., NRO's} that may split h&(MG ) and h, (MG) can be
also expressed in terms of the split between the
unification points, but then b, , has no fixed sign. ] Taking
the approximation that b, , « t so that a;(t)=a;(t+b, , ),

h, (t)=h, (t +b, , ) we find

p,
' =exp[( —

—,'y, +2aG )6, ], (33)

p pa XPF Xp~ —pz XpG (34)

where

where y, in (33) is taken at MG, i.e.,
y, (MG ) =h, (MG )/4m, and hb =h, dropped out. For
small values of h, (MG), a longer running time reduces
hb(MG ) [and thus, increases the predicted hb(Mz )] and
vice versa. The situation reverses for h, (MG )
& +16maG -V2.

Collecting our results, we have

—1
pz = M2'M,

CI+C4
3'

M.

Mz

[C) + C3 — 4]
3'M,

25Cl /28+ 25C2 /1 12+ 15CS
1

( 25 C
I
/7+ 275 C2 /1 12+25CS )

MH'
M,

(35)

and

—1
PG

=
' —(3C1/7 37C2/14+24CS ~

' —(3C1 14+33C2/28 —C5+12CS ~

V 24

Mg M
9C] /14+ Cg /28+ Cg + 12CS

5'
M.

X(1+[0.29Ci+0.24C2+Cs]rt), (36)

—1
p

(37}

represent the low-scale and high-scale corrections, re-
spectively. The coefficients C; are defined and estimated
in Table I. Note that C, +C3 —C4=0; i.e., M3 drops
out. This is because M3 is associated with the change in

a, (Mz) due the threshold, which is a second-order effect
(see the discussion above). The M3 dependence, on the
other hand, is due to the change of the bI, .

& coefficient
and is of first order. We used M3=M3M3 and added

and b,
& g terms.

It is instructive to rewrite (using Table I)
' 0.02 ' ' —0.08 ' ' 0.025 ' ' 0.01

1 2 3 H

Mz Mz Mz Mz

(DifFerent values of C7 and Cs were averaged. ) If the
spectrum was all degenerate at MsUs Y, then
pz'-(MsUsv/Mz) ~0.94. We can invert the logic
and use (37) to define an efFective scale that gives pz'
correctly. For example, in Ref. [4] we defined an effective
scale parameter A susv:

M1 M2 M3 ~ SUSY
25 ln —100 1n +56 1n = —19 1n

Mz Mz Mz Mz

(38)

(AsUsY here is MsUsv of Ref. [4], and we have changed
notation in order to avoid confusion with other
definitions of MsUsv. ) AsUsY gives correctly the correc-
tions to the a, (Mz ) [or s (Mz )] prediction, but does not
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TABLE I. The coefficients C; are defined and estimated using s (Mz)=0. 2324, a, =0.125, and
a6. =0.040.

CI

C2

C3

C4

C5

C6

C7

Definition

9a, (Mz)/ n
—-'aoG/G

——"ao(Mz)/
,(M )/

—-'aoG/~G
—4aoG/m-G

s (2+ 3 sinP)y, (Mz ) /m

657& [ y, (M—G )+4aoG]/n.

Estimate

+0.035
—0.011
—0.044
—0.009
—0.017
—0.006

+0.010

+0.008

+0.019

+0.0002
—0.0013

Comments

M24 (M5
Mq4 (M5

h -0.8 P-—t

h, —1.1, P-0
h —1.1 P-—

h, -1
h, -3

BSUSY

Mz

' —0.025

(39}

contain any information on the spectrum —it can be as
low as a few GeV for sparticles ))Mz. (See also Carena
et al. [23].) Here, we can similarly define

19C] /28 250C2 /1 12+C3 +C7 10C8
SUSY

pz =
z

The slightly negative exponent implies in many cases (for
nondegenerate spectra} BsUs„&Mz (i.e., Mi &M, , M3,
Mtt usually implies pz' 1). BsUs„Mz for a strongly
degenerate spectrum. For the spectra of Ref. [5] we find

pz 1 (AsUsv=32 and 21 GeV, Bsvsv=Mz). Taking
the limits of heavy gluinos and of a degenerate spectrum
we find 0.94 ~pz

' 1.06. Away from the limits pz
' —+1.

