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Making the small oblique parameters large
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We compute the oblique parameters, including the three new parameters V, W, and X introduced
recently by Maksymyk and co-workers, for the case of one scalar multiplet of arbitrary weak isospin
J and weak hypercharge Y. We show that, when the masses of the heaviest and lightest components
of the multiplet remain constant, but J increases, the oblique parameter U and the three new oblique
parameters increase like J, while T only increases like J. For large multiplets with masses not much
higher than mz, the oblique parameters U and V may become much larger than T and S.

PACS number(s): 12.60.Fr, 12.15.Ji

The oblique parameters characterize the influence of
physics beyond the standard model on the experimen-
tally measurable quantities in terms of their contribu-
tions to the usual gauge-boson propagators. The first
oblique parameter considered by the theorists [1] was T,
which in many cases is larger than the other oblique pa-
rameters, because of its quadratic, instead of logarithmic,
dependence on the masses of the new particles. Later [2],
the parameter S was introduced, and it was shown that,
because S receives a significant mass-independent contri-
bution &om each chiral fermion doublet, the experimen-
tally allowed range for that parameter severely constrains
technicolor theories. A more general parametrization of
the eKects of new physics, under the assumption that the

mass scale of that physics is much higher than the Z
mass, which implies that the vacuum-polarization func-
tions are approximately linear in p up to p = mz, re-
quires one more oblique parameter U [3]. Recently [4],
the above assumption has been relaxed, and it has been
shown that, whatever the mass scale of the new physics
may be, the fact that all precision electroweak measure-
ments are made at either p = 0 or p = m2z (or, in the
case of mw and I'w, at p = mw) requires the use of a
total of six oblique parameters, thereby introducing three
new parameters, which were named V, TV, and X. The
definitions of the six oblique parameters given in Ref. [4]
are
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Here as in the rest of this paper, we use capital letters
to denote squared masses: Mz = mz, and so on. Also,P:—p . The letter A refers to the coefticient of g„„
in the vacuum polarization. Note that the new param-
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eters V, R', and X vanish when the vacuum polariza-
tions are linear functions of P. They therefore include
the effects [5] of second and higher derivatives relative to
P, or equivalently of terms in the functions A(P) which
contain masses of new particles M in the denominator
(P /M, P /M, and so on). Thus these three param-
eters must decrease when the masses of the new parti-
cles increase. It was shown in Refs. [4,6] that, without
any approximations, the oblique contributions to all the
quantities which may be measured with high precision at
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either zero-momentum transfer, or at the Z pole, may
be written in terms of the four parameters S, T, V, and
X. The contributions to m~ and to I'~ also involve the
parameters U and W. Furthermore, in Ref. [6] a fit to
all these quantities using the available data has been per-
formed, yielding that the precision for five of the oblique
parameters is quite good (with error bars of order +1),
while the parameter 8 is only poorly known, requiring
a precise measurement of I ~.

It is generally believed that S and T will be larger
than all other oblique parameters. T varies quadratically
with the masses of the new particles, and an approximate
custodial symmetry is needed to prevent T from becom-
ing excessively large. Once the approximate custodial
symmetry is present, U also becomes small. Indeed, in
the limit of exact custodial symmetry, U, just as V, TV,
and X, only receives contributions from the fact that the
functions A(p ) are not linear in p (and from the gauge
coupling of hypercharge [1],i.e. , from the fact that c g 1
and Mw g Mz). On the other hand, 5 receives, in the
fermion case, a contribution which, being independent of
the fermion masses, does not vanish in the limit of custo-
dial symmetry. Therefore, we expect S to be dominant
in the case of exact custodial symmetry, as displayed in
a particular example in Fig. 2 of Ref. [4]; and we expect
T to become comparable or larger than S when there is
a large breaking of custodial symmetry.

