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Technicolor with a massless scalar doublet
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We consider a minimal technicolor model in which the ordinary and technicolor sectors are coupled
by a massless scalar doublet. When technicolor interactions become strong, the resulting technicolor
condensate not only breaks the electroweak symmetry, but also causes the scalar to develop a vacuum
expectation value. With the appropriate choice of the scalar s Yukawa couplings, fermion masses are
generated, giving us the conventional pattern of Aavor symmetry breaking. Although no explicit scalar
mass term appears in the full Lagrangian of the model, the pseudoscalar states that remain in the low-

energy effective theory gain suf6cient mass through technicolor interactions to evade detection. We
show that this model does not generate unacceptably large Qavor-changing neutral currents, and is con-
sistent with the experimental constraints on oblique electroweak radiative corrections. We determine
the experimentally allowed region of the model s parameter space, and discuss the significance of a phe-
nomenologically viable model that has no arbitrary dimensionful parameters. In terms of parameter
counting, our model is the simplest possible extension of the standard model.

PACS number(s): 12.60.Nz

I. INTRODUCTION

Technicolor models provide an elegant mechanism for
electroweak symmetry breaking, but give no natural ex-
planation for the generation of fermion masses. A num-
ber of different scenarios have been proposed to solve this
problem, including extended technicolor (ETC) models
[1],and composite technicolor standard models (CTSM's)
[2], but neither of these has been free of other serious
shortcomings. ETC models that can accommodate a
heavy top quark often can do so only at the expense of
generating large flavor-changing neutral current (FCNC)
effects. While CTSM's have a Glashow-Iliopoulos-
Maiani (GIM) mechanism built into the technicolor sec-
tor to minimize this problem, all the realistic examples
that have been proposed require many new gauge groups
beyond those of the standard model, and therefore these
models become aesthetically unappealing. A simple al-
ternative to ETC and CTS models that suffers from nei-
ther of these drawbacks is technicolor with a scalar dou-
blet [3]. The scalar communicates electroweak symmetry
breaking to the ordinary fermions in a way that does not
generate large FCNC effects.

In previous phenomenological studies of technicolor
with a single scalar doublet, it was assumed that the sca-
lar had a significant SU(2)XU(1) invariant mass, and
that quartic terms in the scalar potential could be ig-
nored. The resulting analysis established that the single
scalar doublet model was phenomenologically viable over
a wide range of the model's parameters. In particular,
the model could account for a heavy top quark without
generating large flavor-changing neutral currents, and
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without exceeding the experimental bounds on the elec-
troweak S and T parameters [4]. Part of this success was
achieved at the expense of allowing an undetermined di-
mensionful parameter in the theory, namely, the mass of
the scalar doublet, M&. A simple way to account for this
unknown scale is to assume that the scalar is composite,
and that its mass is calculable given knowledge of the de-
tailed dynamics of a full, high-energy theory. In this pa-
per, we will explore another alternative, namely, that the
scalar is fundamental and that M&

——0. In this limit, the
Lagrangian for our model contains no arbitrary dimen-
sionful parameters. Although the original scalar doublet
is now massless, we will see that technicolor interactions
are sufficient to give the physical scalar states in the low-
energy effective theory masses large enough to ensure
that they are not detected. In addition, we will show that
FCNC effects are not unacceptably large, and elec-
troweak oblique corrections do not exceed current experi-
mental bounds. In short, the model is again phenomeno-
logically viable. Furthermore, because of the absence of
the scalar mass term, the model has only two more pa-
rameters than the simplest version of standard model. In
this sense, it is the simplest possible extension. In addi-
tion, in some allowed regions of the parameter space, the
model differs significantly from the more conventional
technicolor models discussed in [4].

The paper is organized as follows. In Sec. II, we de-
scribe the basic features of the model. In Sec. III, we
construct a low-energy effective chiral Lagrangian to de-
scribe the physics of the scalar states below the elec-
troweak scale. In Sec. IV, we study the effects of
Coleman-Weinberg radiative corrections on the scalar
potential. In Sec. V, we set up the analysis of flavor-
changing neutral currents in the model. In Sec. VI, we
determine the region in the model's parameter space that
is excluded by experimental constraints, and discuss pos-
sible experimental signatures. In Sec. VII, we discuss the
oblique electroweak radiative corrections and present our
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II. THE MODEL

The gauge structure of the model is simply the direct
product of the technicolor and standard model gauge
groups: SU(N)zc X SU(3)c X SU(2) iv XU(1)r. ' The
technicolor singlet fermions are exactly those of the stan-
dard model, in the usual SU(2)iv representations of left-
handed doublets and right-handed singlets:

U
QL= D , U~)D~.