Similarly to (37) we can rewrite

Mv
PG= MG

—0.030
24

MG

—0.004 ' ' 0.015

(I +0.007')) .
MG

(40)

A scenario in which M&~ &&MG, M& —(0. 1 —0.5)MG,
Mv =MG, and g = —10 would give pG

' =0.9. This
scenario is also consistent with limits from proton decay
[8,9]. Furthermore, NRO's contribute only negligibly to

and to 5, (unless one allows NRO eff'ects to be very
G

large [7,42]}. M2~ &&MG on the other hand can increase t
significantly, i.e., MG & 5 X 10' GeV (which is the reason
that we can have M~ &MG). A large negative i) main-
tains an acceptable value of a, (Mz) in such a scenario.
Lifting proton decay constraints (e.g. , see Ref. [41]), we
can have M~((MG and pG'=0. 8—0.9. Taking these
limits and that of a degenerate spectrum and a large posi-
tive g we obtain 0.8&pG' ~ 1.1.

The high-scale corrections to the coupling constant
unification emerge as the leading contribution to p '&1.
We would like to stress that g is not just a new ad hoc pa-
rameter. Given the precision to which we know the low-
scale observables, one cannot ignore the likely possibility
of unknown physics at the high-scale where the
(supergravity-induced) MSSM breaks down, and which is
parametrized in terms of NRO's [whose form is defined
in SU(5) models]. Furthermore, similar corrections may
arise in supergravity from nonminimal (and nonuniversal)
gauge kinetic functions (see, for example, Ref. [42]). Un-

I

fortunately, this, in turn, introduces some ambiguity in
RG calculations (via high-scale boundary conditions}. It
should also be noted that adding large representations
[13—16,20], e.g. , 126 of SO(10), does not introduce (for
nearly degenerate heavy components) large threshold
corrections to a, (Mz) and t. This is because the decou-
pled heavy components constitute a nearly complete rep-
resentation (which acts equally on all the b, 's). Thus, the
threshold corrections in the minimal model give a good
estimate of pG (in models with a GUT sector, which are
the relevant ones for Yukawa unification). A model-
independent treatment of high-scale threshold effects on
coupling constant unification was given in Ref. [4]. The
heavy Yukawa sectors of different models may affect the
infrared fixed points differently.

An arbitrary splitting of the two unification points' in-
duces a —

5%%uo uncertainty. By combining all the contri-

' Such a perturbation may be required in order to explain the

low-energy ratios of the Yukawa couplings of the two light fam-

ilies. As we commented above, a small correction to hb/h, = 1

at Mz is equivalent to a small shift in the Yukawa coupling
unification point.
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butions in quadrature (as a guideline only) we obtain

0.80~p '~1.1S . (41)

p '=1+0.1 is thus a reasonable range, and p '=1+0.15
(which we adopted) is somewhat more extreme, but well
within the allowed range. We would like to stress that all
ranges extracted here are a guideline only. This range,
which is controlled by high-scale corrections, is still valid
when the sparticle spectrum is explicitly calculated (and,
e.g., decoupled numerically).

As we pointed out above, corrections that either
change the prediction for a, (Mz) or the positive contri-
bution to (16) from Yukawa terms, affect the infrared
fixed points and can slightly shift the corresponding
divergence lines in Figs. 2-7. They may also a5'ect the
upper bound on m,~"', and thus they induce a -+10
GeV uncertainty to the upper bound value. However,
the corrected range remains & 200 GeV (see also Barger
et al. [18]}. In particular, it is much higher than the
upper bound suggested by precision data [see Eq. (5)].

We would also like to point out that if a, (Mz),
az(Mz), and az(Mz } are all used as inputs, then one arbi-
trarily adjusts b,, so that a, +(a, ) b, is fixed at some

S S

desired value. The coupling constants do not unify unless
one consistently corrects aG and t as well. However,
such a procedure is a reasonable approximation if hs3UsY

is small (or is known and corrected for). In that case one
can minimize the residual uncertainty by calculating
az(MG) from the input value of a, (Mz) and from MG
(MG is calculated from a, —az unification). Then only

p, ', pF ', and bb zterms co. ntribute to p
' [i.e., one can

obtain their contribution by setting Ci =Cz=—0 in (35}
and (36}], and the residual uncertainty is small. Some
caution is, however, needed. The coupling constant
unification constraints are not integral in such a pro-
cedure (e.g., compare Figs. 2 and 5). In particular, the
correlation between a, (Mz) and m, is not manifest. A
large m, value implies larger values of a, (Mz) or, alter-
natively, very large corrections to coupling constant
unification. Also, only 6,, 62, h3, and 63"""can in-
duce first-order corrections to m&, and thus can be used
to fix a, (Mz). [NRO's renormalize and split a, (MG),
and thus honestly modify the boundary conditions. The
simplest way to adjust the a, (Mz) prediction to a given

input value is by adjusting g—i.e., g- —10 corrects the
a, (Mz) prediction to a, (Mz )-0.11.] As was illustrated
by our toy model, 63 contributes to 6 but does not

a8'ect m& to first order in small terms. Thus, unless one
knows and corrects for the 53 contribution to the in-

put a, (Mz) one introduces a significant theoretical un-

certainty. Lastly, the experimental uncertainty in
a, (Mz) is large, and arbitrarily varying a, (Mz) in that
range is not very instructive. Nevertheless, it is useful in
demonstrating the role of a, (Mz ) in predicting mb, as we
saw in Sec. III.