The purpose of this paper is to point out that S and
T are not always larger than the other parameters as
the previous picture suggests, and there are cases where
the other parameters can be much larger. We have com-
puted the oblique parameters for the case of an arbitrary
scalar multiplet, with weak isospin J and weak hyper-
charge Y. We find that, in general, for sufficiently large
J and for sufficiently low masses of the components of the
scalar multiplet, T and S may remain only moderately
large, while the parameters U and V increase rapidly
with the size of the multiplet (that is, with J), becoming
the largest oblique parameters in certain situations. We
do not know of any particular theoretical motivation for
introducing large scalar multiplets with masses of order
mg. However, it is useful to keep in mind that a pri-
ori all the oblique parameters can be large, and therefore
not to assume the smallness of those parameters when
attempting Gts of the experimental data.

We consider a complex scalar multiplet with weak
isospin J. For simplicity, we assume that this multiplet
does not develop a vacuum expectation value (VEV), and
that the 2J + 1 components of this multiplet do not mix
among themselves (which might happen if two compo-
nents of the multiplet had the same electric charge) nor
with any other scalars in the theory. For the moment,

we also assume that these components all have diferent
and arbitrary masses. We denote the third component
of isospin of each component by I, and its squared mass
by MI. The photon couples to each of the scalars with
strength e(I + Y), while the Z couples with strength
e(Ic —Ys )/(c s ). The W couples the field with the
third component of isospin I with the field with the third
component of isospin (I 1),—the strength of the coupling
being e g(J + I) (J —I + 1)j(v 2s ), as is well known
from the theory of angular momentum. Therefore, the
one-loop vacuum-polarization functions are given by
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A (P) = —) (I+ Y) F(MI, MI, P), (7)
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Here, div is a divergent quantity typical of dimensional
regularization, the exact definition of which is irrelevant,
because it will cancel in the combinations for the oblique
parameters. Also, yi ——Mi jp, y2 ——M2/y, , and yp =
P/p, , where p is the arbitrary mass parameter used in
dimensional regularization, which will also cancel in the
final results. We need the following properties of the
function F in order to calculate the oblique parameters:

Notice that, just as A»(0) and A~z(0) vanish because
of electromagnetic gauge invariance, in this particular
case Azz(0) also vanishes [7]. This happens because,
as shown below, F(MI, MI, 0) = 0. The function F may
be computed from the relevant Feynman diagrams, which
are depicted in Fig. 1. One obtains

4F (Mi, M2, 0) = 0+ (Mi i M2) —= Mi + M~- 2MiMg Mi
Mi —M2 M2

' (12)

OF(Mi, Mi, P) 1 1 Mi= div + —+ —ln
6 6 p~
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The functions ((z, y) and p(z, y) vanish when both z and y tend to zero. The function ( is defined by

where
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The function p is defined by
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The expressions for ((z, z) and for p(z, z) are obtained
by performing the limit y ~ z in Eqs. (16) and (19).
Also, 8+(M, M) = 0.

It is straightforward to get the following expressions
for the new oblique parameters V, W, and X:

(22)

+J

+J

(20)

(21)

For convenience, we separate the contributions to each
of the parameters S and U into two pieces: S = S' + S"
and U = U' + U". The second terms characterize the
deviation from linear dependence in P of Azz(P) and
Aww(P):

+J
g// ) (I 2 y' 2 )2(~

I=—J

&Mz Mz j (Mw' Mw ) (24)

The other contributions to S and U are

+J
S' = ——) Iln

I=—J
+J

U'= —) (J +J —3I )ln6~ p2I=—J
(26) FIG. 1. Feynman diagrams relevant for the computation of

the vacuum polarizations.
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Notice that, because of the relations

+-J +J

Q I= ) (J'+ J —3I') =0,

the dependence of S' and U' on p cancels out, as ex-
pected. Finally, for T we have the result

H couples with the doublet H to form an SU(2)U(1)
singlet, which then multiplies the singlet formed from
4 together with A. This coupling just gives a common
mass to all the components of 6, when H develops a
VEV. The other quartic coupling is (AA)s(HH)s. Here,
6 and 6 pair into a triplet of SU(2), and H and H do
likewise. Then the two triplets couple to form a gauge
singlet. Now,