(2.1)

Here l—= (e,p, r), v—= (v„vz, v, ), U—= (u, c, t), and
D—:(d, s, b) We a.ssume that the technicolor sector is
minimal; i.e., it consists of two techniflavors p and m that
also transform under SU(2) ii as a left-handed doublet and
two right-handed singlets:

Pz mz . (2.2)
m

We assign the hypercharges Y(YL )=0, Y(pii)= —,', and
1'( mz ) = —

—,
' so that the model is free of gauge

anomalies. In addition, p and m each transform in the
fundamental representation of SU(N )rc

When technicolor becomes strong at a scale =4', the
technifermions' chiral symmetries spontaneously break,
and the technifermions form a condensate

(pp+mm ) =4m f (2.3)

where f is the technipion decay constant. The conden-
sate breaks the original SU(2) iv X U(1)~ electroweak
symmetry down to U(1)EM, giving mass to the W and Z
bosons. The ordinary fermions, however, are left
unaffected by electroweak symmetry breaking, and will

remain massless unless we provide some additional mech-
anism.

To couple the ordinary fermions to the technicolor
condensate, we introduce a massless scalar field P, that
transforms as an SU(2) iv doublet, with hypercharge
Y(4}=—,'. The scalar has Yukawa couplings to both the
technifermions,

X~z.=YL Ph+p~ +Yl gh mii+H. c. ,

and to the ordinary fermions,

(2.4)

estimate of the low-energy contributions to the S and T
parameters. In Sec. VIII, we consider the phenomenolo-

gy of the region of the model's parameter space that is
not adequately described by an effective chiral Lagrang-
ian. In the final section we summarize our conclusions.

Xpf LL pht1„+ QL ph ~ U„+Qt phDD~ +H. c. (2.5}

%'hen the technifermions condense, the scalar develops a
vacuum expectation value that generates mass terms for
the ordinary fermions. We will see how this works ex-
plicitly in Sec. III. The coupling matrices hf are propor-
tional to the fermion mass matrices and generate the usu-
al pattern of flavor symmetry breaking of the standard
model; in particular, the quarks mix via the conventional
Cabibbo-Kobayashi-Maskawa (CKM) matrix.

The new free parameters in our model that are associ-
ated with the scalar are the Yukawa couplings (h+, Ii )

and the technicolor scale Azc. The value of Azc will be
determined by the SU(2) X U(1)-breaking scale (although
in a nontrivial way), just as this scale determines the
value of the scalar mass term in the simplest standard
model. Thus the two "new" parameters can be taken to
be h+. As in the simplest standard mode1, the physics
also depends on the unknown (P P) /2 coupling in the
scalar potential, which we will call A, . Our aim is to max-
imally constrain these parameters given the current ex-
perimental limits on the relevant physical processes.
However, it wi11 be more convenient for us to express our
results in terms of the equivalent set of parameters k, h,
and 5, where

h =(h++h. )/2, 6=(h+ —h )/(h++h ) . (2.6)

In this parametrization, the technicolor sector of the
model is custodial isospin conserving when 5=0, and
maximally isospin violating when 5=1. Since custodial
isospin violation centers at order 5 h in the chiral ex-
pansion, the lowest-order results we present in Sec. III,
V, and VI, will depend on A. and h exclusively. Thus, we
will devote much of our effort to identifying the areas of
the A, -h plane that are excluded by experiment. The pa-
rameter 5 wi11 be of relevance in Sec. VII where we esti-
mate the nonstandard contributions to the T parameter.
We will show that 5 can be set to its maximum value
throughout much of the allowed region of the A,-h plane,
without generating dangerously large corrections to T.
Thus, we will find that it is not necessary to fine-tune 5 in
order to satisfy the experimental constraints.