Finally, the three- Yukawa-coupling unification strip
(see Fig. 2) has uncertainties in both the tanP and the
mp'" ranges, coming from corrections to the hb/h, and
h, /hb ratios, respectively. To one loop

(h, lhb)-(a, laG") ' (Fb/F, ) and any uncertainties
in the a& term are negligible. However, variation of
—0.5 S b, , S0.5 generates -k2% (-+8%) correction if

y (MG)h, /2
h, -hb-h, -l (-2), i.e., (pb/p«p), -e ' . Addi-
tional uncertainty of

0 95 ~ (pb/p«, )F-exp [[y~(Mz) —zxb(Mz) 1tH ] ~ I

(we assume tanP »1) is associated with the decoupling of
the heavy Higgs doublet. We estimate a —+5—10% un-
certainty in the m,~" range that corresponds to three-
Yukawa unification.

U. CONCLUSIONS

Grand unified theories typically predict hb =h, at MG,
and contain nonfundamental Higgs representations.
These distinguish such models from some other realiza-
tions of the MSSM, e.g., string-inspired GUT-like mod-
els. Above, we explicitly embedded the MSSM in a
minimal SU(5) model, and concluded that such a model is
constrained to a small area of the parameter space. We
showed that corrections to a two-loop calculation of the
bottom mass (when assuming grand unification) are mani-
fested in various ways. Parametrizing those corrections,
we were able to relate them to the correction parameters
identified in Ref. [4], and to study their magnitude and
behavior in some detail. The theoretical uncertainty in
the bottom mass prediction is typically & 15%. We thus
took (given the ambiguities in the extraction of mb from
experiment) 0.85mb(5 GeV}(4.45 GeV as a (conserva-
tive) constraint. Requiring this, as well as requiring per-
turbative Yukawa couplings up to M& and identifying
the coupling constant and the (third-family) Yukawa cou-
pling unification points, we found that the range
2.7 &tanP540 is excluded (as well as mP'"&215 GeV),
and that, in agreement with other authors, the allowed
area in the mP"'-tanP plane is described by low- and
high-tanP branches (where the former saturates the h,
fixed-point line). The separation between the two
branches is determined by the correction factor. Requir-
ing all three (third-family) Yukawa couplings to meet
constrains 160 GeV&mP'" and requires a large tanP.
%'e demonstrated that the allowed parameter space
grows for lower (input) values of a, (Mz), but that the
MSSM prefers higher values. We further argued that the
s (Mz) quadratic dependence on mti "cannot be ignored
as it correlates the a, (Mz) prediction with m,~", and
thus a8ects the m,~"dependence of the m& prediction, as
well as the upper bound on m,~" and the range of mf~"
for which intermediate values of tanP are allowed. Final-
ly, we expect the above observations and radiative break-
ing of SU(2) XU(1) to have mutual implications, and sug-
gest that the above constraint is still va1id in a calculation
in which the sparticle spectrum, and therefore pz, is cal-
culated explicitly. (The larger uncertainty in the calcula-
tion comes from the unification-scale physics rather thah
from the details of the sparticle spectrum. ) Our hope is
that a careful study of various correction terms will even-
tually result in rehable constraints on the MSSM parame-
ter space, and in a way that can distinguish different real-
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izations of the MSSM. Here we have showed (in agree-
ment with others) that by measuring tanP one can ex-
clude simple (and some extended) GUT structures at the
high-scale.
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APPENDIX: THE CORRECTION FUNCTIONS

For completeness, we give the correction functions to
the coupling constant unification [in the minimal SU(5)
MSSM]. For more details, see Ref. [4]. Corrections that
depend on m,~"or the conversion to the DR scheme are
included in the numerical procedure, and are not quoted
below All. the parameters are defined above (see Sec. IV).
The correction functions are

M, Mq—336m 5 = +888 ln —396 ln + 12 ln
Mg MG 6

M) M2+75 ln —825 ln +50.Og,
z z

336m' v z4 12
1

5
6, = —241n —121n + ln

M) M~
+15 ln —25 1n +1.0g,

z z

,4 3 M 24
ln

VT G

bxzo 0 03
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