+J
) (J —I'+ 1+I) 0+.(Mr, Mr i),~«~' 8' Mz, (Aa)s(HH)s ——) (dltT„A)(HtT„' 'lH), (32)

in which M~ ——c Mz has been used.
We first check that the above results agree with the de-

coupling theorem [8]. There is an SU(2)|3U(1)-invariant
mass term which gives a common squared mass M to
all the members of the multiplet. The mass splittings
of the multiplet, on the other hand, come from quartic
couplings to the usual Higgs doublet which gets a VEV
v. We therefore write MI ——M+bl. The decoupling the-
orem [8] tells us that, when M goes to infinity, with the
br remaining constant (because they are proportional to
v2, which is held fixed), all the oblique parameters must
vanish. In fact, we find, in this limit

1 (8r —brc)2 1 (br —br')2(br + 8~)
3 M 6 M2
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1
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(31)

This shows that T, V, TV, X, S", and U" all go to zero
when M increases. As for S' and U', they vanish when all
the scalars of the multiplet have the same mass, because
of Eq. (27), and therefore they must also be M . This
establishes decoupling. Equation (29) was first noted in
Ref. [7].

We now study explicitly the mass spectrum of the mul-

tiplet with 2J+ 1 components. We assume the existence
of only one Higgs doublet H and denote the additional
scalar multiplet by A. For a general hypercharge of A,
there are only two quartic couplings of 4 with H. The
first one may be written (AA)i(HH)i. Here, H is the
doublet conjugate to 0, and. 4 is the multiplet conjugate
to A. In the quartic coupling written above, the doublet

M2+ M, M2 —M,
Ml ——M+ Ib =

in which we have denoted MJ by M2, and M J by M».
From now on, we will assume the masses of the compo-
nents of 6 to be given by Eq. (33). This equation is very
useful, because it reduces the a priori 2J+1 independent
masses to only two independent ones.

Let us now consider what happens in the case where
we keep M» and M2 fixed, and let J increase. That is,
we consider diferent scalar multiplets, all with equally
spaced squared masses, and all with the same maximum
and minimum mass, but with a growing number 2J + 1
of components, and therefore with the spacing between
the squared masses decreasing. Obviously, provided both
Mi and M2 are higher than Mz/4, this possibility is not
excluded by experiment. One asks, what will happen to
the oblique parameters when J increases? First consider
S' and O'. From Eq. (33), we can write

Mr M2+ Mi ( I M2 —Mii
ln = ln +ln

l
1+ — ., 34

rr2 2@2 ( J M2+ Mi)

and the first term on the right-hand side contributes nei-
ther to S' nor to U', due to Eq. (27). If we develop the
last logarithm in Eq. (34) as a power series in (M2 —Mi),
and then perform the summation in Eq. (25), we find

S' =—Y' . 1 1 (M2 —Mi l
3~ )- 2n+ 1 J'"+' qM, + Mi )m=0

+J
12'rt+ 2

I=—J
(35)

Similarly, we get for U',

in which the T& are the generators of SU(2) in the
spin- J representation. Since it is the combination

(HtTs H) which gets a VEV, we see that this quartic
coupling will give a contribution to the squared mass of
each component proportional to its I value. That is,
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1 . 1 1 (M2 —Mi)
U' = ——

6x - 2n J2" (M2+Mi)
+J +J

x (J'+ J) ) I'" —3 ) I'"+'

Because Pl & I is a polynomial in J of degree n + 1,
these equations tell us that, in the limit of large J, S'

grows like J, while U' grows like J .
Let us now find out how does T behave in the same

limit. We expand H+(MI, MI i) in powers of (M2 —Mi),
obtaining

H+(MI, MI i) = (M2 Mi) ) ! ! ! ! [(I—1)"+ —I"+
] + —(2I —1) [I"—(I —1)"]-

I, J y gM, +M, y n+1 n

+, (~' —I) Nl —~)" ' —I" 'lI

The terms in curly brackets on the right-hand side of the
above equation appear at first sight to be a polynomial
in I of degree n. It is easy to check, however, that the
coefficients of I" and of I" both vanish. After some

simplification, we indeed find

1 &M2 —Mi)"
H+(MI, MI i) = (M2+Mi) ) 2+ 1)

) . (n 2).(n —p —1)
pl(n p + 1) I

p=O

Note that the sum over p on the right-hand side of
Eq. (38) is symmetric under I m 1 —I for even n, but
changes sign under I ~ 1 —I for odd n. Therefore, upon
the summation over I specified in Eq. (28), the terms
with odd n disappear, and we obtain

OO 2n
1 M2+M& ).t !(M2 ™il! (39)

167rc s Mz (M2+ Mi)

The coefficients t2„are the functions of J which are found

by performing the relevant summations. The important

point is that, in Eqs. (28) and (38), the maximum power
of I to be summed is I", while there is a J" in the de-
nominator. Therefore, the coefficients t2„and T increase
linearly with J for large J.