III. THE EFFECTIVE CHIRAL LAGRANGIAN

In this section, we construct an effective chiral La-
grangian for our model to describe the physical scalar de-
grees of freedom below the technicolor scale. This ap-
proach is possible because the technicolor kinetic terms
have an SU(2)1 X SU(2)z chiral symmetry that is broken
spontaneously to a diagonal SU(2)„ the latter is the well-

known custodial SU(2) which prevents the T parameter
from deviating greatly from zero. The pseudo Goldstone
bosons that result from the chiral symmetry breaking are
the isotriplet of technipions:

~'/&2 ~+
—

m /&2
(3.1)

'%e will assume that %=4 in a11 the quantitative estimates

below.

The ehiral Lagrangian analysis would parallel that of
QCD except that the chiral symmetry of interest to us
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here is gauged. We can imbed the conventional weak
SU(2} completely in SU(2)L, and let hypercharge be gen-
erated by the r3 component of SU(2)a. (This imbedding
is possible because the left-handed technifermion doublet
has zero hypercharge. ) We adopt the conventional non-
linear representation of the technipion fields:

From now on we will work in the unitary gauge, where
the particle spectrum consists of m, cr, and the massive
weak gauge bosons.

Since we are interested in the determining the masses
of the fields m and 0. we need to study the scalar poten-
tial. At lowest order, it is given by

X=exp{2iII/f ), X~LXR t, (3.2) (3.12)

P ((}+
(3.3)

Then, the kinetic-energy terms are given by
2

EKE= ,'Tr(D„—4D"4)+ Tr(D„XtD~X) (3.4)

with the covariant derivative defined by
0

D &X= d&X ig W~& —X+ig 'B—"X0 2
(3.5)

Following the analysis of Ref. [4], we use the fact that
4 4 ~ 1 to rewrite 4 in terms of an isosinglet scalar field
o, and a unitary matrix X':

e= +f'X
2

(3.6)

with II defined in (3.1) and we write the scalar doublet t|}
in matrix form:

P p+ h+ 0

0 h (3.13)

This potential for 4 is the only one consistent with renor-
malizability, gauge invariance, and our assumption that
M&=0. At one loop, there are additional terms in the
potential of the form o ln(o /p ) induced by radiative
corrections in the manner of Coleman and Weinberg [5].
These terms are important in some regions of the param-
eter space, however, we will begin by ignoring them. We
hope that this will make the subsequent analysis easier to
understand.

On the other hand, we must always include the contri-
butions to the potential generated by the technicolor in-
teractions. To write down all appropriate terms con-
sistent with the chiral symmetry, we recall that the cou-
pling of the scalar to the technifermion doublet Y is given
by

X' =exp(2i II'/f '
) . (3.7}

where H is the technifermion Yukawa coupling matrix.
Thus, if we treat the matrix 4H as a spurion transform-
ing as

Later, we will present a more elegant redefinition of 4
that is manifestly nonsingular in the limit f ~0. Since
the physics is independent of the particular nonlinear
field redefinition we adopt, we will work for the moment
with (3.6) to derive our main results. Under this
redefinition, the kinetic terms become

(4H )~L(4H )R (3.14)

X~=c&4nf Tr(@HX )+H.c. , (3.15)

and build all possible invariants, we will obtain the
correct efFective Lagrangian. In fact, we will only require
the simplest term

2

EKE=
—,
' B„o8"o + Tr(D„XtD "X)

+ & 2

+ Tr(D X'tD "X') .
4 P (3.8)

V~(o )= &2c,4m.f (h+—+h )o . (3.16)

where the coeScient c
&

is of order unity, by naive dimen-
sional analysis (NDA} [6]. This interaction generates a
linear term in o".

fII+f'II'

yf 2+f iz (3.9)

By expanding Eq. (3.8) in terms of the component fields,
it is easy to show that the pions in the linear combination

Vq(0)+ VH(0) =0 {3.17)

We assume that the 0 field has no vacuum expectation
value, and therefore we require that the linear terms in o
vanish:

become the longitudinal components of the weak gauge
bosons in the unitary gauge, while those in the orthogo-
nal linear combination,

or

f' =8&2e nhf—1 (3.18)
—f'II+fII'

77 +f2+f 2
(3.10}

2 2

+f p sin 8 cos 8
m.a (3.11)

remain as physical scalars in the low-energy theory. In
addition, we obtain the correct gauge boson masses only
if

f=U[1+(16&2nc, ) (h/A) ]
' 1/3

f ' =f( 16&2m.c )'~

(3.19)

(3.20)

Together with the constraint imposed by Eq. (3.11},this
completely determines the pion decay constants f and f'
in terms of the model's free parameters:
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where h =(h++h )/2. Now it is simple to determine
the scalar masses. The lowest-order contribution to m
comes from (3.12):

and

X=Xoexp( 2—i13vr ), (3.26)

2 —3'/2

While there are also contributions to m proportional to
f h, it will be clear later that these are small corrections
compared to (3.21) over the range of the parameters that
will be relevant to us. For the triplet pions, m„ is gen-
erated at O(H) from the piece of (3.15) that is quadratic
in~:

where

Xo=exp
2l 7Ta

a= —,P=u' fu

and where

(3.27)

(3.28)

—4m.&,m'=2c, &2," u'h . (3.22)

We will study (3.21) and (3.22) quantitatively in Sec. VI.
The reader should keep in mind that these results are

not valid everywhere in the model's parameter space.
Since we want perturbation theory to be reliable, we will
always restrict ourselves to values of h and A, that are less
than -4m. and -16m, respectively. However, chiral per-
turbation theory does not give an appropriate description
of the model everywhere in this region. As we increase h,
the technifermion masses induced by the scalar vacuum
expectation value (VEV) will eventually exceed the tech-
nicolor scale, and chiral SU(2) X SU(2) will cease to be an
approximate symmetry of the theory. Since the techni-
fermion masses are of order hf', the effective chiral La-
grangian is appropriate only if

with f +f' =u as before. Unlike the field redefinition
given by (3.6), this choice is clearly well behaved as
f'~0. While (3.6) appears ill defined in this limit, this is
simply the consequence of a coordinate singularity. The
reader can verify that either redefinition will yield the
same physical results.

IV. COLEMAN-WEINBERG TERMS

In this section, we consider the effects of radiative
corrections to the 0. potential. The contributions will be
important only when the couplings involved can grow
large somewhere in our parameter space. The only Yu-
kawa couplings that can become large are h„and h+.
Thus, to a good approximation, the corrected potential
can be written

hf' «477f',

or alternately,

(3.23) V(o. )=—cr — [3h, +N(h++h )]o ln
64m p

h«
1/42&2~' g1/4 (3.24)

—8&2ncif her, (4.1)

C1

—Xo(f'+ a+2i an~ )
1

0 (3.25)

The physics of the model for hf ' »4n f would be very
peculiar. The "current" masses of the technifermions
produced by the breaking of the SU(2) XU(1) would be
much larger than the scale of the technicolor interac-
tions. From an effective field theory standpoint, you
might worry that the massive technifermions would not
be present in the low-energy theory to produce
SU(2) X U(1) breaking. But if there were no SU(2) X U( 1)
breaking, then the technifermions would be massless and
then they mould be in the low-energy theory to produce
SU(2) XU(l) breaking. As we will see in the next sec-
tion, the Coleman-Weinberg interactions save us from
this logical conundrum. They push us away from the re-
gion hf ' »4rrf toward the region (3.24), where the chiral
Lagrangian description is valid. The corrections may be
important on the boundary of the allowed region. We
will discuss the phenomenology of this boundary region
in Sec. VIII.

Note that all of the results presented in this section
could have been obtained had we chosen a different pa-
rametrization of the fields X and 4. For example, we
could have defined

where h, is the top-quark Yukawa coupling, and p is an
arbitrary renormalization scale. To remove the p depen-
dence in (4.1), we next define the renormalized coupling A,

conventionally as

Vill/(f I
)3

(4.2)

However, it will be convenient to describe the physics not
with (4.2), but in terms of the parameter X, defined by

11X=—A. + [3h, +N(h++h )] .
24m

(4.3)

We introduce the additional shift so that the condition
V'(f ') =0 gives us

1/3

f'=f(16&2m.c )' ' (4.4)

Because of (4.4), we can take over much of the analysis of
the previous section by simply making the replacement

For example, the triplet pion mass contours and
condition hf'(4nf look the same .as before, provided we
use the parameter A, instead of A..