The implications of these facts can be seen in Fig. 2,
where we plot T, S', and U' as functions of m2, while

keeping mq fixed at 150 GeV. The hypercharge Y of the
multiplet is —1/2, while J = 1, 3, and 5 in Figs. 2(a),
2(b), and 2(c), respectively. Evidently, in all three figures
T = S' = U' = 0 when M2 ——Mq. Also, for large M2, T is
much larger than both S' and U', due to the dependence
in (M2 + Mi)/Mz made explicit in Eq. (39). However,
for small M2, we see that, for large J, U' becomes much
larger than T. This is because U' increases like J, while
T increases only like J. S' also becomes much larger than
T, because S' increases like J; but it must be noted that
S' can anyway always be either suppressed or enhanced
by the hypercharge Y, because S' is proportional to Y.

Now consider the additional contributions S" and U"
to S and U, respectively, as well as the new oblique pa-
rameters V, W, and X. All these parameters do not van-
ish when M2 ——Mq, in contrast to what happens with T,
S', and U'. Let us then calculate the oblique parameters
when M2 ——Mq ——M. In this case, T = 0 while

S
2J+1

J(J+1),
(40)

J(J+1) 4 2 4 &M Ml J(J+1) ( M M )
2J+1 7r 3 ) (Mz'Mz] 3 qMw Mw)

(41)

V
2J+1 2&C 8

J(J+1). . . (M Ml
z z)M 'M (42)

R'
2J+1

1 J(J+1) ( M M )

27rs2 3 qMw Mw )
(43)

X
2J+1

J(J+1), » ~f' M M )
27r 3 qMz' Mz)

(44)
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Notice that U would vanish if c = 1 and Mgr = Mz.
This is because the gauge coupling of hypercharge vio-
lates custodial symmetry [1]. It is seen that all oblique
parameters, except T, increase like J or, more explicitly,
like J(J+1)(2J+1).However, the contributions propor-
tional to Y increase only like (2J+1). It is easy to check
that, in the situation in which Mz g Mz, contributions
to the oblique parameters proportional to Y(M2 —Mz)
arise, which increase like J .

This behavior is easy to understand. In general, we

should expect a factor of J always to be present in the
oblique parameters, just corresponding to the number of
independent graphs in the vacuum polarizations; see Eqs.
(7)—(10). Moreover, as the coupling of a gauge boson of
SU(2) to a scalar with third component of isospin equal
to I increases like I, and as there are two such vertices
in a one-loop contribution to a vacuum polarization, we

expect a further factor of J in every oblique parameter,
corresponding to the square of the maximum value of I
in the multiplet. However, for the coupling of the gauge
boson of U(1), we get a factor Y and lose a factor I (or,
in the final result after the summation over I, of J).

Thus, the behavior of T, which increases like J instead
of like J, is an exception to the rule. This is connected
to the fact that T is quadratic, instead of logarithmic,
in the masses of the particles. For two particles with
squared masses M and M', and small mass difference,
T will vary as (M —M') /(M + M'), while all other
oblique parameters will vary as ln(M/M'). Now, in our
procedure of letting the maximum and minimum squared
masses of the multiplet fixed while increasing the size of
the multiplet, a factor 1/J is automatically associated
with each power of the mass difference M —M'. This is
what makes T increase with J instead of increasing withJ, as all other oblique parameters.

In Fig. 3 we present a plot of all six oblique parameters
as functions of m2, with mi ——150 GeV kept fixed, for
a fixed value of the hypercharge and for three different
values of J. It is seen that, for large J and low m2, V
becomes quite large.
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