Of course, we cannot. absorb all the effects of the radia-
tive corrections into a redefinition of A, . The one thing
that does change is the value of I, which is determined
by V"(f '). Expressed in terms of X, we find that
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m~ = —X— [3h, +N(h++h }] f'
2 8

(4.5)

—'X, ~ (1+65 +5 )h
4m

(4.6)

From (4.5}, it is easy to see how the theory avoids the
conundrum described in the previous section. The stabil-
ity of the vacuum requires m ~ 0. Thus, (4.5) implies

I

W i~p

dt

(~ = "b)

I

Xp l

I

I

( Xp
I

d

FIG. 1. Nonstandard box diagrams for one- and two-pion ex-
change.

Together with (3.18},this implies

hf' ( 3ci

4~f v 2+(1+6''+ S4)

1/3

(4.7}
m(tV«V t~) Iz(m„m )+ I3(m„m )4~2 3 t

while the one-pion-F exchange diagram gives us

z f
f'u

Thus, we never get into the dangerous region in which
the effective field theory description leads us into a logical
puzzle. We therefore expect that the chiral Lagrangian
analysis of Sec. III will give results that are at least quali-
tatively correct. However, the right-hand side of (4.7)
can be close to 1, so we may expect nontrivial corrections
to the chiral Lagrangian relations as we approach the line
hf'=4m f.

V. FLAVOR-CHANGING
NEUTRAL CURRENTS

where $1.=( UI. , VDI ), Q„=(Ua, Da ), hU
=diag(h„, h, h, ), hn =diag(hz, h, hb ), and where V is the
CKM matrix. After applying (3.6}, these couplings be-
come

hU 0

p Vh 4z+H c.
2 D

(5.2)

from which we extract the charged-pion couplings

[DI. V n q
h U UJt + UI n p Vh D DR +H. c. ] . (5.3)

The physical pions contribute to the bq=2 box dia-
grams shown in Fig. 1, where q=S or B. Notice that
the explicit factors of the top-quark Yukawa coupling in
these diagrams cause the two-top-quark exchange dia-
grams to dominate over all others. For the two-pion ex-
change diagram, we find that the contribution to the
operator [qy"[(1+y5)/2]d ] is given by

4

f'u mt(VtgVtq) I~(mt, m ), (5.4)

2Vfe omit a discussion of D -D mixing, because we found this
process to provide much weaker constraints on the model.

In this section, we set up the analysis of Gavor-

changing neutral currents in our model. The coupling of
the scalar doublet P to the ordinary quarks can be written
in matrix form:

hU 0
QL 4 p Vh tttlt +H. c. (5.1)

D

62
q m, (V,~ V;, )

4~

for K -E mixing, and

2
G~

p
m t ( Vtd Vtb }

4m

(5.6)

(5.7)

for B -B mixing. We wi11 analyze these results quantita-
tively in the following section.

VI. EXPERIMENTAL LIMITS

We are now prepared to compare the predictions of
our model to experiment. As discussed in Sec. II, we will
strive to systematically exclude regions of the A,-h plane.
We immediately truncate our plots at h =4~ and
A, =16m.~, and we show the hf'=4mf line to indicate
where there may be sizable corrections to the ehiral La-
grangian analysis.

Our first concern is that the scalar states in our model
must be heavy enough to avoid detection. The ALEPH
Collaboration [8] has placed the strongest lower limit on
the mass of a neutral Higgs boson by studying the process
Z ~Z'H, assuming the standard model coupling

2

Z"Z H.
4$2c 2 P (6.1)

They exclude a mass less than 48 GeV at the 95/o
confidence level. We display the m =48 GeV contour in
Fig. 2. The allowed region is inside the solid curve. As
discussed in the previous section, because of the
Coleman-Weinberg terms in the potential, m depends
on m, and 5. The solid line in Fig. 2 corresponds to

(5.5)

Similar box diagrams are generated in two-Higgs doublet
models, and the integrals I (j= 1, . . . , 3) have been tab-
ulated previously [7]. We provide them in the Appendix.
In evaluating these diagrams, we have neglected the
four-momenta of all external particles; this is a good ap-
proximation because the masses of the s and b quarks are
small compared to the masses of the particles running
around the loop. For comparison, we note that the stan-
dard model contribution to the coeScient of
[qy"[(1+y~)/2]d ] is of the order
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VII. OBLIQUE CORRECTIONS

For completeness, we now will consider the effect of
the nonstandard scalars in our model on oblique elec-
troweak radiative corrections. In particular, we will esti-
mate the S and T parameters, which have been shown to
provide stringent constraints on simple technicolor mod-
els [9]. The low-energy contributions to these parameters
can be computed within the framework of our effective
chiral Lagrangian by evaluating pion loop diagrams. The
results for S will depend only on our location in the A,-h
plane, and on the unknown coeScients in the chiral La-
grangian. To compute T, however, we will also need to
specify the parameter 5, which determines the magnitude
of custodial isospin violation in the technicolor sector.
Since we do not know the value of 5, the sign of the non-
standard contribution, or size of the top-bottom mass
splitting, our ability to constrain the model is somewhat
diminished. What we will show is that the new contribu-
tions to T are not dangerously large in much of the pa-
rameter space, assuming the worst case scenario in which
5=1. Thus, we will demonstrate that h+ and h do not
require fine-tuning in this model. Note that we have
separated the discussion of oblique corrections from Sec.
VI because we will be unable to exclude any additional
region of the A.-h plane.

The S parameter can be expressed as

S= —16~ II
2 p

(7.1)

where II3& is the piece of 8'38 vacuum polarization pro-
portional to ig"". There is a tree-level contribution to S
from the following term in the chiral expansion:

line, " respectively. We see that 8 -8 mixing provides
the more stringent limits, but by no means exclude all of
the available parameter space. Everything above the 8
line, and to the right of the m =48 GeV contour, is al-
lowed, and much of this parameter space is within the re-
gion in which our chiral expansion is trustworthy.

We must also consider the possibility of detecting the
isotriplet pions n. . In Fig. 5, we show the contour of the
allowed region from Fig. 4 (with rn, = 110 GeV), with the
m =ntz/2 and nt =m~ lines as points of reference.
For all of the parameter space above the 8 line,
m )mz/2 so that the decay Z~2n is not kinematical-
ly allowed. In particular, we obtain little useful informa-
tion from the available LEP limits on Z~~ m . In
fact, for most of the parameter space, nt is larger than
mz, and the triplet pions cannot be produced in any
weak gauge boson decays.

Sp originates from the nonperturbative, high-energy dy-
namics, and hence is proportional to an undetermined pa-
rameter in the low-energy theory. This high-energy tech-
nicolor contribution to S has been estimated in Ref. [9],
and is given by

NTF NS =0.3 —=0.1N
2 3

(7.4)

for a model with two techniflavors. In this estimate, S is
normalized so that S=O corresponds to the standard
model with a 1-TeV Higgs boson. We adopt this conven-
tion throughout. Assuming that S is positive, then the
experimental upper bound is given by [10]

S (0.9 (7.5}

at the 95% confidence level. We need to verify that the
low-energy contributions in our model do not exceed the
difference between (7.5) and (7.4), for an appropriate
choice of N.

The low-energy contributions to II3& in our model are
obtained from the one-loop vacuum polarization dia-
grams shown in Figs. 6(a}-6(c}.Working in the modified
minimal subtraction (MS) prescription, we find

2

hS, = ln (7.6)a
12m m2

1 f2 2

5,$b= — ' ln —2(x+x )b
12m U2 m2

(7.8)

where x =m l(m„—rn ) and y =mzl(rn —mz}.
Note that the sum of the three diagrams that we consider
here is finite, and therefore the sum of (7.6)-(7.8) is in-
dependent of the cutoff p. Since a reference value of S
has already been subtracted in the definition of Sp, as we
pointed out earlier, our final estimate of the low-energy
contribution is given by

hS=hS, +ESb+hS, . (7.9)

To get some idea of the characteristic size of hS, we
evaluate it along the h =0.2f If' line shown in Fig. 5.

+(3x +2x )ln 1+—+—,(7.7)
x 6

f'&2 2

hS, = — ' ln +(4y+10y )
12m U m

T

—(9y +10y )ln 1+—+—2 3 1 5

y 6

C2

2 Tr(X W""XB„„),
16m

(7.2)

1S =—e0 2 (7.3)

where W"" and 8" are the gauge field strength tensors,
and where c2 is a constant of order unity. The contribu-
tion to S is then given by

3In Ref. [4] this estimate was multiplied by an extra factor of
v If; we now believe this is an error. Without this factor, the
value of So in Ref. [4] is reduced and the conclusion that the
massive scalar model is viable is strengthened.
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W, ~~~I

(a)

7t p

/

e'

(b)

contribution. The one-loop diagrams that incorporate
the mass splitting of the pion triplet give us contributions
to T that are logarithmically enhanced over (7.12). The
pion masses are split at O(H ) by the efFects of the term

c4f Tr(@IX 4HX }+H.c. (7.13)

From (7.13) we find

I 2 m2 4~ U2A 252 (7.14)

FIG. 6. Vacuum polarization diagrams contributing to H3+.

4m.T= . . .~ll„—11„j, ,scmz
(7.10}

To estimate T, we again start by considering the tree-
level contributions to II»-II33 which come from terms
in our chiral expansion of the form

(Tr@HD "X )
16m.

(7.11)

From (7.11) we obtain a result of order
2f'
h 25zbT= 1

8m. a
(7.12)

which is relatively small throughout much of the allowed
region. However, (7.12) does not represent the leading

0.10
I I II

)
I I II I I II

I

This line was chosen because it is in the heart of the al-
lowed region, and well within the area where our chiral
Lagrangian is valid. Along this path, the value of hS is
plotted in Fig. 7. We see that hS ranges from roughly—0. 11 to 0.01; in any event, it is not very large. For a
reasonable choice of N, e.g., N=4, the high-energy con-
tribution is 0.4, and dominates over the low-energy com-
ponent. The total contribution in this particular example
then ranges from 0.29 to 0.41, which is consistent with
the experimental bounds.

The T parameter is defined in terms of a different com-
bination of vacuum polarizations

We may now compute the one-loop diagrams shown in
Fig. 8 by working to lowest order in m 0

—m +, and sub-

stituting (7.14). We obtain
'2

4 2 2AT= h 5 — F(m, m o)+F(m +, rn 0)a U

(7.15)

where

2

F(m&, mz)= ln +1 2 16~2 m 2

m4
1

2Pl 2
ln

(m~ rn )—m 1

Pl 1+
2 2(m
&

—m2)
(7.16)

and where we set p, equal to the technicolor scale, 4mf.
In fact, only the logarithmically enhanced term is of any
real interest to us in this result. The 1/e poles in the loop
integrals have been removed by introducing counterterrns
of the form (7.11). However, as we have seen, these terms
also contribute an unknown finite amount to AT. The
point of our computation is that the logarithmic term is
large enough so that we do not need to worry about all
the unknown finite contributions in order to obtain a reli-
able estimate.

Again we evaluate our results along the h =0.2f If'
line shown in Fig. 5, setting 5= 1. The results are plotted
in Fig. 9.

We see that these results present no immanent danger
of conflict with the experimental bounds on T, at least in
most of the region of the parameter space that we have
sampled. In fact, we could adjust 5 from 1 to —,

' and

suppress the results shown by a factor of —,', without in-

troducing any substantial fine-tuning. Since hT is pro-
portional to h, it seems that the necessity of fine-tuning
5 may arise at larger values of h, but this is exactly the

0.05 AS along hf' = 0.2f

0.00

—0.05

—0.10

—0.15

Kp

/

W, ~~~ ~~W,
J

1l p

/

1fp

1fp

/

~~W3
/

020 II I I I II I I I II I »II I

1 2 5 10 10~

A —+

FIG. 7. Low-energy contribution to S.
FIG. 8. Vacuum polarization diagrams contributing to

Hl I H33 ~
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FIG. 9. Low-energy contribution to T.

102

ticular, one might expect that the vector bounds states of
these technifermions will be quite narrow, like the J/f.

Note also that h f
' is the average current mass of the

technifermions. If 5 is very different from zero, one of
technifermion masses will be smaller. This is quite in-
teresting in the upper left-hand corner of the allowed re-
gion, where the technicolor scale is quite small. Here one
can imagine that some of the technifermions bound states
might even be light enough to show up at LEP II ener-
gies. The lightest state will presumably be a bound state
of the lighter technifermions, and therefore it will be neu-
tral and can be produced at LEP II if it is light enough.
On the other hand, this may make a large contribution to
the T parameter through mixing of the lightest state with
the Z.

limit in which our chiral expansion begins to break down.
We will therefore need to reexamine this question in next
section.

VIII. BEYOND THE CHIRAL EXPANSION

10—
5 =

2 .—..... ...1—

I I I l~ I I I l~l I I I lg

25 ~ ~ ~ W.
....W ~

10 2

h

10 3

10 4

10

— 150

f = 200

10 g I I II I

10 2 10-'
I I III I I III I

1 2 5 10 102

A~

FIG. 10. Values off and h f '.

At the bottom of the allowed region in Fig. 5, our mod-
el looks like a rather standard technicolor model, , like
that discussed in [4]. However, near the top of the al-
lowed region, the physics is very different. A full discus-
sion of the phenomenology of this region is beyond the
scope of this paper, but we would like at least to explain
what is so peculiar about it. The essential point is illus-
trated in Fig. 10, where we have plotted contours of fixed

f (the dashed lines) and h f
' (the dotted lines).

At the top of the allowed region, the technicolor scale,
f, can be considerably stnaller than the average "current"
mass of the technifermions h zf'. While the ratio h f'If
cannot grow arbitrarily large because of the Coleman-
Weinberg corrections discussed in Sec. IV, the ratio does
get close to 4m. , and that is enough to drastically change
the physics of the technifermion bound states. The tech-
nifermions in this region are much more analogous to c
quarks in QCD than they are to u and d quarks. In par-

IX. CONCLUSIONS

We have presented a minimal technicolor model, in
which the ordinary fermions and technifermions are cou-
pled by a massless scalar doublet. The technicolor con-
densate that breaks the electroweak symmetry also drives
the scalar's vacuum expectation value, which, in turn,
generates the fermion masses. Flavor symmetry breaking
originates from Yukawa couplings, as in the standard
model. We have shown that the scalar states in the
theory can be made massive enough to avoid detection,
even though the high-energy theory has no mass terms,
and no arbitrary dimensionful parameters. In addition,
we have shown that the model does not generate unac-
ceptably large Qavor-changing neutral currents, nor does
it give a large low-energy contribution to the S or T pa-
rameter.

Our model is nearly as parsimonious as the standard
model with a single fundamental scalar doublet. There
are only two more continuous parameters h +. The tech-
nicolor scale ATC plays the role in our model that the sca-
lar mass term plays in the simplest standard model —it
sets the mass scale for all light particle states. In terms of
parameter counting, our model is the simplest extension of
the standard model. The next simplest, the two-doublet
model, even with the scalar masses set to zero, has one
more renormalized parameter than ours.

While in the final analysis we cannot argue that a mod-
el with a fundamental massless scalar at the electroweak
scale in natural, we have nonetheless demonstrated that
our model is both simple and consistent with the current
experimental constraints. In contrast, the fully massless,
Coleman-Weinberg limit of the standard model produces
a Higgs boson that is unacceptably light after symmetry
breaking. Technicolor helps us by making the physical
scalar states in our model heavy enough to avoid detec-
tion. In the end, we are left with a fully massless theory
that is viable, and has a rich and interesting phenomenol-
ogy.
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APPENDIX

Below are the integrals relevant to the box diagram calculations in Sec. V. They are in agreement with those pub-
lished previously in Ref. [7]:

d4k kI, (m), m2}=
& (2n) (k +mf)(k +m2)

Pl 2 + rn ) 2771 )Pl 2+ ln
16m. (m rn—) (m —m, ) 2 .

(Al)

d4k 1
Iz(m „m2)=

g (2K} (k2+m2 )2(k2+m 2 )(k2+M2 )

m 21n(m
&

/m z ) Mtt, ln(m t /Mn. ) 1

16m. (m2 —m)) (mz Mn—) (Mn —m, ) (Mn —m2) (m, —m2)(m, Mn—)

d4k k
Is(m, , m2) =

E (2~) (k2+m2)2(k2+m2)(k2+M2 )

m2ln(m2/m, ) Mal n(M elm]) m]

16m (m2 —Mn, )(m f —mz) (Mtt, —mz)(m f
—Mn ) (m& —m2)(mt —Mn )

(A2)

(A3}
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